1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
// Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Cartesian_kernel/include/CGAL/Cartesian/Triangle_3.h $
// $Id: include/CGAL/Cartesian/Triangle_3.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Andreas Fabri
#ifndef CGAL_CARTESIAN_TRIANGLE_3_H
#define CGAL_CARTESIAN_TRIANGLE_3_H
#include <CGAL/Handle_for.h>
#include <CGAL/array.h>
namespace CGAL {
template <class R_>
class TriangleC3
{
typedef typename R_::Boolean Boolean;
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Plane_3 Plane_3;
typedef typename R_::Triangle_3 Triangle_3;
typedef std::array<Point_3, 3> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
TriangleC3() {}
TriangleC3(const Point_3 &p, const Point_3 &q, const Point_3 &r)
: base{p, q, r} {}
Boolean operator==(const TriangleC3 &t) const;
Boolean operator!=(const TriangleC3 &t) const;
Plane_3 supporting_plane() const;
Boolean has_on(const Point_3 &p) const;
Boolean is_degenerate() const;
const Point_3 & vertex(int i) const;
const Point_3 & operator[](int i) const;
FT squared_area() const;
};
template < class R >
typename R::Boolean
TriangleC3<R>::operator==(const TriangleC3<R> &t) const
{
if (CGAL::identical(base, t.base))
return true;
int i;
for(i=0; i<3; i++)
if ( vertex(0) == t.vertex(i) )
break;
return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2);
}
template < class R >
inline
typename R::Boolean
TriangleC3<R>::operator!=(const TriangleC3<R> &t) const
{
return !(*this == t);
}
template < class R >
const typename TriangleC3<R>::Point_3 &
TriangleC3<R>::vertex(int i) const
{
if (i<0) i=(i%3)+3;
else if (i>2) i=i%3;
return (i==0) ? get_pointee_or_identity(base)[0] :
(i==1) ? get_pointee_or_identity(base)[1] :
get_pointee_or_identity(base)[2];
}
template < class R >
inline
const typename TriangleC3<R>::Point_3 &
TriangleC3<R>::operator[](int i) const
{
return vertex(i);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
typename TriangleC3<R>::FT
TriangleC3<R>::squared_area() const
{
return internal::squared_area(vertex(0), vertex(1), vertex(2), R());
}
template < class R >
inline
typename TriangleC3<R>::Plane_3
TriangleC3<R>::supporting_plane() const
{
return Plane_3(vertex(0), vertex(1), vertex(2));
}
template < class R >
inline
typename R::Boolean
TriangleC3<R>::
has_on(const typename TriangleC3<R>::Point_3 &p) const
{
return R().has_on_3_object()
(static_cast<const typename R::Triangle_3&>(*this), p);
}
template < class R >
typename R::Boolean
TriangleC3<R>::is_degenerate() const
{
return collinear(vertex(0),vertex(1),vertex(2));
}
} //namespace CGAL
#endif // CGAL_CARTESIAN_TRIANGLE_3_H
|