1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
// Copyright (c) 2005,2006 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Filtered_kernel/include/CGAL/Lazy_kernel.h $
// $Id: include/CGAL/Lazy_kernel.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Andreas Fabri, Sylvain Pion
#ifndef CGAL_LAZY_KERNEL_H
#define CGAL_LAZY_KERNEL_H
#include <CGAL/basic.h>
//#include <CGAL/Filtered_predicate.h>
#include <CGAL/EPIC_predicate_if_convertible.h>
#include <CGAL/Filtered_kernel.h>
#include <CGAL/Cartesian_converter.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Interval_nt.h>
#include <CGAL/Kernel/Type_equality_wrapper.h>
#include <CGAL/Filtered_kernel/Cartesian_coordinate_iterator_2.h>
#include <CGAL/Filtered_kernel/Cartesian_coordinate_iterator_3.h>
#include <CGAL/Lazy.h>
#include <CGAL/Filtered_kernel/internal/Static_filters/tools.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <boost/none.hpp>
#include <boost/mpl/or.hpp>
#include <CGAL/Lazy_exact_nt.h>
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4348) // redefinition of default parameter in nested template class
#endif
namespace CGAL {
// Exact_kernel = exact kernel that will be made lazy
// Kernel = lazy kernel
// `Lazy_kernel_generic_base` applies the generic magic functor stupidly.
// `Lazy_kernel_base` fixes up a few special cases.
template < typename EK_, typename AK_, typename E2A_, typename Kernel_ >
class Lazy_kernel_generic_base
// : public Filtered_kernel_base<EK_>
{
public:
typedef AK_ Approximate_kernel;
typedef EK_ Exact_kernel;
typedef E2A_ E2A;
typedef Kernel_ Kernel;
typedef Lazy_kernel_generic_base<EK_, AK_, E2A_, Kernel_> Self;
// synonym identical to Filtered_kernel
typedef AK_ FK;
// Note: Approx_converter and Exact_converter are defined in <CGAL/Lazy.h>
typedef Approx_converter<Kernel, Approximate_kernel> C2F;
typedef Exact_converter<Kernel, Exact_kernel> C2E;
template < typename Kernel2 >
struct Base { typedef Lazy_kernel_generic_base<Exact_kernel, Approximate_kernel, E2A, Kernel2> Type; };
template < typename T >
struct Ambient_dimension {
typedef typename T::Ambient_dimension type;
};
template < typename T >
struct Feature_dimension {
typedef typename T::Feature_dimension type;
};
typedef typename Exact_kernel::Kernel_tag Kernel_tag;
typedef typename Exact_kernel::Rep_tag Rep_tag;
enum { Has_filtered_predicates = true };
typedef Boolean_tag<Has_filtered_predicates> Has_filtered_predicates_tag;
#ifdef CGAL_NO_STATIC_FILTERS_FOR_LAZY_KERNEL
enum { Has_static_filters = false };
#else
// @fixme, this should be 'true' but it's broken because EPIC_predicate_if_convertible
// assumes the static filtered predicate and the (non-static) filtered predicate
// have the same signature, which is not always the case, for example in
// Do_intersect_3(Sphere_3, Bbox_3, *bool*)
enum { Has_static_filters = false };
#endif
// Types
typedef CGAL::Lazy_exact_nt<typename Exact_kernel::FT> FT;
typedef FT RT;
typedef typename Same_uncertainty_nt<bool, FT>::type
Boolean;
typedef typename Same_uncertainty_nt<CGAL::Sign, FT>::type
Sign;
typedef typename Same_uncertainty_nt<CGAL::Comparison_result, FT>::type
Comparison_result;
typedef typename Same_uncertainty_nt<CGAL::Orientation, FT>::type
Orientation;
typedef typename Same_uncertainty_nt<CGAL::Oriented_side, FT>::type
Oriented_side;
typedef typename Same_uncertainty_nt<CGAL::Bounded_side, FT>::type
Bounded_side;
typedef typename Same_uncertainty_nt<CGAL::Angle, FT>::type
Angle;
typedef CGAL::Object Object_2;
typedef CGAL::Object Object_3;
#define CGAL_Kernel_obj(X) \
typedef Lazy<typename Approximate_kernel::X, typename Exact_kernel::X, E2A> X;
CGAL_Kernel_obj(Data_accessor_2)
CGAL_Kernel_obj(Conic_2)
typedef Cartesian_coordinate_iterator_2<Kernel> Cartesian_const_iterator_2;
typedef Cartesian_coordinate_iterator_3<Kernel> Cartesian_const_iterator_3;
// Aff_transformation_2/3 operations are not functorized, so treat it as
// an exterior object for now.
