1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Linear_cell_complex/include/CGAL/Linear_cell_complex_base.h $
// $Id: include/CGAL/Linear_cell_complex_base.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_BASE_H
#define CGAL_LINEAR_CELL_COMPLEX_BASE_H 1
#include <CGAL/Linear_cell_complex_fwd.h>
#include <CGAL/Combinatorial_map_functors.h>
#include <CGAL/Combinatorial_map/internal/Combinatorial_map_internal_functors.h>
#include <CGAL/Linear_cell_complex_operations.h>
#include <CGAL/Origin.h>
#include <CGAL/assertions.h>
#include<map>
namespace CGAL {
// Tags allowing to make some template specialization for CMap and GMap,
// if necessary.
struct Combinatorial_map_tag;
struct Generalized_map_tag;
/** @file Linear_cell_complex_base.h
* Definition of a linear cell complex, i.e. a combinatorial data structure
* (cmap or gmap) with points associated to all vertices.
*/
/** Linear_cell_complex_base class.
* The Linear_cell_complex a nD object with linear geometry, ie
* an nD map with point associated to each vertex.
*/
template < unsigned int d_, unsigned int ambient_dim,
class Traits_,
class Items_,
class Alloc_,
template<unsigned int,class,class,class,class>
class Map,
class Refs_,
class Storage_>
class Linear_cell_complex_base:
public Map<d_, Refs_, Items_, Alloc_, Storage_>
{
public:
typedef Linear_cell_complex_base<d_, ambient_dim,
Traits_, Items_, Alloc_, Map,
Refs_, Storage_> Self;
typedef Map<d_, Refs_, Items_, Alloc_, Storage_> Base;
typedef Traits_ Traits;
typedef Items_ Items;
typedef Alloc_ Alloc;
typedef Storage_ Storage;
typedef Refs_ Refs;
static const unsigned int ambient_dimension = ambient_dim;
static const unsigned int dimension = Base::dimension;
typedef typename Storage::Dart_descriptor Dart_descriptor;
typedef typename Storage::Dart_const_descriptor Dart_const_descriptor;
typedef typename Storage::Helper Helper;
typedef typename Storage::Point Point;
typedef typename Storage::Vector Vector;
typedef typename Storage::FT FT;
typedef typename Base::Dart_range Dart_range;
/// Typedef for attributes
template<int i>
struct Attribute_type: public Base::template Attribute_type<i>
{};
template<int i>
struct Attribute_descriptor: public Base::template Attribute_descriptor<i>
{};
template<int i>
struct Attribute_const_descriptor:
public Base::template Attribute_const_descriptor<i>
{};
template<int i>
struct Attribute_range: public Base::template Attribute_range<i>
{};
template<int i>
struct Attribute_const_range:
public Base::template Attribute_const_range<i>
{};
typedef typename Base::template Attribute_type<0>::type Vertex_attribute;
typedef typename Base::template Attribute_descriptor<0>::type
Vertex_attribute_descriptor;
typedef typename Base::template Attribute_const_descriptor<0>::type
Vertex_attribute_const_descriptor;
typedef typename Base::template Attribute_range<0>::type
Vertex_attribute_range;
typedef typename Base::template Attribute_const_range<0>::type
Vertex_attribute_const_range;
typedef typename Base::size_type size_type;
typedef typename Base::Use_index Use_index;
typedef typename Base::Exception_no_more_available_mark
Exception_no_more_available_mark;
/// To use previous definition of create_dart methods.
using Base::create_dart;
using Base::attribute;
using Base::null_descriptor;
using Base::null_dart_descriptor;
using Base::point_of_vertex_attribute;
using Base::other_extremity;
using Base::darts;
using Base::are_attributes_automatically_managed;
using Base::mark;
using Base::is_marked;
using Base::unmark;
using Base::free_mark;
using Base::get_new_mark;
using Base::next;
using Base::previous;
using Base::opposite;
using Base::is_next_exist;
using Base::is_previous_exist;
using Base::make_segment;
using Base::make_triangle;
using Base::make_quadrangle;
using Base::insert_cell_0_in_cell_1;
using Base::insert_cell_0_in_cell_2;
using Base::insert_dangling_cell_1_in_cell_2;
using Base::insert_cell_1_in_cell_2;
using Base::insert_cell_2_in_cell_3;
Linear_cell_complex_base() : Base()
{}
/** Copy the given linear cell complex into *this.
