1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Polygon/include/CGAL/Polygon_2_algorithms.h $
// $Id: include/CGAL/Polygon_2_algorithms.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Wieger Wesselink <wieger@cs.ruu.nl>
/*!
\file Polygon_2_algorithms.h
*/
#ifndef CGAL_POLYGON_2_ALGORITHMS_H
#define CGAL_POLYGON_2_ALGORITHMS_H
#include <CGAL/config.h>
#include <CGAL/enum.h>
#include <CGAL/Bbox_2.h>
#include <CGAL/assertions.h>
#include <CGAL/utils_classes.h>
///
namespace CGAL {
//-----------------------------------------------------------------------//
// algorithms for sequences of 2D points
//-----------------------------------------------------------------------//
/// \addtogroup PkgPolygon2Functions
/// @{
/// Returns an iterator to the leftmost point from the range
/// `[first,last)`. In case of a tie, the point
/// with the smallest `y`-coordinate is taken.
///
/// \tparam Traits is a model of the concept `PolygonTraits_2`.
/// Only the members `Less_xy_2` and
/// `less_xy_2_object()` are used.
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
///
/// \sa `CGAL::right_vertex_2()`
/// \sa `CGAL::top_vertex_2()`
/// \sa `CGAL::bottom_vertex_2()`
/// \sa `CGAL::Polygon_2`
template <class ForwardIterator, class PolygonTraits>
ForwardIterator left_vertex_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
/// Returns an iterator to the rightmost point from the range
/// `[first,last)`. In case of a tie, the point
/// with the largest `y`-coordinate is taken.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// In fact, only the members `Less_xy_2` and
/// `less_xy_2_object()` are used.
/// \tparam ForwardIterator must have`Traits::Point_2` as value type.
///
///
/// \sa `CGAL::left_vertex_2()`
/// \sa `CGAL::top_vertex_2()`
/// \sa `CGAL::bottom_vertex_2()`
/// \sa `CGAL::Polygon_2`
template <class ForwardIterator, class PolygonTraits>
ForwardIterator right_vertex_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
/// Returns an iterator to the topmost point from the range
/// `[first,last)`. In case of a tie, the point
/// with the largest `x`-coordinate is taken.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the members `Less_yx_2` and
/// `less_yx_2_object()` are used.
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
/// \sa `CGAL::left_vertex_2()`
/// \sa `CGAL::right_vertex_2()`
/// \sa `CGAL::bottom_vertex_2()`
/// \sa `CGAL::Polygon_2`
template <class ForwardIterator, class PolygonTraits>
ForwardIterator top_vertex_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
/// Returns an iterator to the bottommost point from the range
/// `[first,last)`. In case of a tie, the point
/// with the smallest `x`-coordinate is taken.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the members `Less_yx_2` and
/// `less_yx_2_object()` are used.
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
/// \sa `CGAL::left_vertex_2()`
/// \sa `CGAL::right_vertex_2()`
/// \sa `CGAL::top_vertex_2()`
/// \sa `CGAL::Polygon_2`
/// \sa `PolygonTraits_2`
template <class ForwardIterator, class PolygonTraits>
ForwardIterator bottom_vertex_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
/// Computes the signed area of the polygon defined by the range of points
/// `[first,last)`. The area is returned in the parameter
/// `result`. The sign is positive for counterclockwise polygons, negative for
/// clockwise polygons. If the polygon is not simple, the area is not well defined.
/// The functionality is also available by the `polygon_area_2()` function, which
/// returns the area instead of taking it as a parameter.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Compute_area_2` : Computes the signed area of the
/// oriented triangle defined by 3 `Point_2` passed as arguments.
