1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
|
// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Kernel_d/include/CGAL/Kernel_d/function_objectsCd.h $
// $Id: include/CGAL/Kernel_d/function_objectsCd.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Seel, Kurt Mehlhorn
#ifndef CGAL_FUNCTION_OBJECTSCD_H
#define CGAL_FUNCTION_OBJECTSCD_H
#include <CGAL/basic.h>
#include <CGAL/enum.h>
#include <CGAL/use.h>
#include <CGAL/Referenced_argument.h>
#undef CGAL_KD_TRACE
#undef CGAL_KD_TRACEN
#undef CGAL_KD_TRACEV
#define CGAL_KD_TRACE(t) std::cerr << t
#define CGAL_KD_TRACEN(t) std::cerr << t << std::endl
#define CGAL_KD_TRACEV(t) std::cerr << #t << " = " << (t) << std::endl
namespace CGAL {
template <typename K>
class Compute_coordinateCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef FT result_type;
result_type
operator()(const Point_d& p, int i) const
{
return p.cartesian(i);
}
};
template <typename K>
class Point_dimensionCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef int result_type;
result_type
operator()(const Point_d& p) const
{
return p.dimension();
}
};
template <typename K>
class Less_coordinateCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef bool result_type;
result_type
operator()(const Point_d& p, const Point_d& q, int i) const
{
return p.cartesian(i)<q.cartesian(i);
}
};
template <class R>
class Lift_to_paraboloidCd
{
typedef typename R::Point_d Point;
typedef typename R::FT FT;
typedef typename R::LA LA;
public:
typedef Point result_type;
result_type operator()(const Point & p) const
{
int d = p.dimension();
typename LA::Vector h(d+1);
FT sum = 0;
for (int i = 0; i<d; i++) {
h[i] = p.cartesian(i);
sum += h[i]*h[i];
}
h[d] = sum;
return Point(d+1,h.begin(),h.end());
}
};
template <class R>
class Project_along_d_axisCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
public:
typedef Point_d result_type;
result_type operator()(const Point_d & p) const
{
return Point_d(p.dimension()-1,
p.cartesian_begin(), p.cartesian_end()-1);
}
};
template <class R>
class MidpointCd
{
typedef typename R::Point_d Point_d;
public:
typedef Point_d result_type;
result_type operator()(const Point_d & p, const Point_d & q) const
{
return Point_d(p + (q-p)/2);
}
};
template <class R>
class Center_of_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
typedef typename LA::Vector Vector;
typedef typename LA::Matrix Matrix;
public:
typedef Point_d result_type;
template <class Forward_iterator>
result_type operator()(Forward_iterator start, Forward_iterator end) const
{
CGAL_USE(end);
CGAL_assertion(start!=end);
int d = start->dimension();
Matrix M(d);
Vector b(d);
Point_d pd = *start++;
for (int i = 0; i < d; ++i) {
// we set up the equation for p_i
Point_d pi = *start++;
b[i] = 0;
for (int j = 0; j < d; ++j) {
M(i,j) = FT(2)*(pi.cartesian(j) - pd.cartesian(j));
b[i] += (pi.cartesian(j) - pd.cartesian(j)) *
(pi.cartesian(j) + pd.cartesian(j));
}
}
FT D;
Vector x;
LA::linear_solver(M,b,x,D);
return Point_d(d, x.begin(), x.end());
}
}; // Center_of_sphereCd
template <class R>
class Squared_distanceCd
{
typedef typename R::Point_d Point;
typedef typename R::Vector_d Vector;
typedef typename R::FT FT;
public:
typedef FT result_type;
result_type operator()(const Point & p, const Point & q) const
{
Vector v = p - q;
return v.squared_length();
}
};
template <class R>
class Position_on_lineCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
public:
typedef typename R::Boolean result_type;
result_type operator()(const Point & p, const Point & s, const Point & t,
FT & l) const
{
int d = p.dimension();
CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0),
"position_along_line: argument dimensions disagree.");
CGAL_assertion_msg((s!=t),
"Position_on_line_d: line defining points are equal.");
FT lnum = (p.cartesian(0) - s.cartesian(0));
FT lden = (t.cartesian(0) - s.cartesian(0));
FT num(lnum), den(lden), lnum_i, lden_i;
for (int i = 1; i < d; i++) {
lnum_i = (p.cartesian(i) - s.cartesian(i));
lden_i = (t.cartesian(i) - s.cartesian(i));
if (lnum*lden_i != lnum_i*lden)
return false;
if (lden_i != FT(0)) {
den = lden_i;
num = lnum_i;
}
}
l = num / den; return true;
}
};
template <class R>
class Barycentric_coordinatesCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
public:
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
const Point & p, OutputIterator result)
{
TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
//int n = std::distance(first,last); //unused variable
int d = p.dimension();
typename R::Affine_rank_d affine_rank;
CGAL_assertion(affine_rank(first,last)==d);
std::vector< Point > V(first,last);
typename LA::Matrix M(d+1,V.size());
typename LA::Vector b(d+1), x;