* Note that both LCC can have different dimensions and/or non void attributes.
* @param alcc the linear cell complex to copy.
* @post *this is valid.
*/
Linear_cell_complex_base(const Self& alcc) : Base(alcc)
{}
Linear_cell_complex_base(Self&& alcc) : Base(alcc)
{}
template <unsigned int d2, unsigned int ambient_dim2, class Traits2,
class Items2, class Alloc2,
template<unsigned int,class,class,class,class> class CMap2,
class Refs2, class Storage2>
Linear_cell_complex_base
(const Linear_cell_complex_base<d2, ambient_dim2,
Traits2, Items2, Alloc2, CMap2, Refs2, Storage2>& alcc) : Base(alcc)
{}
template <unsigned int d2, unsigned int ambient_dim2, class Traits2,
class Items2, class Alloc2,
template<unsigned int,class,class,class,class> class CMap2,
class Refs2,
class Storage2, typename Converters>
Linear_cell_complex_base
(const Linear_cell_complex_base<d2, ambient_dim2, Traits2, Items2,
Alloc2, CMap2, Refs2, Storage2>& alcc, Converters& converters) :
Base(alcc, converters)
{}
template <unsigned int d2, unsigned int ambient_dim2, class Traits2,
class Items2, class Alloc2,
template<unsigned int,class,class,class,class> class CMap2,
class Refs2, class Storage2, typename Converters,
typename DartInfoConverter>
Linear_cell_complex_base
(const Linear_cell_complex_base<d2, ambient_dim2, Traits2, Items2,
Alloc2, CMap2, Refs2, Storage2>& alcc, Converters& converters,
const DartInfoConverter& dartinfoconverter) :
Base(alcc, converters, dartinfoconverter)
{}
template <unsigned int d2, unsigned int ambient_dim2, class Traits2,
class Items2, class Alloc2,
template<unsigned int,class,class,class,class> class CMap2,
class Refs2, class Storage2, typename Converters,
typename DartInfoConverter, typename Pointconverter>
Linear_cell_complex_base
(const Linear_cell_complex_base<d2, ambient_dim2, Traits2, Items2,
Alloc2, CMap2, Refs2, Storage2>& alcc, Converters& converters,
const DartInfoConverter& dartinfoconverter,
const Pointconverter& pointconverter) :
Base(alcc, converters, dartinfoconverter, pointconverter)
{}
/** Affectation operation. Copies one map to the other.
* @param amap a lcc.
* @return A copy of that lcc.
*/
Self & operator= (const Self & alcc)
{
if (this!=&alcc)
{
Self tmp(alcc);
this->swap(tmp);
}
return *this;
}
/** Create a vertex attribute.
* @return an handle on the new attribute.
*/
template<typename ...Args>
Vertex_attribute_descriptor create_vertex_attribute(const Args&... args)
{ return Base::template create_attribute<0>(args...); }
/**
* Create a new dart associated with an handle through an attribute.
* @param ahandle the point handle to associated with the dart.
* @return a Dart_descriptor on the new dart.
*/
Dart_descriptor create_dart(Vertex_attribute_descriptor ahandle)
{
Dart_descriptor res = create_dart();
set_vertex_attribute_of_dart(res,ahandle);
return res;
}
/** Create a new dart associated with a point.
* @param apoint the point to associated with the dart.
* @return a Dart_descriptor on the new dart.
*/
Dart_descriptor create_dart(const Point& apoint)
{ return create_dart(create_vertex_attribute(apoint)); }
/** Erase a given vertex attribute.
* @param ahandle the handle to the vertex attribute to erase.
*/
void erase_vertex_attribute(Vertex_attribute_descriptor ahandle)
{ Base::template erase_attribute<0>(ahandle); }
/** Set the vertex attribute of the given dart.
* @param adart a dart.
* @param ah the attribute to set.
*/
void set_vertex_attribute_of_dart(Dart_descriptor adart,
Vertex_attribute_descriptor ah)
{
return CGAL::internal::Set_i_attribute_of_dart_functor<Self, 0>::
run(*this, adart, ah);
}
/** Set the vertex attribute of all the darts of the vertex.
