File: Concurrent_compact_container.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (894 lines) | stat: -rw-r--r-- 28,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
// Copyright (c) 2012  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/STL_Extension/include/CGAL/Concurrent_compact_container.h $
// $Id: include/CGAL/Concurrent_compact_container.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Clement Jamin

#ifdef CGAL_LINKED_WITH_TBB

#ifndef CGAL_CONCURRENT_COMPACT_CONTAINER_H
#define CGAL_CONCURRENT_COMPACT_CONTAINER_H

#include <CGAL/disable_warnings.h>

#include <CGAL/basic.h>
#include <CGAL/Default.h>

#include <iterator>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstddef>

#include <CGAL/Compact_container.h>

#include <CGAL/assertions.h>
#include <CGAL/memory.h>
#include <CGAL/iterator.h>
#include <CGAL/CC_safe_handle.h>
#include <CGAL/Time_stamper.h>

#include <tbb/enumerable_thread_specific.h>
#include <tbb/queuing_mutex.h>

namespace CGAL {

#define CGAL_GENERATE_MEMBER_DETECTOR(X)                                           \
template<typename T> class has_##X {                                          \
    struct Fallback { int X; };                                               \
    struct Derived : T, Fallback { };                                         \
                                                                              \
    template<typename U, U> struct Check;                                     \
                                                                              \
    typedef char ArrayOfOne[1];                                               \
    typedef char ArrayOfTwo[2];                                               \
                                                                              \
    template<typename U> static ArrayOfOne & func(                            \
                                            Check<int Fallback::*, &U::X> *); \
    template<typename U> static ArrayOfTwo & func(...);                       \
  public:                                                                     \
    typedef has_##X type;                                                     \
    enum { value = sizeof(func<Derived>(0)) == 2 };                           \
} // semicolon is after the macro call

#define CGAL_INIT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE 14
#define CGAL_INCREMENT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE 16

// The traits class describes the way to access the pointer.
// It can be specialized.
template < class T >
struct Concurrent_compact_container_traits {
  static void *   pointer(const T &t) { return t.for_compact_container(); }
  static void set_pointer(T &t, void* p) { t.for_compact_container(p); }
};

namespace CCC_internal {
  CGAL_GENERATE_MEMBER_DETECTOR(increment_erase_counter);

  // A basic "no erase counter" strategy
  template <bool Has_erase_counter_tag>
  class Erase_counter_strategy {
  public:
    // Do nothing
    template <typename Element>
    static unsigned int erase_counter(const Element &) { return 0; }
    template <typename Element>
    static void set_erase_counter(Element &, unsigned int) {}
    template <typename Element>
    static void restore_erase_counter(Element*, unsigned int) {}
    template <typename Element>
    static void increment_erase_counter(Element &) {}
  };


  // A strategy managing an internal counter
  template <>
  class Erase_counter_strategy<true>
  {
  public:
    template <typename Element>
    static unsigned int erase_counter(const Element &e)
    {
      return e.erase_counter();
    }

    template <typename Element>
    static unsigned int erase_counter(Element* e)
    {
      return e->erase_counter();
    }

    template <typename Element>
    static void set_erase_counter(Element &e, unsigned int c)
    {
      e.set_erase_counter(c);
    }

    template <typename Element>
    static void restore_erase_counter(Element* e, unsigned int c)
    {
      e->set_erase_counter(c);
    }

    template <typename Element>
    static void increment_erase_counter(Element &e)
    {
      e.increment_erase_counter();
    }
  };
}

// Free list (head and size)
template< typename pointer, typename size_type, typename CCC >
class Free_list {
  // Not that the implicitly-defined member functions copy the
  // pointer, and not the pointed data.
public:
  Free_list() : m_head(nullptr), m_size(0) {
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    // Note that the performance penalty with
    // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE=1 is
    // measured to be 3%, in a parallel insertion of 100k random
    // points, in Delaunay_triangulation_3.
    refresh_approximate_size();
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  }

  void init()                { m_head = nullptr; m_size = 0; }
  pointer head() const       { return m_head; }
  void set_head(pointer p)   { m_head = p; }
  size_type size() const     { return m_size; }
  void set_size(size_type s) {
    m_size = s;
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    refresh_approximate_size();
#endif
  }
  void inc_size() {
    ++m_size;
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    if(m_size > (m_approximate_size * precision_of_approximate_size_plus_1))
      refresh_approximate_size();
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  }
  void dec_size() {
    --m_size;
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    if((m_size * precision_of_approximate_size_plus_1) < m_approximate_size)
      refresh_approximate_size();
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  }
  bool empty()               { return size() == 0; }

  void merge(Free_list &other)
  {
    if (m_head == nullptr) {
      *this = other;
    }
    else if (!other.empty())
    {
      pointer p = m_head;
      while (CCC::clean_pointee(p) != nullptr)
        p = CCC::clean_pointee(p);
      CCC::set_type(p, other.m_head, CCC::FREE);
      m_size += other.m_size;
    }
    other.init(); // clear other
  }

