1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Classification/include/CGAL/Classification/classify.h $
// $Id: include/CGAL/Classification/classify.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot, Florent Lafarge
#ifndef CGAL_CLASSIFICATION_CLASSIFY_H
#define CGAL_CLASSIFICATION_CLASSIFY_H
#include <CGAL/license/Classification.h>
#include <CGAL/boost/graph/alpha_expansion_graphcut.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/for_each.h>
#include <CGAL/Classification/Label_set.h>
#include <CGAL/property_map.h>
#include <CGAL/iterator.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/scalable_allocator.h>
#include <mutex>
#endif // CGAL_LINKED_WITH_TBB
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationMain
\brief runs the classification algorithm without any regularization.
There is no relationship between items, the classification energy
is only minimized itemwise. This method is quick but produces
suboptimal results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_if_available_tag`, `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`. Its value type depends on the data that is
classified (for example, `CGAL::Point_3` or `CGAL::Triangle_3`).
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param labels set of input labels.
\param classifier input classifier.
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename Classifier,
typename LabelIndexRange>
void classify (const ItemRange& input,
const Label_set& labels,
const Classifier& classifier,
LabelIndexRange& output)
{
CGAL::for_each<ConcurrencyTag>
(CGAL::make_counting_range<std::size_t> (0, input.size()),
[&](const std::size_t& s) -> bool
{
std::size_t nb_class_best=0;
std::vector<float> values;
classifier (s, values);
float val_class_best = 0.f;
for(std::size_t k = 0; k < labels.size(); ++ k)
{
if(val_class_best < values[k])
{
val_class_best = values[k];
nb_class_best = k;
}
}
output[s] = static_cast<typename LabelIndexRange::iterator::value_type>(nb_class_best);
return true;
});
}
/// \cond SKIP_IN_MANUAL
// variant to get a detailed output (not documented yet)
template <typename ConcurrencyTag,
typename ItemRange,
typename Classifier,
typename LabelIndexRange,
typename ProbabilitiesRanges>
void classify (const ItemRange& input,
const Label_set& labels,
const Classifier& classifier,
LabelIndexRange& output,
ProbabilitiesRanges& probabilities)
{
CGAL::for_each<ConcurrencyTag>
(CGAL::make_counting_range<std::size_t> (0, input.size()),
[&](const std::size_t& s) -> bool
{
std::size_t nb_class_best=0;
std::vector<float> values;
classifier (s, values);
float val_class_best = 0.f;
for(std::size_t k = 0; k < labels.size(); ++ k)
{
probabilities[k][s] = values[k];
if(val_class_best < values[k])
{
val_class_best = values[k];
nb_class_best = k;
}
}
output[s] = static_cast<typename LabelIndexRange::iterator::value_type>(nb_class_best);
return true;
});
}
/// \endcond
/*!
\ingroup PkgClassificationMain
\brief runs the classification algorithm with a local smoothing.
The computed classification energy is smoothed on a user defined
local neighborhood of items. This method is a compromise between
efficiency and better quality results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_if_available_tag`, `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`.
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
\tparam NeighborQuery model of `NeighborQuery`.
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param item_map property map to access the input items.
\param labels set of input labels.
\param classifier input classifier.
\param neighbor_query used to access neighborhoods of items.
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename ItemMap,
typename NeighborQuery,
typename Classifier,
typename LabelIndexRange>
void classify_with_local_smoothing (const ItemRange& input,
const ItemMap item_map,
const Label_set& labels,
const Classifier& classifier,
const NeighborQuery& neighbor_query,
LabelIndexRange& output)
{
std::vector<std::vector<float> > values
(labels.size(), std::vector<float> (input.size(), -1.));
CGAL::for_each<ConcurrencyTag>
(CGAL::make_counting_range<std::size_t> (0, input.size()),
[&](const std::size_t& s) -> bool
{
std::vector<float> v;
classifier(s, v);
for(std::size_t k = 0; k < labels.size(); ++ k)
values[k][s] = v[k];
return true;
});
CGAL::for_each<ConcurrencyTag>
(CGAL::make_counting_range<std::size_t> (0, input.size()),
[&](const std::size_t& s) -> bool
{
std::vector<std::size_t> neighbors;
neighbor_query (get (item_map, *(input.begin()+s)), std::back_inserter (neighbors));
std::vector<float> mean (values.size(), 0.);
for (std::size_t n = 0; n < neighbors.size(); ++ n)
for (std::size_t j = 0; j < values.size(); ++ j)
mean[j] += values[j][neighbors[n]];
std::size_t nb_class_best=0;
float val_class_best = 0.f;
for(std::size_t k = 0; k < mean.size(); ++ k)
{
mean[k] /= neighbors.size();
if(val_class_best < mean[k])
{
val_class_best = mean[k];
nb_class_best = k;
}
}
output[s] = static_cast<typename LabelIndexRange::iterator::value_type>(nb_class_best);
return true;
});
}
/*!
\ingroup PkgClassificationMain
\brief runs the classification algorithm with a global
regularization based on a graph cut.
The computed classification energy is globally regularized through
an alpha-expansion algorithm. This method is slow but provides
the user with good quality results.