* @param adart a dart of the vertex.
* @param ah the attribute to set.
*/
void set_vertex_attribute(Dart_descriptor adart,
Vertex_attribute_descriptor ah)
{ return CGAL::Set_i_attribute_functor<Self, 0>::run(*this, adart, ah); }
/// @return the Vertex_attribute_range for all vertex_attributes.
Vertex_attribute_range& vertex_attributes()
{ return this->template attributes<0>(); }
/// @return the Vertex_attribute_const_range for all vertex_attributes.
Vertex_attribute_const_range& vertex_attributes() const
{ return this->template attributes<0>(); }
/// @return the size of the vertex_attribute container.
typename Base::size_type number_of_vertex_attributes() const
{ return Base::template number_of_attributes<0>(); }
/// Get the vertex_attribute associated with a dart.
/// @param a dart
/// @return the vertex_attribute.
Vertex_attribute_descriptor vertex_attribute(Dart_descriptor adart)
{ return this->template attribute<0>(adart); }
/// Get the vertex_attribute associated with a const dart.
/// @param a dart
/// @return the vertex_const_attribute.
Vertex_attribute_const_descriptor
vertex_attribute(Dart_const_descriptor adart) const
{ return this->template attribute<0>(adart); }
/// Get the point associated with a dart.
/// @param a dart
/// @return the point.
Point& point(Dart_descriptor adart)
{
CGAL_assertion(this->template attribute<0>(adart)!=null_descriptor );
return point_of_vertex_attribute(this->template attribute<0>(adart));
}
/// Get the point associated with a const dart.
/// @param a dart
/// @return the point.
const Point& point(Dart_const_descriptor adart) const
{
CGAL_assertion(this->template attribute<0>(adart)!=null_descriptor );
return point_of_vertex_attribute(this->template attribute<0>(adart));
}
/** Test if the lcc is valid.
* A Linear_cell_complex is valid if it is a valid Combinatorial_map with
* an attribute associated to each dart.
* @return true iff the map is valid.
*/
bool is_valid() const
{
bool valid = Base::is_valid();
for (typename Dart_range::const_iterator it(darts().begin()),
itend(darts().end()); valid && it != itend; ++it)
{
if (vertex_attribute(it)==null_descriptor)
{
std::cerr << "Map not valid: dart "<<&(*it)
<<" does not have a vertex."<< std::endl;
valid = false;
}
}
return valid;
}
/** validate the lcc
*/
void correct_invalid_attributes()
{
// Copy of the code in Map::correct_invalid_attributes() to avoid
// 2 iterations through the darts of the map.
std::vector<size_type> marks(dimension+1);
for ( unsigned int i=0; i<=dimension; ++i)
marks[i] = Base::INVALID_MARK;
Helper::template
Foreach_enabled_attributes<Reserve_mark_functor<Self> >::
run(*this, marks);
for ( typename Dart_range::iterator it(darts().begin()),
itend(darts().end()); it!=itend; ++it)
{
Helper::template Foreach_enabled_attributes
<internal::Correct_invalid_attributes_functor<Self> >::
run(*this, it, marks);
if ( vertex_attribute(it)==null_descriptor )
{
// If a dart don't have a 0-attribute, we create a Point at the origin
set_vertex_attribute(it, create_vertex_attribute(CGAL::ORIGIN));
}
}
for ( unsigned int i=0; i<=dimension; ++i)
if ( marks[i]!=Base::INVALID_MARK )
{
CGAL_assertion( this->is_whole_map_marked(marks[i]) );
free_mark(marks[i]);
}
Helper::template
Foreach_enabled_attributes<internal::Cleanup_useless_attributes<Self> >::
run(*this);
}
/** test if the two given facets have the same geometry
* @return true iff the two facets have the same geometry.