int i;
for (i=0; i<d; ++i) {
for (int j=0; j<V.size(); ++j)
M(i,j)=V[j].cartesian(i);
b[i] = p.cartesian(i);
}
for (int j=0; j<V.size(); ++j)
M(d,j) = 1;
b[d] = 1;
FT D;
LA::linear_solver(M,b,x,D);
for (i=0; i < x.dimension(); ++result, ++i) {
*result = x[i];
}
return result;
}
};
template <class R>
class OrientationCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::Orientation Orientation;
public:
typedef Orientation result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first, last, Orientation_d);
int d = static_cast<int>(std::distance(first,last)) - 1;
// range contains d+1 points of dimension d
CGAL_assertion_msg(first->dimension() == d,
"Orientation_d: needs first->dimension() + 1 many points.");
typename LA::Matrix M(d);
ForwardIterator s = first;
++s;
for( int j = 0; j < d; ++s, ++j )
for( int i = 0; i < d; ++i )
M(i,j) = s->cartesian(i) - first->cartesian(i);
return result_type(LA::sign_of_determinant(M));
}
};
/* This predicates tests the orientation of (k+1) points that span a
* k-dimensional affine subspace of the ambiant d-dimensional space. We
* greedily search for an orthogonal projection on a k-dim axis aligned
* subspace on which the (full k-dim) predicates answers POSITIVE or NEGATIVE.
* If no such subspace is found, return COPLANAR.
* IMPORTANT TODO: Current implementation is VERY bad with filters: if one
* determinant fails in the filtering step, then all the subsequent ones will be
* in exact arithmetic :-(
* TODO: store the axis-aligned subspace that was found in order to avoid
* re-searching for it for subsequent calls to operator()
*/
template <class R>
class Coaffine_orientationCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Orientation Orientation;
public:
typedef Orientation result_type;
// typedef internal::stateful_predicate_tag predicate_category;
typedef std::vector<int> Axes;
struct State
{
Axes axes_;
bool axes_found_;
State(bool b) : axes_(), axes_found_(b) {}
};
mutable State state_;
Coaffine_orientationCd() : state_(false) {}
State & state() { return state_; }
const State & state() const { return state_; }
template < class ForwardIterator >
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,Coaffine_orientation_d);
// |k| is the dimension of the affine subspace
const int k = std::distance(first,last) - 1;
// |d| is the dimension of the ambiant space
const int d = first->dimension();
CGAL_assertion_msg(k <= d, "Coaffine_orientation_d: needs less that (first->dimension() + 1) points.");
if( false == state_.axes_found_ )
{
state_.axes_.resize(d + 1);
// We start by choosing the first |k| axes to define a plane of projection
int i = 0;
for(; i < k; ++i) state_.axes_[i] = i;
for(; i < d + 1; ++i) state_.axes_[i] = -1;
}
const typename ForwardIterator::value_type & l(*first);
typename LA::Matrix M(k); // quadratic
while( true )
{
ForwardIterator s = first;
++s;
int j(0);
while( s != last )
{
const typename ForwardIterator::value_type & point(*s);
for( int i = 0; i < k; ++i )
M(i,j) = point.cartesian(state_.axes_[i]) - l.cartesian(state_.axes_[i]);
++s;
++j;
}
Orientation o = Orientation(LA::sign_of_determinant(M));
if( ( o != COPLANAR ) || state_.axes_found_ )
{
state_.axes_found_ = true;
return o;
}
// for generating all possible unordered k-uple in the range
// [0 .. d-1]... we go to the next unordered k-uple:
int index = k - 1;
while( (index >= 0) && (state_.axes_[index] == d - k + index) )
--index;
if( index < 0 )
break;
++state_.axes_[index];
for( int i = 1; i < k - index; ++i )
state_.axes_[index + i] = state_.axes_[index] + i;
}
return COPLANAR;
}
};
template <class R>
class Side_of_oriented_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Oriented_side Oriented_side;
public:
typedef Oriented_side result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& x) const
{
TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
int d = static_cast<int>(std::distance(first,last)); // |A| contains |d| points
CGAL_assertion_msg((d-1 == first->dimension()),
"Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
typename LA::Matrix M(d + 1);
for (int i = 0; i < d; ++first, ++i) {
FT Sum = 0;
M(i,0) = 1;
for (int j = 0; j < d-1; j++) {
FT cj = first->cartesian(j);
M(i,j + 1) = cj; Sum += cj*cj;
}
M(i,d) = Sum;
}
FT Sum = 0;
M(d,0) = 1;
for (int j = 0; j < d-1; j++) {
FT hj = x.cartesian(j);
M(d,j + 1) = hj; Sum += hj*hj;
}
M(d,d) = Sum;
return result_type( - LA::sign_of_determinant(M));
}
};
/* This predicates takes k+1 points defining a k-sphere in d-dim space, and a
* point |x| (assumed to lie in the same affine subspace spanned by the
* k-sphere). It tests whether the point |x| lies in the positive or negative
* side of the k-sphere.
