File: Complex_number.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (175 lines) | stat: -rw-r--r-- 4,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Copyright (c) 2024
// INRIA Nancy (France), and Université Gustave Eiffel Marne-la-Vallée (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Triangulation_on_hyperbolic_surface_2/include/CGAL/Complex_number.h $
// $Id: include/CGAL/Complex_number.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Vincent Despré, Loïc Dubois, Marc Pouget, Monique Teillaud

#ifndef CGAL_COMPLEX_NUMBER_H
#define CGAL_COMPLEX_NUMBER_H

#include <fstream>
#include <sstream>
#include <utility>

namespace CGAL {

/*
Templated by a field FT. Represents a complex number over FT.
*/
template <class FT>
class Complex_number
{
  typedef Complex_number<FT> Self;

  FT real_, imag_;

public:
  Complex_number(const FT& real_part)
    : real_(real_part),
      imag_(0)
  {}

  Complex_number(const FT& real_part, const FT& imaginary_part)
    : real_(real_part),
      imag_(imaginary_part)
  {}

  Complex_number()
    : Complex_number(FT(0), FT(0))
  {}

  template<class U,class V>
  Complex_number(U&& real_part, V&& imaginary_part)
    : real_(std::forward<U>(real_part)),
      imag_(std::forward<V>(imaginary_part))
  {}

  void real(const FT& real_part) {
    real_ = real_part;
  }

  void imag(const FT& imaginary_part) {
    imag_ = imaginary_part;
  }

  FT real() const {
    return real_;
  }

  FT imag() const {
    return imag_;
  }

  Self& operator+=(const Self& other);
  Self& operator-=(const Self& other);
  Self& operator*=(const Self& other);
  Self& operator/=(const Self& other);

  // These member versions are not working ?
  /* Self operator+(const Self& z) const; */
  /* Self operator-(const Self& z) const; */

  // Hidden friends
  friend Self operator+(const Self& z) {
    return z;
  }

  friend Self operator-(const Self& z) {
    return Self(-z.real_,-z.imag_);
  }

  friend bool operator==(const Self& z1, const Self& z2) {
    return (z1.real_==z2.real_ && z1.imag_==z2.imag_);
  }

  friend bool operator!=(const Self& z1, const Self& z2) {
    return !operator==(z1, z2);
  }

  friend Self operator+(const Self& z1, const Self& z2) {
    return Self(z1.real_+z2.real_, z1.imag_+z2.imag_);
  }

  friend Self operator-(const Self& z1, const Self& z2) {
    return Self(z1.real_-z2.real_, z1.imag_-z2.imag_);
  }

  friend Self operator*(const Self& z1, const Self& z2) {
    return Self(z1.real_*z2.real_-z1.imag_*z2.imag_, z1.real_*z2.imag_+z1.imag_*z2.real_);
  }

  friend Self operator/(const Self& z1, const Self& z2) {
    FT m2 = norm(z2);
    return Self(z1.real_/m2, z1.imag_/m2)*conj(z2);
  }

  friend std::ostream& operator<<(std::ostream& s, const Self& z) {
    s << z.real_ << std::endl << z.imag_ << std::endl;
    return s;
  }

  friend void operator>>(std::istream& s, Self& z) {
    FT ft;
    s >> ft;
    z.real(ft);
    s >> ft;
    z.imag(ft);
  }
};

////////////////////////////////////////////////////////////////////////////////
template<class FT>
Complex_number<FT>& Complex_number<FT>::operator+=(const Complex_number<FT>& other)
{
  real_ += other.real();
  imag_ += other.imag();
  return *this;
}

template<class FT>
Complex_number<FT>& Complex_number<FT>::operator-=(const Complex_number<FT>& other)
{
  real_ -= other.real();
  imag_ -= other.imag();
  return *this;
}

template<class FT>
Complex_number<FT>& Complex_number<FT>::operator*=(const Complex_number<FT>& other)
{
  real_ = real_*other.real() - imag_*other.imag();
  imag_ = real_*other.imag() + imag_*other.real();
  return *this;
}

template<class FT>
Complex_number<FT>& Complex_number<FT>::operator/=(const Complex_number<FT>& other)
{
  FT m2 = norm(other);
  real_ /= m2;
  imag_ /= m2;
  this *= conj(other);
  return *this;
}

template<class FT>
FT norm(const Complex_number<FT>& z)
{
  return z.real()*z.real() + z.imag()*z.imag();
}

template<class FT>
Complex_number<FT> conj(const Complex_number<FT>& z)
{
  return Complex_number<FT>(z.real(), -z.imag());
}

} // namespace CGAL

#endif // CGAL_COMPLEX_NUMBER_H