1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Homogeneous_kernel/include/CGAL/Homogeneous/PointH2.h $
// $Id: include/CGAL/Homogeneous/PointH2.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_HOMOGENEOUS_POINT_2_H
#define CGAL_HOMOGENEOUS_POINT_2_H
#include <CGAL/Origin.h>
#include <boost/mpl/and.hpp>
#include <boost/mpl/logical.hpp>
#include <type_traits>
namespace CGAL {
template < class R_ >
class PointH2
{
typedef typename R_::FT FT;
typedef typename R_::RT RT;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Direction_2 Direction_2;
typedef Rational_traits<FT> Rat_traits;
// Reference-counting is handled in Vector_2.
Vector_2 base;
public:
typedef FT Cartesian_coordinate_type;
typedef const RT& Homogeneous_coordinate_type;
typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator;
typedef R_ R;
PointH2() {}
PointH2(const Origin &)
: base(NULL_VECTOR) {}
template < typename Tx, typename Ty >
PointH2(const Tx & x, const Ty & y,
std::enable_if_t< std::is_convertible_v<Tx, RT> &&
std::is_convertible_v<Ty, RT> >* = 0)
: base(x, y) {}
PointH2(const FT& x, const FT& y)
: base(x, y) {}
PointH2(const RT& hx, const RT& hy, const RT& hw)
: base(hx, hy, hw) {}
typename R::Boolean operator==( const PointH2<R>& p) const;
typename R::Boolean operator!=( const PointH2<R>& p) const;
const RT & hx() const { return base.hx(); }
const RT & hy() const { return base.hy(); }
const RT & hw() const { return base.hw(); }
FT x() const { return FT(hx()) / FT(hw()); }
FT y() const { return FT(hy()) / FT(hw()); }
FT cartesian(int i) const;
FT operator[](int i) const;
const RT & homogeneous(int i) const;
Cartesian_const_iterator cartesian_begin() const
{
return base.cartesian_begin();
}
Cartesian_const_iterator cartesian_end() const
{
return base.cartesian_end();
}
int dimension() const;
Direction_2 direction() const;
};
template < class R >
inline
typename R::Boolean
PointH2<R>::operator==( const PointH2<R>& p) const
{
return base == p.base;
}
template < class R >
inline
typename R::Boolean
PointH2<R>::operator!=( const PointH2<R>& p) const
{ return !(*this == p); }
template < class R >
inline
typename PointH2<R>::FT
PointH2<R>::cartesian(int i) const
{
return base.cartesian(i);
}
template < class R >
inline
const typename PointH2<R>::RT &
PointH2<R>::homogeneous(int i) const
{
return base.homogeneous(i);
}
template < class R >
inline
typename PointH2<R>::FT
PointH2<R>::operator[](int i) const
{ return base[i]; }
template < class R >
inline
int
PointH2<R>::dimension() const
{ return base.dimension(); }
template < class R >
inline
typename PointH2<R>::Direction_2
PointH2<R>::direction() const
{ return typename PointH2<R>::Direction_2(*this); }
} //namespace CGAL
#endif // CGAL_HOMOGENEOUS_POINT_2_H
|