// CGAL_Kernel_obj(Aff_transformation_2)
// CGAL_Kernel_obj(Aff_transformation_3)
typedef CGAL::Aff_transformationC2<Kernel> Aff_transformation_2;
typedef CGAL::Aff_transformationC3<Kernel> Aff_transformation_3;
public:
#ifdef CGAL_NO_STATIC_FILTERS_FOR_LAZY_KERNEL
#define CGAL_Kernel_pred(P, Pf) \
typedef Filtered_predicate<typename Exact_kernel::P, typename Approximate_kernel::P, C2E, C2F> P; \
P Pf() const { return P(); }
#else
// - the first template parameter is because either it fits in a double, or not, so
// we might as well use the approximate kernel directly rather than the complete lazy kernel
// - the second is the predicate to be called if EPICK is not usable
// - the third is the equivalent predicate in EPICK
#define CGAL_Kernel_pred(P, Pf) \
typedef EPIC_predicate_if_convertible<Approximate_kernel, \
Filtered_predicate<typename Exact_kernel::P, \
typename Approximate_kernel::P, C2E, C2F>, \
Exact_predicates_inexact_constructions_kernel::P> P; \
P Pf() const { return P(); }
#endif
#define CGAL_Kernel_cons(C, Cf) \
typedef Lazy_construction<Kernel, typename Approximate_kernel::C, typename Exact_kernel::C> C; \
C Cf() const { return C(); }
#include <CGAL/Kernel/interface_macros.h>
// Useless meta-function, added to workaround a bug with Visual C++ 2022 and before
// See issue https://github.com/CGAL/cgal/issues/8140
template < typename T >
struct Handle { typedef T type; };
};
template < typename EK_, typename AK_, typename E2A_, typename Kernel_ >
class Lazy_kernel_base
: public Lazy_kernel_generic_base<EK_, AK_, E2A_, Kernel_>
{
public:
typedef Kernel_ Kernel;
typedef AK_ Approximate_kernel;
typedef EK_ Exact_kernel;
typedef E2A_ E2A;
typedef Lazy_kernel_generic_base<EK_, AK_, E2A_, Kernel_> BaseClass;
template < typename Kernel2 >
struct Base { typedef Lazy_kernel_base<Exact_kernel, Approximate_kernel, E2A, Kernel2> Type; };
typedef CommonKernelFunctors::Assign_2<Kernel> Assign_2;
typedef CommonKernelFunctors::Assign_3<Kernel> Assign_3;
typedef Lazy_cartesian_const_iterator_2<Kernel, typename Approximate_kernel::Construct_cartesian_const_iterator_2, typename Exact_kernel::Construct_cartesian_const_iterator_2> Construct_cartesian_const_iterator_2;
typedef Lazy_cartesian_const_iterator_3<Kernel, typename Approximate_kernel::Construct_cartesian_const_iterator_3, typename Exact_kernel::Construct_cartesian_const_iterator_3> Construct_cartesian_const_iterator_3;
typedef CGAL::CartesianKernelFunctors::Compute_approximate_squared_length_3<Kernel> Compute_approximate_squared_length_3;
typedef CGAL::CartesianKernelFunctors::Compute_approximate_area_3<Kernel> Compute_approximate_area_3;
typedef CGAL::Lazy_construction_optional_for_polyhedral_envelope<
Kernel,
typename Approximate_kernel::Intersect_point_3_for_polyhedral_envelope,
typename Exact_kernel::Intersect_point_3_for_polyhedral_envelope> Intersect_point_3_for_polyhedral_envelope;
struct Compute_weight_2 : public BaseClass::Compute_weight_2
{
typedef typename Kernel_::FT FT;
typedef typename Kernel_::Point_2 Point_2;
typedef typename Kernel_::Weighted_point_2 Weighted_point_2;
FT operator()(const Weighted_point_2& p) const
{
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_2,
typename Exact_kernel::Weighted_point_2,
typename Approximate_kernel::Construct_weighted_point_2,
typename Exact_kernel::Construct_weighted_point_2,
E2A_,
true,
Return_base_tag,
Point_2,
FT
> LR;
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_2,
typename Exact_kernel::Weighted_point_2,
typename Approximate_kernel::Construct_weighted_point_2,
typename Exact_kernel::Construct_weighted_point_2,
E2A_,
true,
Return_base_tag,
Point_2,
int
> LRint;
auto& obj = *p.ptr();
const char* tn = typeid(obj).name();
if(tn == typeid(LR).name()){
LR * lr = static_cast<LR*>(p.ptr());
if(lr->is_lazy()){
// Another thread could reset lr->l before this line, so we disable reset for Construct_weighted_point_2 in MT-mode.
