File: snap.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (1455 lines) | stat: -rw-r--r-- 61,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
// Copyright (c) 2018, 2019 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/internal/Snapping/snap.h $
// $Id: include/CGAL/Polygon_mesh_processing/internal/Snapping/snap.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Mael Rouxel-Labbé
//                 Sebastien Loriot

#ifndef CGAL_POLYGON_MESH_PROCESSING_SNAPPING_SNAP_H
#define CGAL_POLYGON_MESH_PROCESSING_SNAPPING_SNAP_H

#include <CGAL/license/Polygon_mesh_processing/geometric_repair.h>

#ifdef CGAL_PMP_SNAP_DEBUG_PP
 #ifndef CGAL_PMP_SNAP_DEBUG
  #define CGAL_PMP_SNAP_DEBUG
 #endif
#endif

#include <CGAL/Polygon_mesh_processing/internal/Snapping/helper.h>
#include <CGAL/Polygon_mesh_processing/internal/Snapping/snap_vertices.h>

#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/Polygon_mesh_processing/border.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>

#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits_3.h>
#include <CGAL/AABB_halfedge_graph_segment_primitive.h>
#include <CGAL/assertions.h>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/boost/graph/selection.h>
#include <CGAL/circulator.h>
#include <CGAL/Dynamic_property_map.h>
#include <CGAL/Kernel/global_functions.h>
#include <CGAL/number_utils.h>
#include <CGAL/Real_timer.h>
#include <CGAL/utility.h>

#ifdef CGAL_EIGEN3_ENABLED
#include <Eigen/Dense>
#endif

#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/concurrent_vector.h>
#include <tbb/parallel_for.h>
#endif

#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <type_traits>
#include <unordered_set>
#include <utility>
#include <vector>

#ifdef CGAL_PMP_SNAP_DEBUG_OUTPUT
#include <fstream>
#endif

namespace CGAL {
namespace Polygon_mesh_processing {
namespace internal {

template <typename HalfedgeRange, typename TriangleMesh,
          typename ToleranceMap, typename NamedParameters>
void simplify_range(HalfedgeRange& halfedge_range,
                    TriangleMesh& tm,
                    ToleranceMap tolerance_map,
                    const NamedParameters& np)
{
  // @todo the simplification below is too naive and will fail to treat complicated zigzaging
  // with long edges.
  // A real simplification would create a fuzzy area around the border (say the dilation
  // of the border polyline by a sphere of radius that continuously interpolates the tolerance
  // at each vertex). The border is then simplified to use the least amount of edges possible
  // in that fuzzy zone. Need to look into cartography papers, probably.

  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor           vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor         halfedge_descriptor;

  typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type             GT;
  typedef typename GT::FT                                                         FT;

  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::type         VPM;
  typedef typename boost::property_traits<VPM>::value_type                        Point;
  typedef typename boost::property_traits<VPM>::reference                         Point_ref;

  using parameters::get_parameter;
  using parameters::choose_parameter;

  const GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));
  VPM vpm = choose_parameter(get_parameter(np, internal_np::vertex_point), get_property_map(vertex_point, tm));

  typedef CGAL::dynamic_halfedge_property_t<bool>                                 Halfedge_bool_tag;
  typedef typename boost::property_map<TriangleMesh, Halfedge_bool_tag>::type     Range_halfedges;

  const bool all_hedges = (::CGAL::internal::exact_num_halfedges(tm)==halfedge_range.size());

  Range_halfedges range_halfedges = get(Halfedge_bool_tag(), tm, all_hedges);
  if (!all_hedges)
    for(halfedge_descriptor h : halfedge_range)
      put(range_halfedges, h, true);

  CGAL_postcondition_code(const std::size_t initial_n = halfedge_range.size();)

  std::set<halfedge_descriptor> edges_to_test(halfedge_range.begin(), halfedge_range.end());

  int collapsed_n = 0;

  while(!edges_to_test.empty())
  {
    const halfedge_descriptor h = *(edges_to_test.begin());
    edges_to_test.erase(edges_to_test.begin());

    const vertex_descriptor vs = source(h, tm);
    const vertex_descriptor vt = target(h, tm);
    const Point_ref ps = get(vpm, vs);
    const Point_ref pt = get(vpm, vt);