* The parameter |axis| contains the indices of k axis of the canonical base of
* R^d, on which the affine subspace projects homeomorphically. We can thus
* "complete" the k+1 points with d-k other points along the "non-used" axes
* and then call the usual Side_of_oriented_sphereCd predicate.
*/
template < class R >
class Side_of_oriented_subsphereCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Orientation Orientation;
typedef typename R::Oriented_side Oriented_side;
typedef typename R::Side_of_oriented_sphere_d Side_of_oriented_sphere;
typedef typename R::Coaffine_orientation_d Coaffine_orientation;
typedef typename LA::Matrix Matrix;
typedef typename Coaffine_orientation::Axes Axes;
// DATA MEMBERS
mutable Coaffine_orientation ori_;
mutable unsigned int adjust_sign_;
// a square matrix of size (D+1)x(D+1) where D is the ambient dimension
mutable typename LA::Matrix M;
public:
typedef Oriented_side result_type;
// typedef internal::stateless_predicate_tag predicate_category;
// constructor
Side_of_oriented_subsphereCd(const R & r = R())
: ori_(r.coaffine_orientation_d_object()), M(), adjust_sign_(0) { }
template < class ForwardIterator >
result_type operator()(ForwardIterator first, ForwardIterator last, const Point & q) const
{
const int d = first->dimension();
const int k = std::distance(first, last) - 1; // dimension of affine subspace
CGAL_assertion_msg( k <= d, "too much points in range.");
if( k == d )
{
Side_of_oriented_sphere sos;
return sos(first, last, q); // perhaps slap user on the back of the head here?
}
if( M.row_dimension() < d+1 )
M = Matrix(d+1);
if( ! ori_.state().axes_found_ )
{
// the call to ori_(...) will compute a set of axes to complement our base.
Orientation o = ori_(first, last);
if( COPLANAR == o )
{
std::cerr << "\nAffine base is flat (it should have positive orientation) !!";
//return ON_ORIENTED_BOUNDARY;
}
CGAL_assertion( o == POSITIVE );
// Now we can setup the fixed part of the matrix:
int a(0);
int j(k);
typename Axes::iterator axis = ori_.state().axes_.begin();
while( j < d )
{
while( a == *axis )
{
++a; ++axis;
}
adjust_sign_ = ( adjust_sign_ + j + a ) % 2;
int i(0);
for( ; i < a; ++i )
M(i, j) = FT(0);
M(i++, j) = FT(1); // i.e.: M(a, j) = 1
for( ; i < d; ++i )
M(i, j) = FT(0);
++j;
++a;
}
}
typename ForwardIterator::value_type p1 = *first;
FT SumFirst(0); // squared length of first subsphere point, seen as vector.