// We could also always disable reset for Construct_weighted_point_2 and return lr->l here even if update_exact has run.
return std::get<2>(lr->l);
}
}else{
if(tn == typeid(LRint).name()){
LRint* lrint = static_cast<LRint*>(p.ptr());
if(lrint->is_lazy()){
return std::get<2>(lrint->l);
}
}
}
return BaseClass().compute_weight_2_object()(p);
}
};
struct Compute_weight_3 : public BaseClass::Compute_weight_3
{
typedef typename Kernel_::FT FT;
typedef typename Kernel_::Point_3 Point_3;
typedef typename Kernel_::Weighted_point_3 Weighted_point_3;
FT operator()(const Weighted_point_3& p) const
{
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_3,
typename Exact_kernel::Weighted_point_3,
typename Approximate_kernel::Construct_weighted_point_3,
typename Exact_kernel::Construct_weighted_point_3,
E2A_,
true,
Return_base_tag,
Point_3,
FT
> LR;
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_3,
typename Exact_kernel::Weighted_point_3,
typename Approximate_kernel::Construct_weighted_point_3,
typename Exact_kernel::Construct_weighted_point_3,
E2A_,
true,
Return_base_tag,
Point_3,
int
> LRint;
auto& obj = *p.ptr();
const char* tn = typeid(obj).name();
if(tn == typeid(LR).name()){
LR * lr = static_cast<LR*>(p.ptr());
if(lr->is_lazy()){
return std::get<2>(lr->l);
}
}else{
if(tn == typeid(LRint).name()){
LRint* lrint = static_cast<LRint*>(p.ptr());
if(lrint->is_lazy()){
return std::get<2>(lrint->l);
}
}
}
return BaseClass().compute_weight_3_object()(p);
}
};
struct Construct_point_2 : public BaseClass::Construct_point_2
{
typedef typename Kernel_::FT FT;
typedef typename Kernel_::Point_2 Point_2;
typedef typename Kernel_::Weighted_point_2 Weighted_point_2;
using BaseClass::Construct_point_2::operator();
const Point_2& operator()(const Point_2& p) const
{
return p;
}
Point_2 operator()(const Weighted_point_2& p) const
{
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_2,
typename Exact_kernel::Weighted_point_2,
typename Approximate_kernel::Construct_weighted_point_2,
typename Exact_kernel::Construct_weighted_point_2,
E2A_,
true,
Return_base_tag,
Point_2,
FT
> LR;
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_2,
typename Exact_kernel::Weighted_point_2,
typename Approximate_kernel::Construct_weighted_point_2,
typename Exact_kernel::Construct_weighted_point_2,
E2A_,
true,
Return_base_tag,
Point_2,
int
> LRint;
auto& obj = *p.ptr();
const char* tn = typeid(obj).name();
if(tn == typeid(LR).name()){
LR * lr = static_cast<LR*>(p.ptr());
if(lr->is_lazy()){
return std::get<1>(lr->l);
}
}else{
if(tn == typeid(LRint).name()){
LRint* lrint = static_cast<LRint*>(p.ptr());
if(lrint->is_lazy()){
return std::get<1>(lrint->l);
}
}
}
return BaseClass().construct_point_2_object()(p);
}
};
struct Construct_point_3 : public BaseClass::Construct_point_3
{
typedef typename Kernel_::FT FT;
typedef typename Kernel_::Point_3 Point_3;
typedef typename Kernel_::Weighted_point_3 Weighted_point_3;
using BaseClass::Construct_point_3::operator();
const Point_3& operator()(const Point_3& p) const
{
return p;
}
Point_3 operator()(const Weighted_point_3& p) const
{
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_3,
typename Exact_kernel::Weighted_point_3,