#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  size_type approximate_size() const {
    return m_atomic_approximate_size.load(std::memory_order_relaxed);
  }
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE

protected:
  pointer   m_head;  // the free list head pointer
  size_type m_size;  // the free list size

#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  // `m_size` plus or minus `precision_of_approximate_size - 1`
  static constexpr double precision_of_approximate_size_plus_1 = 1.10;
  size_type m_approximate_size;
  std::atomic<size_type> m_atomic_approximate_size;
  void refresh_approximate_size() {
    m_approximate_size = m_size;
    m_atomic_approximate_size.store(m_size, std::memory_order_relaxed);
  }
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
};

// Class Concurrent_compact_container
//
// Safe concurrent "insert" and "erase".
// Do not parse the container while others are modifying it.
//
template < class T, class Allocator_ = Default >
class Concurrent_compact_container
{
  typedef Allocator_                                                Al;
  typedef typename Default::Get<Al, CGAL_ALLOCATOR(T) >::type       Allocator;
  typedef Concurrent_compact_container <T, Al>                      Self;
  typedef Concurrent_compact_container_traits <T>                   Traits;

  template <typename U> using EraseCounterStrategy =
      internal::Erase_counter_strategy<internal::has_increment_erase_counter<U>::value>;

public:
  typedef CGAL::Time_stamper_impl<T>                Time_stamper;
  typedef Time_stamper                              Time_stamper_impl; // backward compatibility

  typedef T                                         value_type;
  typedef Allocator                                 allocator_type;

  typedef value_type&                               reference;
  typedef const value_type&                         const_reference;

  typedef typename std::allocator_traits<Allocator>::pointer               pointer;
  typedef typename std::allocator_traits<Allocator>::const_pointer         const_pointer;
  typedef typename std::allocator_traits<Allocator>::size_type             size_type;
  typedef typename std::allocator_traits<Allocator>::difference_type       difference_type;

  typedef internal::CC_iterator<Self, false>        iterator;
  typedef internal::CC_iterator<Self, true>         const_iterator;
  typedef std::reverse_iterator<iterator>           reverse_iterator;
  typedef std::reverse_iterator<const_iterator>     const_reverse_iterator;

private:
  typedef Free_list<pointer, size_type, Self>       FreeList;
  typedef tbb::enumerable_thread_specific<FreeList> Free_lists;

  // FreeList can access our private function (clean_pointee...)
  friend class Free_list<pointer, size_type, Self>;

public:
  friend class internal::CC_iterator<Self, false>;
  friend class internal::CC_iterator<Self, true>;

  explicit Concurrent_compact_container(const Allocator &a = Allocator())
  : m_alloc(a)
  {
    init ();
  }

  template < class InputIterator >
  Concurrent_compact_container(InputIterator first, InputIterator last,
                    const Allocator & a = Allocator())
  : m_alloc(a)
  {
    init();
    std::copy(first, last, CGAL::inserter(*this));
  }

  // The copy constructor and assignment operator preserve the iterator order
  Concurrent_compact_container(const Concurrent_compact_container &c)
  : m_alloc(c.get_allocator())
  {
    init();
    m_block_size = c.m_block_size;
    std::copy(c.begin(), c.end(), CGAL::inserter(*this));
  }

  Concurrent_compact_container(Concurrent_compact_container&& c) noexcept
  : m_alloc(c.get_allocator())
  {
    c.swap(*this);
  }

  Concurrent_compact_container & operator=(const Concurrent_compact_container &c)
  {
    if (&c != this) {
      Self tmp(c);
      swap(tmp);
    }
    return *this;
  }

  Concurrent_compact_container & operator=(Concurrent_compact_container&& c) noexcept
  {
    Self tmp(std::move(c));
    tmp.swap(*this);
    return *this;
  }