    // @fixme what if the source vertex is not to be snapped? Tolerance cannot be obtained...
    // and where should the post-collapse vertex be since we can't move the source vertex...
    // --> simply don't collapse?
    const FT tol_s = get(tolerance_map, vs), tol_t = get(tolerance_map, vt);
    const FT max_tol = (std::max)(tol_s, tol_t);

    if(gt.compare_squared_distance_3_object()(ps,pt,CGAL::square(max_tol)) == SMALLER)
    {
      const halfedge_descriptor prev_h = prev(h, tm);
      const halfedge_descriptor next_h = next(h, tm);
      const halfedge_descriptor prev_oh = prev(opposite(h, tm), tm);

      // check that the border has at least 4 edges not to create degenerate volumes
      if(border_size(h, tm) >= 4)
      {
        const FT lambda = tol_s / (tol_s + tol_t);
        const Point new_p = ps + lambda * (pt - ps);

        // If we're collapsing onto a vertex that is not allowed to move, keep it fixed
        const FT min_tol = (std::min)(tol_s, tol_t);
        FT new_tolerance = min_tol;
        if(!is_zero(min_tol))
        {
          if(tol_t > tol_s) // the new point is closer to ps than to pt
            new_tolerance += CGAL::approximate_sqrt(CGAL::squared_distance(new_p, ps));
          else
            new_tolerance += CGAL::approximate_sqrt(CGAL::squared_distance(new_p, pt));
        }

        // check that the collapse does not create a new degenerate face
        bool do_collapse = true;
        for(halfedge_descriptor he : halfedges_around_target(h, tm))
        {
          if(he != prev_oh && // ignore the triangle incident to h that will disappear
             !is_border(he, tm) &&
             collinear(get(vpm, source(he, tm)), new_p, get(vpm, target(next(he,tm),tm))))
          {
            do_collapse = false;
            break;
          }
        }

        if(!do_collapse)
          continue;

        for(halfedge_descriptor he : halfedges_around_target(opposite(h,tm), tm))
        {
          if(he != opposite(h,tm) &&
             !is_border(he, tm) &&
             collinear(get(vpm, source(he, tm)), new_p, get(vpm, target(next(he,tm),tm))))
          {
            do_collapse = false;
            break;
          }
        }

        if(!do_collapse)
          continue;

        if(!CGAL::Euler::does_satisfy_link_condition(edge(h, tm), tm))
          continue;

        const halfedge_descriptor opoh = opposite(prev(opposite(h, tm), tm), tm);
        if(is_border(opoh, tm))
          edges_to_test.erase(opoh);

        vertex_descriptor v = Euler::collapse_edge(edge(h, tm), tm);

        put(vpm, v, new_p);
        put(tolerance_map, v, new_tolerance);

        if(get(range_halfedges, prev_h))
          edges_to_test.insert(prev_h);
        if(next_h != opoh && get(range_halfedges, next_h))
          edges_to_test.insert(next_h);
        ++collapsed_n;
      }
    }
  }
  CGAL_USE(collapsed_n);
#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << "collapsed " << collapsed_n << " edges" << std::endl;
#endif

  std::vector<halfedge_descriptor> new_range;
  new_range.reserve(halfedge_range.size());

  for(halfedge_descriptor h : halfedges(tm))
    if(get(range_halfedges, h))
      new_range.push_back(h);

  halfedge_range = HalfedgeRange(new_range.begin(), new_range.end());

  CGAL_postcondition(halfedge_range.size() <= initial_n - collapsed_n);
}

// Adapted from <CGAL/AABB_tree/internal/AABB_traversal_traits.h>
template <typename TriangleMesh,
          typename VPMS, typename VPMT, typename FacePatchMap,
          typename AABBTraits>
class Projection_traits
{
  typedef typename AABBTraits::FT                                          FT;
  typedef typename AABBTraits::Point                                       Point;
  typedef typename AABBTraits::Primitive                                   Primitive;
  typedef typename AABBTraits::Bounding_box                                Bounding_box;
  typedef typename AABBTraits::Primitive::Id                               Primitive_id;
  typedef typename AABBTraits::Point_and_primitive_id                      Point_and_primitive_id;
  typedef typename AABBTraits::Object_and_primitive_id                     Object_and_primitive_id;

  typedef CGAL::AABB_node<AABBTraits>                                      Node;

  typedef typename AABBTraits::Geom_traits                                 Geom_traits;
  typedef typename Geom_traits::Vector_3                                   Vector;
  typedef typename Geom_traits::Plane_3                                    Plane;