/// - `FT`
/// - `compute_area_2_object()`
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
/// \sa `CGAL::polygon_area_2()`
/// \sa `PolygonTraits_2`
/// \sa `CGAL::orientation_2()`
/// \sa `CGAL::Polygon_2`
template <class ForwardIterator, class PolygonTraits>
void
area_2( ForwardIterator first, ForwardIterator last,
typename PolygonTraits::FT &result,
const PolygonTraits& traits)
{
typedef typename PolygonTraits::FT FT;
internal::Evaluate<FT> evaluate;
result = FT(0);
// check if the polygon is empty
if (first == last) return;
ForwardIterator second = first; ++second;
// check if the polygon has only one point
if (second == last) return;
typename PolygonTraits::Compute_area_2 compute_area_2 =
traits.compute_area_2_object();
ForwardIterator third = second;
while (++third != last) {
result = result + compute_area_2(*first, *second, *third);
evaluate(result);
second = third;
}
}
/// Computes the signed area of the polygon defined by the range of points
/// `[first,last)`.
/// The sign is positive for counterclockwise polygons, negative for
/// clockwise polygons. If the polygon is not simple, the area is not well defined.
///
/// \tparam Traits is a model of the concept `PolygonTraits_2`. Only the following members of this traits class are used:
/// - `Compute_area_2` : Computes the signed area of the
/// oriented triangle defined by 3 `Point_2` passed as arguments.
/// - `FT`
/// - `compute_area_2_object`
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
///
/// \sa `PolygonTraits_2 `
/// \sa `CGAL::orientation_2()`
/// \sa `CGAL::Polygon_2 `
template <class ForwardIterator, class PolygonTraits>
typename PolygonTraits::FT
polygon_area_2( ForwardIterator first, ForwardIterator last,
const PolygonTraits& traits)
{
typedef typename PolygonTraits::FT FT;
internal::Evaluate<FT> evaluate;
FT result = FT(0);
// check if the polygon is empty
if (first == last) return result;
ForwardIterator second = first; ++second;
// check if the polygon has only one point
if (second == last) return result;
typename PolygonTraits::Compute_area_2 compute_area_2 =
traits.compute_area_2_object();
ForwardIterator third = second;
while (++third != last) {
result = result + compute_area_2(*first, *second, *third);
evaluate(result);
second = third;
}
return result;
}
/// Checks if the polygon is convex.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Less_xy_2`
/// - `Orientation_2`
/// - `less_xy_2_object`
/// - `orientation_2_object`
/// \tparam ForwardIterator must have `PolygonTraits::Point_2` as value type.
///
/// \sa `PolygonTraits_2 `
/// \sa `CGAL::Polygon_2 `
template <class ForwardIterator, class PolygonTraits>
bool is_convex_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
/// Checks if the polygon defined by the
/// iterator range `[first,last)` is simple, that is, if the edges
/// do not intersect, except consecutive edges in their common vertex.
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Point_2`
/// - `Less_xy_2`
/// - `Orientation_2`
/// - `less_xy_2_object()`
/// - `orientation_2_object()`
/// \tparam ForwardIterator must have `PolygonTraits::Point_2` as value type.
///
/// \cgalHeading{Implementation}
///
/// The simplicity test is implemented by means of a plane sweep algorithm.
/// The algorithm is quite robust when used with inexact number types.
/// The running time is \cgalBigO{n log n}, where n is the number of vertices of the
/// polygon.
///
/// \sa `PolygonTraits_2`
/// \sa `CGAL::Polygon_2`
template <class ForwardIterator, class PolygonTraits>
bool is_simple_2(ForwardIterator first,
ForwardIterator last,
const PolygonTraits& traits);
// In the following two functions we would like to use Traits::Point_2
// instead of Point, but this is not allowed by g++ 2.7.2.
///
/// Computes on which side of a polygon a point lies.
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Less_xy_2`
/// - `Compare_x_2`
/// - `Compare_y_2`
/// - `Orientation_2`
/// - `less_xy_2_object()`
/// - `compare_x_2_object()`
/// - `compare_y_2_object()`
/// - `orientation_2_object()`
/// \tparam ForwardIterator must have `PolygonTraits::Point_2` as value type.
///
/// \sa `PolygonTraits_2`
/// \sa `CGAL::bounded_side_2()`
/// \sa `CGAL::is_simple_2()`
/// \sa `CGAL::Polygon_2`
/// \sa `Oriented_side`
template <class ForwardIterator, class Point, class Traits>
Oriented_side oriented_side_2(ForwardIterator first,
ForwardIterator last,
const Point& point,
const Traits& traits);
/// Computes if a point lies inside a polygon.