  ~Concurrent_compact_container()
  {
    clear();
  }

  bool is_used(const_iterator ptr) const
  {
    return (type(&*ptr)==USED);
  }

  void swap(Self &c)
  {
    std::swap(m_alloc, c.m_alloc);
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    // non-atomic swap of m_capacity
    c.m_capacity = m_capacity.exchange(c.m_capacity.load());
#else // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    std::swap(m_capacity, c.m_capacity);
#endif // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE

    std::swap(m_block_size, c.m_block_size);
    std::swap(m_first_item, c.m_first_item);
    std::swap(m_last_item, c.m_last_item);
    std::swap(m_free_lists, c.m_free_lists);
    m_all_items.swap(c.m_all_items);
    // non-atomic swap of m_time_stamp
    c.m_time_stamp = m_time_stamp.exchange(c.m_time_stamp.load());
  }

  friend void swap(Concurrent_compact_container& a, Concurrent_compact_container& b) {
    a.swap(b);
  }

  iterator begin() { return empty()?end():iterator(m_first_item, 0, 0); }
  iterator end()   { return iterator(m_last_item, 0); }

  const_iterator begin() const { return empty()?end():const_iterator(m_first_item, 0, 0); }
  const_iterator end()   const { return const_iterator(m_last_item, 0); }

  reverse_iterator rbegin() { return reverse_iterator(end()); }
  reverse_iterator rend()   { return reverse_iterator(begin()); }

  const_reverse_iterator
  rbegin() const { return const_reverse_iterator(end()); }
  const_reverse_iterator
  rend()   const { return const_reverse_iterator(begin()); }

  // Boost.Intrusive interface
  iterator iterator_to(reference value) const {
    return iterator(&value, 0);
  }
  const_iterator iterator_to(const_reference value) const {
    return const_iterator(&value, 0);
  }
  static iterator s_iterator_to(reference value) {
    return iterator(&value, 0);
  }
  static const_iterator s_iterator_to(const_reference value) {
    return const_iterator(&value, 0);
  }

  // Special insert methods that construct the objects in place
  // (just forward the arguments to the constructor, to optimize a copy).
  template < typename... Args >
  iterator
  emplace(Args&&... args)
  {
    FreeList * fl = get_free_list();
    pointer ret = init_insert(fl);
    {
      internal::Time_stamp_and_erase_counter_backup_and_restore_guard<T, Time_stamper>
          guard(ret);
      new (ret) value_type(std::forward<Args>(args)...);
    }
    return finalize_insert(ret, fl);
  }

  template <typename U>
  iterator insert(U&& u)
  {
    return emplace(std::forward<U>(u));
  }

  template < class InputIterator >
  void insert(InputIterator first, InputIterator last)
  {
    for (; first != last; ++first)
      insert(*first);
  }

  template < class InputIterator >
  void assign(InputIterator first, InputIterator last)
  {
    clear(); // erase(begin(), end()); // ?
    insert(first, last);
  }

private:
  void erase(iterator x, FreeList * fl)
  {
    auto ptr = &*x;
    CGAL_precondition(type(x) == USED);
    EraseCounterStrategy<T>::increment_erase_counter(*x);
    {
      internal::Time_stamp_and_erase_counter_backup_and_restore_guard<T, Time_stamper>
          guard(ptr);

      std::allocator_traits<allocator_type>::destroy(m_alloc, ptr);
    }


    put_on_free_list(ptr, fl);
  }
public:

  void erase(iterator x)
  {
    erase(x, get_free_list());
  }

  void erase(iterator first, iterator last) {
    while (first != last)
      erase(first++);
  }

  void clear();

  // Merge the content of d into *this.  d gets cleared.
  // The complexity is O(size(free list = capacity-size)).
  void merge(Self &d);

  // Do not call this function while others are inserting/erasing elements
  size_type size() const
  {
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    size_type size = m_capacity.load(std::memory_order_relaxed);
#else // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    size_type size = m_capacity;
#endif // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    for( typename Free_lists::iterator it_free_list = m_free_lists.begin() ;
         it_free_list != m_free_lists.end() ;
         ++it_free_list )
    {
      size -= it_free_list->size();
    }
    return size;
  }

#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  size_type approximate_size() const
  {
    size_type size = m_capacity.load(std::memory_order_relaxed);
    for( typename Free_lists::iterator it_free_list = m_free_lists.begin() ;
         it_free_list != m_free_lists.end() ;
         ++it_free_list )
    {
      size -= it_free_list->approximate_size();
    }
    return size;
  }
#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE

  size_type max_size() const
  {
    return std::allocator_traits<allocator_type>::max_size(m_alloc);
  }

  size_type capacity() const
  {
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    return m_capacity.load(std::memory_order_relaxed);
#else // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    return m_capacity;
#endif // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  }