  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor  halfedge_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::edge_descriptor      edge_descriptor;

#ifdef CGAL_PMP_SNAP_USE_ANISOTROPIC_DISTANCE
  void build_metric()
  {
    Vector hv(get(m_vpm_S, source(m_h, m_tm_S)), get(m_vpm_S, target(m_h, m_tm_S)));
    Vector n = CGAL::Polygon_mesh_processing::compute_face_normal(face(opposite(m_h, m_tm_S), m_tm_S), m_tm_S,
                                                                  CGAL::parameters::geom_traits(m_gt)
                                                                                   .vertex_point_map(m_vpm_S));
    Vector pn = m_gt.construct_cross_product_vector_3_object()(hv, n);
    Plane pl(get(m_vpm_S, target(m_h, m_tm_S)), pn);

    Vector b1 = pl.base1();
    Vector b2 = pl.base2();

    internal::normalize(b1, m_gt);
    internal::normalize(b2, m_gt);
    internal::normalize(pn, m_gt);

    Eigen::Matrix3d eigen_m;
    eigen_m(0,0) = b1.x(); eigen_m(0,1) = b2.x(); eigen_m(0,2) = pn.x();
    eigen_m(1,0) = b1.y(); eigen_m(1,1) = b2.y(); eigen_m(1,2) = pn.y();
    eigen_m(2,0) = b1.z(); eigen_m(2,1) = b2.z(); eigen_m(2,2) = pn.z();

    Eigen::Matrix3d eigen_diag = Eigen::Matrix3d::Zero();
    eigen_diag(0,0) = 1;
    eigen_diag(1,1) = 1;
    eigen_diag(2,2) = 100; // we scale by 1/sqrt(lambda_0) in the direction of n

    Eigen::Matrix3d eigen_mtransp = eigen_m.transpose();
    m_metric = eigen_m * eigen_diag * eigen_mtransp;
  }
#endif

  FT squared_anisotropic_distance(const Point& p, const Point& q) const
  {
#ifdef CGAL_PMP_SNAP_USE_ANISOTROPIC_DISTANCE
    Vector pq(p, q);
    Eigen::Vector3d ev;
    ev(0) = pq.x();
    ev(1) = pq.y();
    ev(2) = pq.z();

    return ev.transpose() * m_metric * ev;
#else
    return CGAL::squared_distance(p, q);
#endif
  }

  // The idea behind this function is to give priority to projections that are parallel to the edge 'e0'
  // whom the query is the target of. This is done by considering an (anisotropic) distance that
  // increases the distance if we are not projecting along the vector orthogonal to both the edge 'e0'
  // and to the normal of the face, and also by checking the scalar product between the edges.
  // The latter is because the distance to the projection point does not entirely reflect
  // the alignment of the edges.
  //
  // This is WIP and likely to evolve...
  bool is_better_than_current_best(const FT sq_dist,
                                   const FT scalar_product)
  {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
    std::cout << "is_better_than_current_best()" << std::endl;
    std::cout << "sq_dist: " << sq_dist << std::endl;
    std::cout << "m_sq_adist: " << m_sq_adist << std::endl;
    std::cout << "scalar products: " << scalar_product << " " << m_sp_with_closest_edge << std::endl;
#endif

