1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
// Copyright (c) 2024
// INRIA Nancy (France), and Université Gustave Eiffel Marne-la-Vallée (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Triangulation_on_hyperbolic_surface_2/include/CGAL/Complex_number.h $
// $Id: include/CGAL/Complex_number.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Vincent Despré, Loïc Dubois, Marc Pouget, Monique Teillaud
#ifndef CGAL_COMPLEX_NUMBER_H
#define CGAL_COMPLEX_NUMBER_H
#include <fstream>
#include <sstream>
#include <utility>
namespace CGAL {
/*
Templated by a field FT. Represents a complex number over FT.
*/
template <class FT>
class Complex_number
{
typedef Complex_number<FT> Self;
FT real_, imag_;
public:
Complex_number(const FT& real_part)
: real_(real_part),
imag_(0)
{}
Complex_number(const FT& real_part, const FT& imaginary_part)
: real_(real_part),
imag_(imaginary_part)
{}
Complex_number()
: Complex_number(FT(0), FT(0))
{}
template<class U,class V>
Complex_number(U&& real_part, V&& imaginary_part)
: real_(std::forward<U>(real_part)),
imag_(std::forward<V>(imaginary_part))
{}
void real(const FT& real_part) {
real_ = real_part;
}
void imag(const FT& imaginary_part) {
imag_ = imaginary_part;
}
FT real() const {
return real_;
}
FT imag() const {
return imag_;
}
Self& operator+=(const Self& other);
Self& operator-=(const Self& other);
Self& operator*=(const Self& other);
Self& operator/=(const Self& other);
// These member versions are not working ?
/* Self operator+(const Self& z) const; */
/* Self operator-(const Self& z) const; */
// Hidden friends
friend Self operator+(const Self& z) {
return z;
}
friend Self operator-(const Self& z) {
return Self(-z.real_,-z.imag_);
}
friend bool operator==(const Self& z1, const Self& z2) {
return (z1.real_==z2.real_ && z1.imag_==z2.imag_);
}
friend bool operator!=(const Self& z1, const Self& z2) {
return !operator==(z1, z2);
}
friend Self operator+(const Self& z1, const Self& z2) {
return Self(z1.real_+z2.real_, z1.imag_+z2.imag_);
}
friend Self operator-(const Self& z1, const Self& z2) {
return Self(z1.real_-z2.real_, z1.imag_-z2.imag_);
}
friend Self operator*(const Self& z1, const Self& z2) {
return Self(z1.real_*z2.real_-z1.imag_*z2.imag_, z1.real_*z2.imag_+z1.imag_*z2.real_);
}
friend Self operator/(const Self& z1, const Self& z2) {
FT m2 = norm(z2);
return Self(z1.real_/m2, z1.imag_/m2)*conj(z2);
}
friend std::ostream& operator<<(std::ostream& s, const Self& z) {
s << z.real_ << std::endl << z.imag_ << std::endl;
return s;
}
friend void operator>>(std::istream& s, Self& z) {
FT ft;
s >> ft;
z.real(ft);
s >> ft;
z.imag(ft);
}
};
////////////////////////////////////////////////////////////////////////////////
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator+=(const Complex_number<FT>& other)
{
real_ += other.real();
imag_ += other.imag();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator-=(const Complex_number<FT>& other)
{
real_ -= other.real();
imag_ -= other.imag();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator*=(const Complex_number<FT>& other)
{
real_ = real_*other.real() - imag_*other.imag();
imag_ = real_*other.imag() + imag_*other.real();
return *this;
}
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator/=(const Complex_number<FT>& other)
{
FT m2 = norm(other);
real_ /= m2;
imag_ /= m2;
this *= conj(other);
return *this;
}
template<class FT>
FT norm(const Complex_number<FT>& z)
{
return z.real()*z.real() + z.imag()*z.imag();
}
template<class FT>
Complex_number<FT> conj(const Complex_number<FT>& z)
{
return Complex_number<FT>(z.real(), -z.imag());
}
} // namespace CGAL
#endif // CGAL_COMPLEX_NUMBER_H
|