typename Approximate_kernel::Construct_weighted_point_3,
typename Exact_kernel::Construct_weighted_point_3,
E2A_,
true,
Return_base_tag,
Point_3,
FT
> LR;
typedef Lazy_rep_n<typename Approximate_kernel::Weighted_point_3,
typename Exact_kernel::Weighted_point_3,
typename Approximate_kernel::Construct_weighted_point_3,
typename Exact_kernel::Construct_weighted_point_3,
E2A_,
true,
Return_base_tag,
Point_3,
int
> LRint;
auto& obj = *p.ptr();
const char* tn = typeid(obj).name();
if(tn == typeid(LR).name()){
LR * lr = static_cast<LR*>(p.ptr());
if(lr->is_lazy()){
return std::get<1>(lr->l);
}
}else{
if(tn == typeid(LRint).name()){
LRint* lrint = static_cast<LRint*>(p.ptr());
if(lrint->is_lazy()){
return std::get<1>(lrint->l);
}
}
}
return BaseClass().construct_point_3_object()(p);
}
};
struct Less_xyz_3 : public BaseClass::Less_xyz_3
{
typedef typename Kernel_::Point_3 Point_3;
bool operator()(const Point_3& p, const Point_3& q) const
{
if (p.rep().identical(q.rep())) { return false; }
return BaseClass::Less_xyz_3::operator()(p,q);
}
};
Construct_point_2 construct_point_2_object() const
{
return Construct_point_2();
}
Construct_point_3 construct_point_3_object() const
{
return Construct_point_3();
}
Compute_weight_2 compute_weight_2_object() const
{
return Compute_weight_2();
}
Compute_weight_3 compute_weight_3_object() const
{
return Compute_weight_3();
}
Assign_2
assign_2_object() const
{ return Assign_2(); }
Assign_3
assign_3_object() const
{ return Assign_3(); }
Construct_cartesian_const_iterator_2
construct_cartesian_const_iterator_2_object() const
{ return Construct_cartesian_const_iterator_2(); }
Construct_cartesian_const_iterator_3
construct_cartesian_const_iterator_3_object() const
{ return Construct_cartesian_const_iterator_3(); }
Compute_approximate_squared_length_3
compute_approximate_squared_length_3_object() const
{ return Compute_approximate_squared_length_3(); }
Compute_approximate_area_3
compute_approximate_area_3_object() const
{ return Compute_approximate_area_3(); }
Intersect_point_3_for_polyhedral_envelope
intersect_point_3_for_polyhedral_envelope_object() const
{ return Intersect_point_3_for_polyhedral_envelope(); }
Less_xyz_3
less_xyz_3_object() const
{ return Less_xyz_3(); }
}; // end class Lazy_kernel_base<EK_, AK_, E2A_, Kernel_2>
template <class Exact_kernel, class Approximate_kernel, class E2A>
struct Lazy_kernel_without_type_equality
: public Lazy_kernel_base< Exact_kernel, Approximate_kernel, E2A, Lazy_kernel_without_type_equality<Exact_kernel,Approximate_kernel, E2A> >
{};
template <class Exact_kernel,
class Approximate_kernel = Simple_cartesian<Interval_nt_advanced>,
class E2A = Cartesian_converter<Exact_kernel, Approximate_kernel> >
struct Lazy_kernel
: public Type_equality_wrapper<
Lazy_kernel_base< Exact_kernel, Approximate_kernel, E2A, Lazy_kernel<Exact_kernel, Approximate_kernel, E2A> >,
Lazy_kernel<Exact_kernel, Approximate_kernel, E2A> >
{
// WARNING: If you change the definition of Lazy_kernel, then you need to
// change also the definition of Epeck in
// <CGAL/Exact_predicate_exact_constructions_kernel.h>.
};
} //namespace CGAL
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // CGAL_LAZY_KERNEL_H
|