    // Automatically accept much closer tentative targets; automatically reject much farther tentative targets
    const FT lambda = 4; // comparing squared distances
    if(lambda * sq_dist < m_sq_adist)
      return true;
    if(lambda * m_sq_adist < sq_dist)
      return false;

    return (scalar_product > m_sp_with_closest_edge);
  }

public:
  explicit Projection_traits(const halfedge_descriptor h,
                             const std::size_t patch_id,
                             const FT sq_tolerance,
                             const TriangleMesh& tm_S,
                             const VPMS vpm_S,
                             const TriangleMesh& tm_T,
                             const FacePatchMap face_patch_map_T,
                             const VPMT vpm_T,
                             const AABBTraits& aabb_traits)
    :
      m_h(h),
      m_patch_id(patch_id),
      m_sq_tol(sq_tolerance),
      m_tm_S(tm_S), m_vpm_S(vpm_S),
      m_tm_T(tm_T), m_face_patch_map_T(face_patch_map_T), m_vpm_T(vpm_T),
      m_is_same_mesh((&tm_S == &tm_T)),
      m_continue(true),
      m_closest_point_initialized(false),
      m_traits(aabb_traits),
      m_gt(Geom_traits()) // blame AABB's traits management
  {
    // not fully convinced that it is still useful after adding scalar product shenanigans
// #define CGAL_PMP_SNAP_USE_ANISOTROPIC_DISTANCE
#ifdef CGAL_PMP_SNAP_USE_ANISOTROPIC_DISTANCE
    build_metric();
#endif

    Vector hv(get(vpm_S, source(h, tm_S)), get(vpm_S, target(h, tm_S)));
    m_direction = hv;
    CGAL::Polygon_mesh_processing::internal::normalize(m_direction, m_gt);
  }

  bool go_further() const { return m_continue; }

  void intersection(const Point& query, const Primitive& primitive)
  {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
    std::cout << "~~~~ intersection with primitive: " << primitive.id() << std::endl;
    std::cout << get(m_vpm_T, source(primitive.id(), m_tm_T)) << std::endl;
    std::cout << get(m_vpm_T, target(primitive.id(), m_tm_T)) << std::endl;
#endif

    halfedge_descriptor h = halfedge(primitive.id(), m_tm_T);
    if(is_border(h, m_tm_T))
      h = opposite(h, m_tm_T);

#ifdef CGAL_PMP_SNAP_DEBUG_PP
      std::cout << "patches: " << get(m_face_patch_map_T, face(h, m_tm_T)) << " " << m_patch_id << std::endl;
#endif

    if(get(m_face_patch_map_T, face(h, m_tm_T)) != m_patch_id)
      return;

    const typename Primitive::Datum& s = primitive.datum(m_traits.shared_data());
    if(m_traits.equal_object()(s[0], query) || m_traits.equal_object()(s[1], query))
    {
      // If we are NOT using the same mesh and the query is (geometrically) equal to one extremity
      // of the target edge, we don't want to move the source point away from the target point
      // (because we cannot move the target point).
      if(!m_is_same_mesh)
      {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
        std::cout << "This vertex is stuck because it is equal to a vertex on the target mesh" << std::endl;
#endif
        m_closest_point_initialized = false;
        m_continue = false;
      }

      // skip the primitive if one of its endpoints is the query
      return;
    }

    // We are searching for a point on the target border that is close to target(h).
    // To try and avoid foldings, we penalize potential matches that are roughly in the direction of 'h'
    // by using an anisotropic distance that is the Euclidean on the plane orthogonal to the direction,
    // and much larger when traveling in the rough direction of 'h'.
    //
    // Note that we apply this to points that fall within the tolerance ball, so if there is
    // only a single candidate that is in a direction we don't like, we still take it.
    //
    // @todo should the construct_projected_point_3 be anisotropic too?
    const Point new_closest_point = m_gt.construct_projected_point_3_object()(
      CGAL::internal::Primitive_helper<AABBTraits>::get_datum(primitive, m_traits), query);

#ifdef CGAL_PMP_SNAP_DEBUG_PP
    std::cout << "closest point to primitive: " << new_closest_point << std::endl;
#endif

    const FT sq_ad_to_tentative_closest_pt = squared_anisotropic_distance(query, new_closest_point);