  // void resize(size_type sz, T c = T()); // TODO  makes sense ???

  bool empty() const
  {
    return size() == 0;
  }

  allocator_type get_allocator() const
  {
    return m_alloc;
  }

  // Returns the index of the iterator "cit", i.e. the number n so that
  // operator[](n)==*cit.
  // Complexity : O(#blocks) = O(sqrt(capacity())).
  // This function is mostly useful for purposes of efficient debugging at
  // higher levels.
  size_type index(const_iterator cit) const
  {
    // We use the block structure to provide an efficient version :
    // we check if the address is in the range of each block.

    CGAL_assertion(cit != end());

    const_pointer c = &*cit;
    size_type res=0;

    Mutex::scoped_lock lock(m_mutex);

    for (typename All_items::const_iterator it = m_all_items.begin(),
         itend = m_all_items.end(); it != itend; ++it) {
      const_pointer p = it->first;
      size_type s = it->second;

      // Are we in the address range of this block (excluding first and last
      // elements) ?
      if ( p<c && c<(p+s-1) )
      {
        CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator");
        return res+(c-p-1);
      }

      res += s-2;
    }

    return (size_type)-1; // cit does not belong to this compact container
  }

  // Returns whether the iterator "cit" is in the range [begin(), end()].
  // Complexity : O(#blocks) = O(sqrt(capacity())).
  // This function is mostly useful for purposes of efficient debugging at
  // higher levels.
  bool owns(const_iterator cit) const
  {
    // We use the block structure to provide an efficient version :
    // we check if the address is in the range of each block,
    // and then test whether it is valid (not a free element).

    if (cit == end())
      return true;

    const_pointer c = &*cit;

    Mutex::scoped_lock lock(m_mutex);

    for (typename All_items::const_iterator it = m_all_items.begin(), itend = m_all_items.end();
         it != itend; ++it) {
      const_pointer p = it->first;
      size_type s = it->second;

      // Are we in the address range of this block (excluding first and last
      // elements) ?
      if (c <= p || (p+s-1) <= c)
        continue;

      CGAL_assertion_msg( (c-p)+p == c, "wrong alignment of iterator");

      return type(c) == USED;
    }
    return false;
  }

  bool owns_dereferenceable(const_iterator cit) const
  {
    return cit != end() && owns(cit);
  }

  CGAL_DEPRECATED bool owns_dereferencable(const_iterator cit) const
  {
    return owns_dereferenceable(cit);
  }

  /** Reserve method to ensure that the capacity of the Concurrent_compact_container be
   * greater or equal than a given value n.
   */
  // TODO?
  //void reserve(size_type n)
  //{
    // Does it really make sense: it will reserve size for the current
    // thread only!
    /*Mutex::scoped_lock lock;
    if ( m_capacity >= n ) return;
    size_type tmp = m_block_size;
    // TODO: use a tmpBlockSize instead of m_block_size
    m_block_size = (std::max)( n - m_capacity, m_block_size );
    allocate_new_block(free_list());
    m_block_size = tmp + CGAL_INCREMENT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE;*/
  //}

private:

  FreeList*       get_free_list()       { return & m_free_lists.local(); }
  const FreeList* get_free_list() const { return & m_free_lists.local(); }

  // Two helper functions for the emplace() methods

  // allocate new space if needed get the pointer from
  // the free list and then clean it
  pointer init_insert(FreeList * fl)
  {
    pointer fl2 = fl->head();
    if (fl2 == nullptr) {
      allocate_new_block(fl);
      fl2 = fl->head();
    }
    pointer ret = fl2;
    fl->set_head(clean_pointee(ret));
    return ret;
  }

  // get verify the return pointer increment size and
  // return as iterator
  iterator finalize_insert(pointer ret, FreeList * fl)
  {
    CGAL_assertion(type(ret) == USED);
    fl->dec_size();
    Time_stamper::set_time_stamp(ret, m_time_stamp);
    return iterator(ret, 0);
  }

  void allocate_new_block(FreeList *fl);

  void put_on_free_list(pointer x, FreeList * fl)
  {
    set_type(x, fl->head(), FREE);
    fl->set_head(x);
    fl->inc_size();
  }