/// The polygon is defined by the sequence of points `[first,last)`.
/// Being inside is defined by the odd-even rule. If we take a ray starting at the
/// point and extending to infinity (in any direction), we count the number of
/// intersections. If this number is odd, the point is inside, otherwise it is
/// outside. If the point is on a polygon edge, a special value is returned. A
/// simple polygon divides the plane in an unbounded and a bounded region.
/// According to the definition points in the bounded region are inside the polygon.
///
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Compare_x_2`
/// - `Compare_y_2`
/// - `Orientation_2`
/// - `compare_x_2_object()`
/// - `compare_y_2_object()`
/// - `orientation_2_object()`
/// \tparam ForwardIterator must have `Traits::Point_2` as value type.
///
/// \cgalHeading{Implementation}
///
/// The running time is linear in the number of vertices of the polygon.
/// A horizontal ray is taken to count the number of intersections.
/// Special care is taken that the result is correct even if there are degeneracies
/// (if the ray passes through a vertex).
///
///
/// \sa `PolygonTraits_2`
/// \sa `CGAL::oriented_side_2()`
/// \sa `CGAL::Polygon_2 `
/// \sa `CGAL::Bounded_side`
template <class ForwardIterator, class Point, class PolygonTraits>
Bounded_side bounded_side_2(ForwardIterator first,
ForwardIterator last,
const Point& point,
const PolygonTraits& traits);
/// Computes if a polygon is clockwise or counterclockwise oriented.
/// \pre `is_simple_2(first, last, traits);`
///
/// \tparam Traits is a model of the concept
/// `PolygonTraits_2`.
/// Only the following members of this traits class are used:
/// - `Less_xy_2`
/// - `less_xy_2_object()`
/// - `orientation_2_object()`
/// \tparam ForwardIterator must have`Traits::Point_2` as value type.
///
///
///
/// \sa `PolygonTraits_2`
/// \sa `CGAL::is_simple_2()`
/// \sa `CGAL::Polygon_2`
/// \sa `CGAL::Orientation`
template <class ForwardIterator, class Traits>
Orientation orientation_2(ForwardIterator first,
ForwardIterator last,
const Traits& traits);
/// @}
//-----------------------------------------------------------------------//
// implementation
//-----------------------------------------------------------------------//
template <class ForwardIterator>
inline
ForwardIterator left_vertex_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return left_vertex_2(first, last, K());
}
template <class ForwardIterator>
inline
ForwardIterator right_vertex_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return right_vertex_2(first, last, K());
}
template <class ForwardIterator>
inline
ForwardIterator top_vertex_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return top_vertex_2(first, last, K());
}
template <class ForwardIterator>
inline
ForwardIterator bottom_vertex_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return bottom_vertex_2(first, last, K());
}
template <class ForwardIterator, class Numbertype>
inline
void area_2(ForwardIterator first,
ForwardIterator last,
Numbertype& result)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
area_2(first, last, result, K());
}
template <class ForwardIterator>
inline
bool is_convex_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return is_convex_2(first, last, K());
}
template <class ForwardIterator>
inline
bool is_simple_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return is_simple_2(first, last, K());
}
template <class ForwardIterator>
inline
Oriented_side oriented_side_2(
ForwardIterator first,
ForwardIterator last,
const typename std::iterator_traits<ForwardIterator>::value_type& point)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return oriented_side_2(first, last, point, K());
}
template <class ForwardIterator>
inline
Bounded_side bounded_side_2(
ForwardIterator first,
ForwardIterator last,
const typename std::iterator_traits<ForwardIterator>::value_type& point)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return bounded_side_2(first, last, point, K());
}
template <class ForwardIterator>
inline
Orientation orientation_2(ForwardIterator first,
ForwardIterator last)
{
typedef typename Kernel_traits<
typename std::iterator_traits<ForwardIterator>::value_type>::Kernel K;
return orientation_2(first, last, K());
}
} //namespace CGAL
#include <CGAL/Polygon_2/Polygon_2_algorithms_impl.h>
#endif // CGAL_POLYGON_2_ALGORITHMS_H
|