1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Linear_cell_complex/include/CGAL/Linear_cell_complex_constructors.h $
// $Id: include/CGAL/Linear_cell_complex_constructors.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H
#define CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H 1
#include <CGAL/IO/OFF.h>
#include <CGAL/Linear_cell_complex_incremental_builder_3.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/assertions.h>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <map>
#include <vector>
#include <list>
namespace CGAL {
/** @file Linear_cell_complex_constructors.h
* Some construction operations for a linear cell complex from other
* CGAL data structures.
*/
/**
* Imports a plane-embedded graph from a list of points and edges represented as pairs of vertex indices
*/
template< class LCC >
typename LCC::Dart_descriptor import_from_plane_graph(LCC& alcc,
const std::vector<typename LCC::Point>& vertices,
const std::vector<size_t>& edge_indices)
{
typedef typename LCC::Traits::Construct_direction_2 Construct_direction_2;
typedef typename LCC::Traits::Construct_vector Construct_vector;
typedef typename LCC::Dart_descriptor Dart_descriptor;
typedef typename LCC::Traits::Direction_2 Direction;
typedef typename std::map<Direction, Dart_descriptor>::iterator LCC_iterator;
typedef typename std::list<Dart_descriptor>::iterator List_iterator;
typedef typename LCC::Point Point;
static_assert( LCC::dimension>=2 && LCC::ambient_dimension==2 );
CGAL_assertion(edge_indices.size() % 2 == 0);
std::vector< typename LCC::Vertex_attribute_descriptor > initVertices;
initVertices.reserve(vertices.size());
std::transform(vertices.begin(),
vertices.end(),
std::back_inserter(initVertices),
[&](const Point& point) {
return alcc.create_vertex_attribute(point);
});
std::vector< std::list<Dart_descriptor> > testVertices{vertices.size(), std::list<Dart_descriptor>()};
Dart_descriptor d1 = alcc.null_descriptor;
for (std::size_t i = 0; (i + 1) < edge_indices.size(); i += 2) {
const auto& v1 = edge_indices[i];
const auto& v2 = edge_indices[i + 1];
CGAL_assertion(v1 < initVertices.size());
CGAL_assertion(v2 < initVertices.size());
d1 = alcc.make_segment(initVertices[v1], initVertices[v2], true);
testVertices[v1].push_back(d1);
testVertices[v2].push_back(alcc.template opposite<2>(d1));
}
// LCC associating directions and darts.
std::map<Direction, Dart_descriptor> tabDart;
List_iterator it;
LCC_iterator it2;
Dart_descriptor first = alcc.null_descriptor;
Dart_descriptor prec = alcc.null_descriptor;
for (unsigned int i=0; i<initVertices.size(); ++i)
{
it = testVertices[i].begin();
if (it != testVertices[i].end()) // Si la liste n'est pas vide.
{
// 1. We insert all the darts and sort them depending on the direction
tabDart.clear();
Point vertex1 = alcc.point(*it);
Point vertex2 = alcc.point(alcc.other_extremity(*it));
tabDart.insert(std::pair<Direction, Dart_descriptor>
(Construct_direction_2()
(Construct_vector()
(vertex1,vertex2)), *it));
++it;
while (it!=testVertices[i].end())
{
vertex2 = alcc.point(alcc.other_extremity(*it));
tabDart.insert(std::pair<Direction, Dart_descriptor>
(Construct_direction_2()
(Construct_vector()
(vertex1,vertex2)), *it));
++it;
}
// 2. We run through the array of darts and 1 links darts.
it2 = tabDart.begin();
first = it2->second;
prec = first;
++it2;
while (it2!=tabDart.end())
{
alcc.set_next(alcc.template opposite<2>(it2->second), prec);
prec = it2->second;
++it2;
}
alcc.set_next(alcc.template opposite<2>(first), prec);
}
}
// We return a dart from the imported object.
return first;
}
/**
* Imports a plane-embedded graph from a file into a LinearCellComplex.
*
* @param alcc the linear cell complex where the graph will be imported.
* @param ais the istream where read the graph.
* @return A dart created during the conversion.
*/
template< class LCC >
typename LCC::Dart_descriptor import_from_plane_graph(LCC& alcc,
std::istream& ais)
{
using FT = typename LCC::FT;
using Point = typename LCC::Point;
std::vector<Point> vertices;
unsigned int numVertices = 0;
unsigned int numEdges = 0;
ais >> numVertices >> numEdges;
while (numVertices > 0)
{
if (!ais.good())
{
std::cout << "Problem: file does not contain enough vertices."
<< std::endl;
return alcc.null_descriptor;
}
FT x, y;
ais >> IO::iformat(x) >> IO::iformat(y);
vertices.push_back(Point{x, y});
--numVertices;
}
std::vector<size_t> edge_indices;
while (numEdges>0)
{
if (!ais.good())
{
std::cout << "Problem: file does not contain enough edges."
<< std::endl;
return alcc.null_descriptor;
}
// We read an edge (given by the number of its two vertices).
unsigned int v1, v2;
ais >> v1 >> v2;
--numEdges;
CGAL_assertion(v1 < vertices.size());
CGAL_assertion(v2 < vertices.size());
edge_indices.push_back(v1);
edge_indices.push_back(v2);
}
return import_from_plane_graph(alcc, vertices, edge_indices);
}
template < class LCC >
typename LCC::Dart_descriptor
import_from_plane_graph(LCC& alcc, const char* filename)
{
std::ifstream input(filename);
if (!input.is_open()) return alcc.null_descriptor;
return import_from_plane_graph(alcc, input);
}
template < class LCC >
bool load_off(LCC& alcc, std::istream& in)
{
File_header_OFF m_file_header;
File_scanner_OFF scanner( in, m_file_header.verbose());
if (!in) return false;
m_file_header = scanner; // Remember file header after return.