  // Definition of the bit squatting :
  // =================================
  // ptr is composed of a pointer part and the last 2 bits.
  // Here is the meaning of each of the 8 cases.
  //
  //                          value of the last 2 bits as "Type"
  // pointer part     0              1                2              3
  //         nullptr     user elt       unused           free_list end  start/end
  //      != nullptr     user elt       block boundary   free elt       unused
  //
  // meaning of ptr : user stuff     next/prev block  free_list      unused

  enum Type { USED = 0, BLOCK_BOUNDARY = 1, FREE = 2, START_END = 3 };

  // The bit squatting is implemented by casting pointers to (char *), then
  // subtracting to nullptr, doing bit manipulations on the resulting integer,
  // and converting back.

  static char * clean_pointer(char * p)
  {
    return reinterpret_cast<char*>(reinterpret_cast<std::ptrdiff_t>(p) &
                                   ~ (std::ptrdiff_t) START_END);
  }

  // Returns the pointee, cleaned up from the squatted bits.
  static pointer clean_pointee(const_pointer ptr)
  {
    return (pointer) clean_pointer((char *) Traits::pointer(*ptr));
  }

  // Get the type of the pointee.
  static Type type(const_pointer ptr)
  {
    char * p = (char *) Traits::pointer(*ptr);
    return (Type) (reinterpret_cast<std::ptrdiff_t>(p) -
                   reinterpret_cast<std::ptrdiff_t>(clean_pointer(p)));
  }

  static Type type(const_iterator it)
  {
    return type(it.operator->());
  }

  // Sets the pointer part and the type of the pointee.
  static void set_type(pointer ptr, void * p, Type t)
  {
    // This out of range compare is always true and causes lots of
    // unnecessary warnings.
    // CGAL_precondition(0 <= t && t < 4);
    Traits::set_pointer(*ptr, reinterpret_cast<void *>
      (reinterpret_cast<std::ptrdiff_t>(clean_pointer((char *) p)) + (int) t));
  }

  typedef tbb::queuing_mutex Mutex;

  // We store a vector of pointers to all allocated blocks and their sizes.
  // Knowing all pointers, we don't have to walk to the end of a block to reach
  // the pointer to the next block.
  // Knowing the sizes allows to deallocate() without having to compute the size
  // by walking through the block till its end.
  // This opens up the possibility for the compiler to optimize the clear()
  // function considerably when has_trivial_destructor<T>.
  using All_items = std::vector<std::pair<pointer, size_type> >;

  using time_stamp_t = std::atomic<std::size_t>;

  void init()
  {
    m_block_size = CGAL_INIT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE;
    m_capacity  = 0;
    for( typename Free_lists::iterator it_free_list = m_free_lists.begin() ;
         it_free_list != m_free_lists.end() ;
         ++it_free_list )
    {
      it_free_list->set_head(0);
      it_free_list->set_size(0);
    }
    m_first_item = nullptr;
    m_last_item  = nullptr;
    m_all_items  = All_items();
    m_time_stamp = 0;
  }

  allocator_type    m_alloc;
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  std::atomic<size_type> m_capacity = {};
#else // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  size_type         m_capacity      = {};
#endif // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  size_type         m_block_size    = CGAL_INIT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE;
  Free_lists        m_free_lists;
  pointer           m_first_item    = nullptr;
  pointer           m_last_item     = nullptr;
  All_items         m_all_items     = {};
  mutable Mutex     m_mutex;
  time_stamp_t      m_time_stamp    = {};

};

template < class T, class Allocator >
void Concurrent_compact_container<T, Allocator>::merge(Self &d)
{
  CGAL_precondition(&d != this);

  // Allocators must be "compatible" :
  CGAL_precondition(get_allocator() == d.get_allocator());

  // Concatenate the free_lists.
  // Iterates over TLS free lists of "d". Note that the number of TLS freelists
  // may be different.
  typename Free_lists::iterator it_free_list = m_free_lists.begin();
  if (it_free_list == m_free_lists.end())
  {
    // No free list at all? Create our local one... empty.
    get_free_list()->set_head(0);
    get_free_list()->set_size(0);
    // Now there is one TLS free list: ours!
    it_free_list = m_free_lists.begin();
  }
  for( typename Free_lists::iterator it_free_list_d = d.m_free_lists.begin() ;
       it_free_list_d != d.m_free_lists.end() ;
       ++it_free_list_d, ++it_free_list )
  {
    // If we run out of TLS free lists in *this, let's start again from "begin"
    if (it_free_list == m_free_lists.end())
      it_free_list = m_free_lists.begin();