*/
bool are_facets_same_geometry(Dart_const_descriptor d1,
Dart_const_descriptor d2) const
{
Dart_const_descriptor s1=d1;
Dart_const_descriptor s2=d2;
while (is_previous_exist(d1) && previous(s1)!=d1)
{
s1=previous(s1);
if (!is_previous_exist(d2)) return false;
s2=previous(s2);
}
d1=s1;
d2=s2;
do
{
if (is_next_exist(d1)!=is_next_exist(d2))
return false;
if (point(d1)!=point(d2))
return false;
d1=next(d1);
d2=next(d2);
}
while(is_next_exist(d1) && d1!=s1);
if (is_next_exist(d1)!=is_next_exist(d2))
return false;
if (d1==s1 && d2!=s2) return false;
return true;
}
/** test if the two given facets have the same geometry but with
* opposite orientations.
* @return true iff the two facets have the same geometry with opposite
* orientation.
*/
bool are_facets_opposite_and_same_geometry(Dart_const_descriptor d1,
Dart_const_descriptor d2) const
{
Dart_const_descriptor s1=d1;
Dart_const_descriptor s2=d2;
while (is_previous_exist(d1) && previous(s1)!=d1)
{
s1=previous(s1);
if (!is_next_exist(d2)) return false;
s2=next(s2);
}
d1=s1;
d2=s2;
do
{
if (is_next_exist(d1)!=is_previous_exist(d2))
return false;
if (other_extremity(d2)!=null_descriptor &&
point(d1)!=point(other_extremity(d2)))
return false;
// The only case where d2 could have no other_extremity
// is the end of an open path. In this case d1 is the
// beginning of an open path and we do not compare points
// but this is the correct thing to do.
d1=next(d1);
d2=previous(d2);
}
while(is_next_exist(d1) && d1!=s1);
if (is_next_exist(d1)!=is_previous_exist(d2))
return false;
if (d1==s1 && d2!=s2) return false;
return true;
}
/// Sew3 the marked facets having same geometry
/// (a facet is considered marked if ALL its darts are marked).
/// Only marked faces are proceed, but they can be 3-sewn with non
/// marked faces.
unsigned int sew3_same_facets(size_type AMark)
{
unsigned int res = 0;
// We store one dart per face, the face being accessed through its
// minimal and maximal points.
std::map<Point, std::map<Point, std::vector<Dart_descriptor>>> one_dart_per_facet;
size_type mymark = get_new_mark();
// First we fill the std::map by one dart per facet, and by using
// the minimal point as index.
for (typename Dart_range::iterator it(darts().begin()),
itend(darts().end()); it!=itend; ++it )
{
if (!is_marked(it, mymark) && !this->template is_opposite_exist<3>(it))
{
Point min_point=point(it);
Point max_point=min_point;
Dart_descriptor min_dart=it;
auto it2=this->template darts_of_cell_basic<2>(it, mymark).begin();
this->mark(it2, mymark);
++it2;
for ( ; it2.cont(); ++it2 )
{
this->mark(it2, mymark);
Point& cur_point=point(it2);
if (cur_point<min_point)
{
min_point = cur_point;
min_dart = it2;
}
if (cur_point>max_point)
{ max_point=cur_point; }
}
one_dart_per_facet[min_point][max_point].push_back(min_dart);
}
else
{ this->mark(it, mymark); }
}
// Second we run through the map: candidates for sew3 have necessary the
// same minimal and maximal points.
for (auto itmap=one_dart_per_facet.begin(),
itmapend=one_dart_per_facet.end(); itmap!=itmapend; ++itmap)
{
for (auto itmap2=(itmap->second).begin(),
itmap2end=(itmap->second).end(); itmap2!=itmap2end; ++itmap2)
{
for (typename std::vector<Dart_descriptor>::iterator
it1=(itmap2->second).begin(),
it1end=(itmap2->second).end(); it1!=it1end; ++it1)
{
// We only proceed 3-free marked faces for it1
if (!this->template is_opposite_exist<3>(*it1) &&
is_marked(*it1, AMark))
{
typename std::vector<Dart_descriptor>::iterator it2=it1;
{
for (++it2; it2!=it1end; )
{
CGAL_assertion(*it1!=*it2);
if (!this->template is_opposite_exist<3>(*it2) &&
are_facets_opposite_and_same_geometry
(*it1, this->previous(*it2)))
{
++res;
this->template sew<3>(*it1,
this->other_orientation(previous(*it2)));
it2=it1end; // to leave the "for loop" since it1 is no more 3-free
}
else { ++it2; }
}
}
}
}
}
}
CGAL_assertion( this->is_whole_map_marked(mymark) );
this->free_mark(mymark);
return res;
}
/// Sew3 the facets having same geometry
/// (all the facets of the map are considered)
unsigned int sew3_same_facets()
{
size_type mark = this->get_new_mark();
this->negate_mark(mark);
unsigned int res=sew3_same_facets(mark);
this->free_mark(mark);
return res;
}
/** Create a segment given 2 points.