Linear_cell_complex_incremental_builder_3<LCC> B(alcc);
B.begin_surface();
typedef typename LCC::Point Point;
// read in all vertices
std::size_t i;
for (i = 0; i < scanner.size_of_vertices(); i++)
{
Point p;
file_scan_vertex(scanner, p);
B.add_vertex(p);
scanner.skip_to_next_vertex(i);
}
/* TODO rollback
if ( ! in || B.error()) {
B.rollback();
in.clear( std::ios::badbit);
return;
}
*/
// read in all facets
for (i=0; i<scanner.size_of_facets(); i++)
{
B.begin_facet();
std::size_t no=0;
scanner.scan_facet(no, i);
/* TODO manage errors
if( ! in || B.error() || no < 3) {
if ( scanner.verbose()) {
std::cerr << " " << std::endl;
std::cerr << "Polyhedron_scan_OFF<Traits>::" << std::endl;
std::cerr << "operator()(): input error: facet " << i
<< " has fewer than 3 vertices." << std::endl;
}
B.rollback();
in.clear( std::ios::badbit);
return;
} */
for (std::size_t j=0; j<no; j++)
{
std::size_t index=0;
scanner.scan_facet_vertex_index(index, j+1, i);
if(! in){
return false;
}
B.add_vertex_to_facet(static_cast<typename LCC::size_type>(index));
}
B.end_facet();
scanner.skip_to_next_facet(i);
}
/* TODO manage errors
if ( ! in || B.error()) {
B.rollback();
in.clear( std::ios::badbit);
return;
}
if ( B.check_unconnected_vertices()) {
if ( ! B.remove_unconnected_vertices()) {
if ( scanner.verbose()) {
std::cerr << " " << std::endl;
std::cerr << "Polyhedron_scan_OFF<Traits>::" << std::endl;
std::cerr << "operator()(): input error: cannot "
"successfully remove isolated vertices."
<< std::endl;
}
B.rollback();
in.clear( std::ios::badbit);
return;
}
}*/
B.end_surface();
return true;
}
template < class LCC >
bool load_off(LCC& alcc, const char* filename)
{
std::ifstream input(filename);
if (!input.is_open())
{ return false; }
return load_off(alcc, input);
}
/** Export the alcc in off file format. If dimension>2, export all faces but only once.
* @pre all faces are closed (i.e. form by closed cycles of edges)
*/
template < class LCC >
bool write_off(LCC& alcc, std::ostream& out)
{
if (!alcc.are_all_faces_closed())
{
std::cerr<<"Impossible to write in off a map having open faces."<<std::endl;
return false;
}
File_header_OFF header(false);
header.set_binary(IO::is_binary(out));
header.set_no_comments(!IO::is_pretty(out));
File_writer_OFF writer( header);
writer.header().set_polyhedral_surface(true);
writer.header().set_halfedges(alcc.number_of_darts());
// Print header.
writer.write_header(out,
alcc.number_of_vertex_attributes(),
alcc.number_of_halfedges(),
alcc.template one_dart_per_cell<2>().size());
typedef typename LCC::Vertex_attribute_range::const_iterator VCI;
VCI vit, vend = alcc.vertex_attributes().end();
// TODO FOR index we do not need the Unique_hash_map.
size_t i=0;
CGAL::Unique_hash_map< typename LCC::Vertex_attribute_const_descriptor,
size_t, typename LCC::Hash_function > index;
for (vit=alcc.vertex_attributes().begin(); vit!=vend; ++vit)
{
writer.write_vertex(::CGAL::to_double(vit->point().x()),
::CGAL::to_double(vit->point().y()),
::CGAL::to_double(vit->point().z()));
index[vit]=i++; // TODO for index
}
writer.write_facet_header();
typename LCC::size_type m = alcc.get_new_mark();
for (typename LCC::Dart_range::iterator itall = alcc.darts().begin(),
itallend = alcc.darts().end(); itall!=itallend; ++itall)
{
if (!alcc.is_marked(itall, m))
{
std::size_t n = 0;
typename LCC::Dart_descriptor cur=itall;
do
{
++n;
CGAL_assertion(alcc.is_next_exist(cur));
cur=alcc.next(cur);
}
while(cur!=itall);
CGAL_assertion( n>=3 );
writer.write_facet_begin(n);
// Second we write the indices of vertices.
do
{
writer.write_facet_vertex_index(index[alcc.vertex_attribute(cur)]); // TODO for index
alcc.mark(cur, m);
alcc.mark(alcc.other_orientation(cur), m); // for GMap only, for CMap
CGAL_assertion(alcc.is_next_exist(cur)); // marks the same dart twice
cur=alcc.next(cur);
}
while(cur!=itall);
writer.write_facet_end();
}
}
writer.write_footer();
alcc.free_mark(m);
return true;
}
template < class LCC >
bool write_off(LCC& alcc, const char* filename)
{
std::ofstream output(filename);
if (!output.is_open())
{ return false; }
return write_off(alcc, output);
}
} // namespace CGAL
#endif // CGAL_LINEAR_CELL_COMPLEX_CONSTRUCTORS_H //
// EOF //
|