    it_free_list->merge(*it_free_list_d);
  }
  // Concatenate the blocks.
  if (m_last_item == nullptr) { // empty...
    m_first_item = d.m_first_item;
    m_last_item  = d.m_last_item;
  } else if (d.m_last_item != nullptr) {
    set_type(m_last_item, d.m_first_item, BLOCK_BOUNDARY);
    set_type(d.m_first_item, m_last_item, BLOCK_BOUNDARY);
    m_last_item = d.m_last_item;
  }
  m_all_items.insert(m_all_items.end(), d.m_all_items.begin(), d.m_all_items.end());
  // Add the capacities.
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  m_capacity.fetch_add(d.m_capacity, std::memory_order_relaxed);
#else // not  CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  m_capacity += d.m_capacity;
#endif // not  CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
  // It seems reasonable to take the max of the block sizes.
  m_block_size = (std::max)(m_block_size, d.m_block_size);
  // Clear d.
  d.init();
}

template < class T, class Allocator >
void Concurrent_compact_container<T, Allocator>::clear()
{
  for (typename All_items::iterator it = m_all_items.begin(), itend = m_all_items.end();
       it != itend; ++it) {
    pointer p = it->first;
    size_type s = it->second;
    for (pointer pp = p + 1; pp != p + s - 1; ++pp) {
      if (type(pp) == USED)
        std::allocator_traits<allocator_type>::destroy(m_alloc, pp);
    }
    m_alloc.deallocate(p, s);
  }
  init();
}

template < class T, class Allocator >
void Concurrent_compact_container<T, Allocator>::
  allocate_new_block(FreeList * fl)
{
  size_type old_block_size;
  pointer new_block;

  {
    Mutex::scoped_lock lock(m_mutex);
    old_block_size = m_block_size;
    new_block = m_alloc.allocate(old_block_size + 2);
    m_all_items.push_back(std::make_pair(new_block, old_block_size + 2));
#if CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    m_capacity.fetch_add(old_block_size, std::memory_order_relaxed);
#else // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE
    m_capacity += old_block_size;
#endif // not CGAL_CONCURRENT_COMPACT_CONTAINER_APPROXIMATE_SIZE

    // We insert this new block at the end.
    if (m_last_item == nullptr) // First time
    {
        m_first_item = new_block;
        m_last_item  = new_block + old_block_size + 1;
        set_type(m_first_item, nullptr, START_END);
    }
    else
    {
        set_type(m_last_item, new_block, BLOCK_BOUNDARY);
        set_type(new_block, m_last_item, BLOCK_BOUNDARY);
        m_last_item = new_block + old_block_size + 1;
    }
    set_type(m_last_item, nullptr, START_END);
    // Increase the m_block_size for the next time.
    m_block_size += CGAL_INCREMENT_CONCURRENT_COMPACT_CONTAINER_BLOCK_SIZE;
  }

  // We don't touch the first and the last one.
  // We mark them free in reverse order, so that the insertion order
  // will correspond to the iterator order...
  for (size_type i = old_block_size; i >= 1; --i)
  {
    EraseCounterStrategy<T>::set_erase_counter(*(new_block + i), 0);
    Time_stamper::initialize_time_stamp(new_block + i);
    put_on_free_list(new_block + i, fl);
  }
}

template < class T, class Allocator >
inline
bool operator==(const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return lhs.size() == rhs.size() &&
    std::equal(lhs.begin(), lhs.end(), rhs.begin());
}

template < class T, class Allocator >
inline
bool operator!=(const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return ! (lhs == rhs);
}

template < class T, class Allocator >
inline
bool operator< (const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return std::lexicographical_compare(lhs.begin(), lhs.end(),
                                      rhs.begin(), rhs.end());
}

template < class T, class Allocator >
inline
bool operator> (const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return rhs < lhs;
}

template < class T, class Allocator >
inline
bool operator<=(const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return ! (lhs > rhs);
}

template < class T, class Allocator >
inline
bool operator>=(const Concurrent_compact_container<T, Allocator> &lhs,
                const Concurrent_compact_container<T, Allocator> &rhs)
{
  return ! (lhs < rhs);
}

} //namespace CGAL

#include <CGAL/enable_warnings.h>

#endif // CGAL_CONCURRENT_COMPACT_CONTAINER_H

#endif // CGAL_LINKED_WITH_TBB