To speed up computation, the input domain can be subdivided into
smaller subsets such that several smaller graph cuts are applied
instead of a big one. The computation of these smaller graph cuts can
be done in parallel. Increasing the number of subsets allows for
faster computation times but can also reduce the quality of the
results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_if_available_tag`, `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`.
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
\tparam NeighborQuery model of `NeighborQuery`.
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param item_map property map to access the input items.
\param labels set of input labels.
\param classifier input classifier.
\param neighbor_query used to access neighborhoods of items.
\param strength strength of the regularization with respect to the
classification energy. Higher values produce more regularized
output but may result in a loss of details.
\param min_number_of_subdivisions minimum number of subdivisions
(for parallel processing to be efficient, this should be at least
the number of cores of the processor).
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename ItemMap,
typename NeighborQuery,
typename Classifier,
typename LabelIndexRange>
void classify_with_graphcut (const ItemRange& input,
const ItemMap item_map,
const Label_set& labels,
const Classifier& classifier,
const NeighborQuery& neighbor_query,
const float strength,
const std::size_t min_number_of_subdivisions,
LabelIndexRange& output)
{
CGAL::Bbox_3 bbox = CGAL::bbox_3
(CGAL::make_transform_iterator_from_property_map (input.begin(), item_map),
CGAL::make_transform_iterator_from_property_map (input.end(), item_map));
double Dx = double(bbox.xmax() - bbox.xmin());
double Dy = double(bbox.ymax() - bbox.ymin());
double A = Dx * Dy;
double a = A / min_number_of_subdivisions;
double l = std::sqrt(a);
std::size_t nb_x = std::size_t(Dx / l) + 1;
std::size_t nb_y = std::size_t((A / nb_x) / a) + 1;
std::size_t nb = nb_x * nb_y;
std::vector<CGAL::Bbox_3> bboxes;
bboxes.reserve(nb);
for (std::size_t x = 0; x < nb_x; ++ x)
for (std::size_t y = 0; y < nb_y; ++ y)
{
bboxes.push_back
(CGAL::Bbox_3 (bbox.xmin() + Dx * (x / double(nb_x)),
bbox.ymin() + Dy * (y / double(nb_y)),
bbox.zmin(),
(x == nb_x - 1 ? bbox.xmax() : bbox.xmin() + Dx * ((x+1) / double(nb_x))),
(y == nb_y - 1 ? bbox.ymax() : bbox.ymin() + Dy * ((y+1) / double(nb_y))),
bbox.zmax()));
}
#ifdef CGAL_CLASSIFICATION_VERBOSE
std::cerr << "Number of divisions = " << nb_x * nb_y << std::endl;
std::cerr << " -> Size of division: " << Dx / nb_x << " " << Dy / nb_y << std::endl;
#endif
std::vector<std::vector<std::size_t> > indices (nb);
std::vector<std::pair<std::size_t, std::size_t> > input_to_indices(input.size());
for (std::size_t s = 0; s < input.size(); ++ s)
{
CGAL::Bbox_3 b = get(item_map, *(input.begin() + s)).bbox();
std::size_t i = 0;
for (; i < bboxes.size(); ++ i)
if (CGAL::do_overlap (b, bboxes[i]))
{
input_to_indices[s] = std::make_pair (i, indices[i].size());
indices[i].push_back (s);
break;
}
CGAL_assertion_msg (i != bboxes.size(), "Point was not assigned to any subdivision.");
}
CGAL::for_each<ConcurrencyTag>
(CGAL::make_counting_range<std::size_t> (0, indices.size()),
[&](const std::size_t& sub) -> bool
{
if (indices[sub].empty())
return true;
std::vector<std::pair<std::size_t, std::size_t> > edges;
std::vector<double> edge_weights;
std::vector<std::vector<double> > probability_matrix
(labels.size(), std::vector<double>(indices[sub].size(), 0.));
std::vector<std::size_t> assigned_label (indices[sub].size());
for (std::size_t j = 0; j < indices[sub].size(); ++ j)
{
std::size_t s = indices[sub][j];
std::vector<std::size_t> neighbors;
neighbor_query (get(item_map, *(input.begin()+s)), std::back_inserter (neighbors));
for (std::size_t i = 0; i < neighbors.size(); ++ i)
if (sub == input_to_indices[neighbors[i]].first
&& j != input_to_indices[neighbors[i]].second)
{
edges.push_back (std::make_pair (j, input_to_indices[neighbors[i]].second));
edge_weights.push_back (strength);
}
std::vector<float> values;
classifier(s, values);
std::size_t nb_class_best = 0;
float val_class_best = 0.f;
for(std::size_t k = 0; k < labels.size(); ++ k)
{
float value = values[k];
probability_matrix[k][j] = -std::log(value);
if(val_class_best < value)
{
val_class_best = value;
nb_class_best = k;
}
}
assigned_label[j] = nb_class_best;
}
CGAL::alpha_expansion_graphcut (edges, edge_weights, probability_matrix, assigned_label);
for (std::size_t i = 0; i < assigned_label.size(); ++ i)
output[indices[sub][i]] = static_cast<typename LabelIndexRange::iterator::value_type>(assigned_label[i]);
return true;
});
}
}
}
#endif // CGAL_CLASSIFICATION_CLASSIFY_H
|