* @param p0 the first point.
* @param p1 the second point.
* if closed==true, the edge has no 2-free dart.
* @return the dart of the new segment incident to p0.
*/
Dart_descriptor make_segment(const Point& p0,const Point& p1,
bool closed=false)
{
return make_segment(create_vertex_attribute(p0),
create_vertex_attribute(p1),
closed);
}
/** Create a triangle given 3 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @return the dart of the new triangle incident to p0 and edge p0p1.
*/
Dart_descriptor make_triangle(const Point& p0,
const Point& p1,
const Point& p2)
{
return make_triangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2));
}
/** Create a quadrangle given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new quadrangle incident to p0 and edge p0p1.
*/
Dart_descriptor make_quadrangle(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_quadrangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create a tetrahedron given 4 Vertex_attribute_descriptor.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @return the dart of the new tetrahedron incident to h0, to edge
* h0,h1 and to facet h0,h1,h2.
*/
Dart_descriptor make_tetrahedron(Vertex_attribute_descriptor h0,
Vertex_attribute_descriptor h1,
Vertex_attribute_descriptor h2,
Vertex_attribute_descriptor h3)
{
Dart_descriptor d1 = make_triangle(h0, h1, h2);
Dart_descriptor d2 = make_triangle(h1, h0, h3);
Dart_descriptor d3 = make_triangle(h1, h3, h2);
Dart_descriptor d4 = make_triangle(h3, h0, h2);
return this->make_combinatorial_tetrahedron(d1, d2, d3, d4);
}
/** Create a tetrahedron given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new tetrahedron incident to p0, to edge
* p0,p1 and to facet p0,p1,p2.
*/
Dart_descriptor make_tetrahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_tetrahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create an hexahedron given 8 Vertex_attribute_descriptor.
* (8 vertices, 12 edges and 6 facets)
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @param h4 the fifth vertex handle.
* @param h5 the sixth vertex handle.
* @param h6 the seventh vertex handle.
* @param h7 the height vertex handle.
* @return the dart of the new hexahedron incident to h0, to edge
* h0,h5 and to the facet (h0,h5,h6,h1).
*/
Dart_descriptor make_hexahedron(Vertex_attribute_descriptor h0,
Vertex_attribute_descriptor h1,
Vertex_attribute_descriptor h2,
Vertex_attribute_descriptor h3,
Vertex_attribute_descriptor h4,
Vertex_attribute_descriptor h5,
Vertex_attribute_descriptor h6,
Vertex_attribute_descriptor h7)
{
Dart_descriptor d1 = make_quadrangle(h0, h5, h6, h1);
Dart_descriptor d2 = make_quadrangle(h1, h6, h7, h2);
Dart_descriptor d3 = make_quadrangle(h2, h7, h4, h3);
Dart_descriptor d4 = make_quadrangle(h3, h4, h5, h0);
Dart_descriptor d5 = make_quadrangle(h0, h1, h2, h3);
Dart_descriptor d6 = make_quadrangle(h5, h4, h7, h6);
return this->make_combinatorial_hexahedron(d1, d2, d3, d4, d5, d6);
}
/** Create an hexahedron given 8 points.
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @param p4 the fifth point.
* @param p5 the sixth point.
* @param p6 the seventh point.
* @param p7 the height point.
* @return the dart of the new hexahedron incident to p0, to edge
* p0,p5 and to the facet (p0,p5,p6,p1).
*/
Dart_descriptor make_hexahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3,
const Point& p4,
const Point& p5,
const Point& p6,
const Point& p7)
{
return make_hexahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3),
create_vertex_attribute(p4),
create_vertex_attribute(p5),
create_vertex_attribute(p6),
create_vertex_attribute(p7));
}
/** Compute the barycenter of a given cell.