for( int i = 0; i < d; ++i )
{
FT ci = p1.cartesian(i);
SumFirst += ci * ci;
}
int j(0); // iterates overs columns/subsphere points
++first;
while( first != last )
{
typename ForwardIterator::value_type v = *first;
FT Sum = FT(0);
for( int i = 0; i < d; ++i )
{
FT ci = v.cartesian(i);
M(i, j) = ci - p1.cartesian(i);
Sum += ci * ci;
}
M(d, j) = Sum - SumFirst;
++first;
++j;
}
int a(0);
typename Axes::iterator axis = ori_.state().axes_.begin();
while( j < d )
{
while( a == *axis )
{
++a; ++axis;
}
M(d, j) = FT(1) + FT(2) * p1.cartesian(a);
++j;
++a;
}
FT Sum = FT(0);
for( int i = 0; i < d; ++i )
{
FT ci = q.cartesian(i);
M(i, d) = ci - p1.cartesian(i);
Sum += ci * ci;
}
M(d, d) = Sum - SumFirst;
if( 0 == ( adjust_sign_ % 2 ) )
return result_type( - LA::sign_of_determinant( M ) );
else
return result_type( LA::sign_of_determinant( M ) );
}
};
template <class R>
class Side_of_bounded_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Orientation_d Orientation_d;
typedef typename R::Side_of_oriented_sphere_d Side_of_oriented_sphere_d;
typedef typename R::Orientation Orientation;
typedef typename R::Oriented_side Oriented_side;
typedef typename R::Bounded_side Bounded_side;
public:
typedef Bounded_side result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,region_of_sphere);
Orientation_d _orientation;
Orientation o = _orientation(first,last);
CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
A must be full dimensional.");
Side_of_oriented_sphere_d _side_of_oriented_sphere;
Oriented_side oside = _side_of_oriented_sphere(first,last,p);
if (o == POSITIVE) {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE;
}
} else {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE;
}
}
return ON_BOUNDARY; // never reached
}
};
template <class R>
class Contained_in_simplexCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
typedef typename LA::Vector Vector;
typedef typename LA::Matrix Matrix;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
CGAL_assertion_code( typename R::Affinely_independent_d check_independence; )
CGAL_assertion_msg(check_independence(first,last),
"Contained_in_simplex_d: A not affinely independent.");
CGAL_assertion(d==p.dimension());
Matrix M(d + 1,k);
Vector b(d +1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
FT D;
Vector lambda;
if ( LA::linear_solver(M,b,lambda,D) ) {
for (int j = 0; j < k; j++) {
if (lambda[j] < FT(0)) return false;
}
return true;
}
return false;
}
};
template <class R>
class Contained_in_affine_hullCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Boolean Boolean;
public:
typedef Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_affine_hullCd);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(d + 1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
return LA::is_solvable(M,b);
}
};
template <class R>
class Affine_rankCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::LA LA;
public:
typedef int result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,Affine_rank_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
if (k == 0) return -1;
if (k == 1) return 0;
int d = first->dimension();
typename LA::Matrix M(d,--k);
Point_d p0 = *first; ++first; // first points to second
for (int j = 0; j < k; ++first, ++j) {
Vector_d v = *first - p0;
for (int i = 0; i < d; i++)
M(i,j) = v.cartesian(i);
}
return LA::rank(M);
}
};
template <class R>
class Affinely_independentCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Affine_rank_d Affine_rank_d;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
Affine_rank_d rank;
int n = static_cast<int>(std::distance(first,last));
return rank(first,last) == n-1;
}
};
template <class R>
class Compare_lexicographicallyCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Point_d PointD; //MSVC hack
typedef typename R::Comparison_result Comparison_result;
public:
typedef Comparison_result result_type;
result_type operator()(const Point_d & p1, const Point_d & p2) const
{
return PointD::cmp(p1,p2);
}
};
template <class R>
class Contained_in_linear_hullCd
{
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
public:
typedef typename R::Boolean result_type;
template<class ForwardIterator>
result_type operator()(
ForwardIterator first, ForwardIterator last, const Vector_d& x) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
int k = static_cast<int>(std::distance(first,last));
// |A| contains |k| vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
typename LA::Vector b(d);
for (int i = 0; i < d; i++) {
b[i] = x.cartesian(i);
for (int j = 0; j < k; j++)
M(i,j) = (first+j)->cartesian(i);
}
return LA::is_solvable(M,b);
}
};
template <class R>
class Linear_rankCd
{
typedef typename R::LA LA;
public:
typedef int result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,linear_rank);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int i = 0; i < d ; i++)
for (int j = 0; j < k; j++)
M(i,j) = (first + j)->cartesian(i);
return LA::rank(M);
}
};
template <class R>
class Linearly_independentCd
{
typedef typename R::LA LA;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
typename R::Linear_rank_d rank;
return rank(first,last) == static_cast<int>(std::distance(first,last));
}
};
template <class R>
class Linear_baseCd
{
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
public:
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
OutputIterator result) const
{
TUPLE_DIM_CHECK(first,last,linear_base);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int j = 0; j < k; ++first, ++j)
for (int i = 0; i < d; i++)
M(i,j) = first->cartesian(i);
std::vector<int> indcols;
int r = LA::independent_columns(M,indcols);
for (int l=0; l < r; l++) {
typename LA::Vector v = M.column(indcols[l]);
*result++ = Vector_d(d,v.begin(),v.end());
}
return result;
}
};
} //namespace CGAL
#endif //CGAL_FUNCTION_OBJECTSCD_H
|