File: VectorH2.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (244 lines) | stat: -rw-r--r-- 6,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Homogeneous_kernel/include/CGAL/Homogeneous/VectorH2.h $
// $Id: include/CGAL/Homogeneous/VectorH2.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Stefan Schirra


#ifndef CGAL_HOMOGENEOUS_VECTOR_2_h
#define CGAL_HOMOGENEOUS_VECTOR_2_h

#include <CGAL/Origin.h>
#include <CGAL/array.h>
#include <CGAL/Kernel_d/Cartesian_const_iterator_d.h>
#include <CGAL/Handle_for.h>

namespace CGAL {

template < class R_ >
class VectorH2
{
  typedef VectorH2<R_>                      Self;
  typedef typename R_::FT                   FT;
  typedef typename R_::RT                   RT;
  typedef typename R_::Point_2              Point_2;
  typedef typename R_::Segment_2            Segment_2;
  typedef typename R_::Ray_2                Ray_2;
  typedef typename R_::Line_2               Line_2;
  typedef typename R_::Direction_2          Direction_2;
  typedef typename R_::Vector_2             Vector_2;

  typedef std::array<RT, 3>               Rep;
  typedef typename R_::template Handle<Rep>::type  Base;

  typedef Rational_traits<FT>               Rat_traits;

  Base base;

public:

  typedef const FT Cartesian_coordinate_type;
  typedef const RT& Homogeneous_coordinate_type;
  typedef Cartesian_const_iterator_d<typename Rep::const_iterator> Cartesian_const_iterator;

  typedef R_                                    R;

   VectorH2() {}

   template < typename Tx, typename Ty >
   VectorH2(const Tx & x, const Ty & y,
            std::enable_if_t<std::is_convertible_v<Tx, RT> &&
                             std::is_convertible_v<Ty, RT>>* = 0)
      : base(CGAL::make_array<RT>(x, y, RT(1))) {}

   VectorH2(const FT& x, const FT& y)
      : base(CGAL::make_array<RT>(
             Rat_traits().numerator(x) * Rat_traits().denominator(y),
             Rat_traits().numerator(y) * Rat_traits().denominator(x),
             Rat_traits().denominator(x) * Rat_traits().denominator(y)))
   {
     CGAL_kernel_assertion(hw() > 0);
   }

   VectorH2(const RT& x, const RT& y, const RT& w )
     : base( w >= RT(0) ? CGAL::make_array( x,  y,  w)
                        : CGAL::make_array<RT>(-x, -y, -w) ) {}

  const Self&
  rep() const
  {
    return static_cast<const Self& >(*this);
  }

   typename R::Boolean operator==( const VectorH2<R>& v) const;
   typename R::Boolean operator!=( const VectorH2<R>& v) const;
   typename R::Boolean operator==( const Null_vector&) const;
   typename R::Boolean operator!=( const Null_vector& v) const;

   const RT & hx() const { return CGAL::get_pointee_or_identity(base)[0]; };
   const RT & hy() const { return CGAL::get_pointee_or_identity(base)[1]; };
   const RT & hw() const { return CGAL::get_pointee_or_identity(base)[2]; };

   FT      x()  const { return FT(hx()) / FT(hw()); };
   FT      y()  const { return FT(hy()) / FT(hw()); };

   FT      cartesian(int i)   const;
   const RT & homogeneous(int i) const;
   FT      operator[](int i)  const;

   Cartesian_const_iterator cartesian_begin() const
   {
     return make_cartesian_const_iterator_begin(CGAL::get_pointee_or_identity(base).begin(),
                                                std::prev(CGAL::get_pointee_or_identity(base).end()));
   }

   Cartesian_const_iterator cartesian_end() const
   {
     return make_cartesian_const_iterator_end(std::prev(CGAL::get_pointee_or_identity(base).end()));
   }

   int     dimension() const;
   Direction_2 direction() const;
   Vector_2 perpendicular(const Orientation& o ) const;

  //   Vector_2 operator+(const VectorH2 &v) const;
   Vector_2 operator-(const VectorH2 &v) const;
   Vector_2 operator-() const;
   Vector_2 opposite() const;
   FT squared_length() const;
  //   Vector_2 operator/(const RT &f) const;
  //Vector_2 operator/(const FT &f) const;

// undocumented:
   VectorH2(const Direction_2 & dir)
      : base ( dir) {}

  VectorH2(const Point_2 & p)
     : base ( p) {}
};

template < class R >
inline
typename R::Boolean
VectorH2<R>::operator==( const Null_vector&) const
{ return (hx() == RT(0)) && (hy() == RT(0)); }

template < class R >
inline
typename R::Boolean
VectorH2<R>::operator!=( const Null_vector& v) const
{ return !(*this == v); }

template < class R >
CGAL_KERNEL_INLINE
typename R::Boolean
VectorH2<R>::operator==( const VectorH2<R>& v) const
{
  return (  (hx() * v.hw() == v.hx() * hw() )
          &&(hy() * v.hw() == v.hy() * hw() ) );
}

template < class R >
inline
typename R::Boolean
VectorH2<R>::operator!=( const VectorH2<R>& v) const
{ return !(*this == v); }  /* XXX */

template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::cartesian(int i) const
{
  CGAL_kernel_precondition( (i==0 || i==1) );
  if (i==0)
      return x();
  return y();
}

template < class R >
CGAL_KERNEL_INLINE
const typename VectorH2<R>::RT &
VectorH2<R>::homogeneous(int i) const
{
  CGAL_kernel_precondition( (i>=0) && (i<=2) );
  return CGAL::get_pointee_or_identity(base)[i];
}

template < class R >
inline
typename VectorH2<R>::FT
VectorH2<R>::operator[](int i) const
{ return cartesian(i); }

template < class R >
inline
int
VectorH2<R>::dimension() const
{ return 2; }

template < class R >
CGAL_KERNEL_INLINE
typename VectorH2<R>::Direction_2
VectorH2<R>::direction() const
{ return Direction_2(hx(), hy()); }

template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }

template < class R >
inline
typename VectorH2<R>::Vector_2
VectorH2<R>::opposite() const
{ return VectorH2<R>(- hx(), - hy(), hw() ); }


template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::Vector_2
VectorH2<R>::operator-(const VectorH2<R>& v) const
{
  return VectorH2<R>( hx()*v.hw() - v.hx()*hw(),
                      hy()*v.hw() - v.hy()*hw(),
                      hw()*v.hw() );
}

template <class R>
CGAL_KERNEL_INLINE
typename VectorH2<R>::FT
VectorH2<R>::squared_length() const
{
  typedef typename R::FT FT;
  return
    FT( CGAL_NTS square(hx()) + CGAL_NTS square(hy()) ) /
    FT( CGAL_NTS square(hw()) );
}


template < class R >
CGAL_KERNEL_INLINE
typename R::Vector_2
VectorH2<R>::perpendicular(const Orientation& o) const
{
  CGAL_kernel_precondition(o != COLLINEAR);
  if (o == COUNTERCLOCKWISE)
      return typename R::Vector_2(-hy(), hx(), hw());
  else
      return typename R::Vector_2(hy(), -hx(), hw());
}

} //namespace CGAL

#endif // CGAL_HOMOGENEOUS_VECTOR_2_h