* @param adart a dart incident to the cell.
* @param adim the dimension of the cell.
* @return the barycenter of the cell.
*/
template<unsigned int i>
Point barycenter(Dart_const_descriptor adart) const
{
return CGAL::Barycenter_functor<Self, i>::run(*this, adart);
}
/** Insert a point in a given 1-cell.
* @param dh a dart handle to the 1-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
Dart_descriptor insert_point_in_cell_1(Dart_descriptor dh, const Point& p,
bool update_attributes=true)
{
return this->insert_cell_0_in_cell_1(dh,
create_vertex_attribute(p),
update_attributes);
}
/** Insert a point in a given 2-cell.
* @param dh a dart handle to the 2-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
Dart_descriptor insert_point_in_cell_2(Dart_descriptor dh, const Point& p,
bool update_attributes=true)
{
Vertex_attribute_descriptor v = create_vertex_attribute(p);
Dart_descriptor first = this->insert_cell_0_in_cell_2(dh, v, update_attributes);
if ( first==null_descriptor ) // If the triangulated facet was made of one dart
erase_vertex_attribute(v);
#ifdef CGAL_CMAP_TEST_VALID_INSERTIONS
CGAL_assertion( is_valid() );
#endif
return first;
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_descriptor insert_point_in_cell(Dart_descriptor dh, const Point& p,
bool update_attributes=true)
{
static_assert(1<=i && i<=2);
if (i==1) return insert_point_in_cell_1(dh, p, update_attributes);
return insert_point_in_cell_2(dh, p, update_attributes);
}
/** Insert a dangling edge in a given facet.
* @param dh a dart of the facet (!=nullptr).
* @param p the coordinates of the new vertex.
* @param update_attributes a boolean to update the enabled attributes
* @return a dart of the new edge, incident to the new vertex.
*/
Dart_descriptor insert_dangling_cell_1_in_cell_2(Dart_descriptor dh,
const Point& p,
bool update_attributes=true)
{
return this->insert_dangling_cell_1_in_cell_2
(dh, create_vertex_attribute(p), update_attributes);
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @param update_attributes a boolean to update the enabled attributes
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_descriptor insert_barycenter_in_cell(Dart_descriptor dh, bool update_attributes=true)
{ return insert_point_in_cell<i>(dh, barycenter<i>(dh), update_attributes); }
/** Compute the dual of a Linear_cell_complex.
* @param alcc the lcc in which we build the dual of this lcc.
* @param adart a dart of the initial lcc, `nullptr` by default.
* @return adart of the dual lcc, the dual of adart if adart!=nullptr,
* any dart otherwise.
* As soon as we don't modify this lcc and alcc lcc, we can iterate
* simultaneously through all the darts of the two lcc and we have
* each time of the iteration two "dual" darts.
*/
Dart_descriptor dual_points_at_barycenter(Self & alcc, Dart_descriptor adart=null_descriptor)
{
Dart_descriptor res=Base::dual(alcc, adart);
// Now the lcc alcc is topologically correct, we just need to add
// its geometry to each vertex (the barycenter of the corresponding
// dim-cell in the initial map).
typename Dart_range::iterator it2=alcc.darts().begin();
for (typename Dart_range::iterator it(darts().begin());
it!=darts().end(); ++it, ++it2)
{
if (alcc.vertex_attribute(it2)==null_descriptor)
{
alcc.set_vertex_attribute(it2, alcc.create_vertex_attribute
(barycenter<dimension>(it)));
}
}
CGAL_expensive_assertion(alcc.is_valid());
return res;
}
/** Set the status of the management of the attributes of the Map
*/
void set_automatic_attributes_management(bool newval)
{
if (this->automatic_attributes_management == false && newval == true)
{
// We need to recode this function because correct_invalid_attributes
// is not a virtual function.
correct_invalid_attributes();
}
this->automatic_attributes_management = newval;
}
void set_automatic_attributes_management_without_correction(bool newval)
{ this->automatic_attributes_management = newval; }
};
} // namespace CGAL
#endif // CGAL_LINEAR_CELL_COMPLEX_BASE_H //
// EOF //
|