    Vector tentative_dir(get(m_vpm_T, source(primitive.id(), m_tm_T)),
                         get(m_vpm_T, target(primitive.id(), m_tm_T)));
    CGAL::Polygon_mesh_processing::internal::normalize(tentative_dir, m_gt);
    const FT sp_with_tentative = CGAL::abs(tentative_dir * m_direction);

    if(!m_closest_point_initialized ||
       is_better_than_current_best(sq_ad_to_tentative_closest_pt, sp_with_tentative))
    {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
      std::cout << "is better!" << std::endl;
#endif

      m_closest_point_initialized = true;

      m_closest_primitive = primitive.id();
      m_closest_point = new_closest_point;
      m_sq_adist = sq_ad_to_tentative_closest_pt;
      m_sp_with_closest_edge = sp_with_tentative;
    }
  }

  bool do_intersect(const Point& query, const Node& node) const
  {
    // This should NOT be the anisotropic distance, as we want to test all targets within the tolerance
    return m_traits.compare_distance_object()(query, node.bbox(), m_sq_tol) == CGAL::SMALLER;
  }

  const Point& closest_point() const { return m_closest_point; }
  typename Primitive::Id closest_primitive_id() const { return m_closest_primitive; }
  bool closest_point_initialized() const { return m_closest_point_initialized; }
  FT scalar_product_with_best() const { return m_sp_with_closest_edge; }

private:
  halfedge_descriptor m_h;
  const std::size_t m_patch_id;
  const FT m_sq_tol;
  Vector m_direction;
#ifdef CGAL_PMP_SNAP_USE_ANISOTROPIC_DISTANCE
  Eigen::Matrix3d m_metric;
#endif

  const TriangleMesh& m_tm_S;
  VPMS m_vpm_S;
  const TriangleMesh& m_tm_T;
  FacePatchMap m_face_patch_map_T;
  VPMT m_vpm_T;
  const bool m_is_same_mesh;

  bool m_continue;
  bool m_closest_point_initialized;
  typename Primitive::Id m_closest_primitive;
  Point m_closest_point;
  FT m_sq_adist;
  FT m_sp_with_closest_edge; // scalar product between m_h and the current best edge candidate

  const AABBTraits& m_traits;
  Geom_traits m_gt;
};

template <typename ConcurrencyTag>
struct Edges_to_split_map_inserter // Parallel
{
#ifdef CGAL_LINKED_WITH_TBB
  template <typename EdgeToSplitMap, typename HalfedgeDescriptor, typename Point>
  void operator()(EdgeToSplitMap& edges_to_split,
                  const HalfedgeDescriptor closest_h,
                  const HalfedgeDescriptor h,
                  const Point& closest_p)
  {
    typename EdgeToSplitMap::accessor acc;
    edges_to_split.insert(acc, closest_h);
    acc->second.emplace_back(h, closest_p);
  }
#endif
};

template <>
struct Edges_to_split_map_inserter<CGAL::Sequential_tag>
{
  template <typename EdgeToSplitMap, typename HalfedgeDescriptor, typename Point>
  void operator()(EdgeToSplitMap& edges_to_split,
                  const HalfedgeDescriptor closest_h,
                  const HalfedgeDescriptor h,
                  const Point& closest_p)
  {
    edges_to_split[closest_h].emplace_back(h, closest_p);
  }
};

// The UniqueVertex is a pair of a container of vertex_descriptor and FT, representing
// vertices with the same geometric position and their associated snapping tolerance
// (defined as the minimum of the tolerances of the vertices of the bunch)
template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename VertexWithTolerance, typename TriangleMesh,
          typename EdgeToSplitMap, typename AABBTree,
          typename VertexPatchMap_S, typename FacePatchMap_T,
          typename VPMS, typename VPMT, typename GT,
          typename Visitor>
void find_splittable_edge(const VertexWithTolerance& vertex_with_tolerance,
                          EdgeToSplitMap& edges_to_split,
                          const AABBTree* aabb_tree_ptr,
                          const TriangleMesh& tm_S,
                          VertexPatchMap_S vertex_patch_map_S,
                          VPMS vpm_S,
                          const TriangleMesh& tm_T,
                          FacePatchMap_T face_patch_map_T,
                          VPMT vpm_T,
                          const GT& gt,
                          Visitor& visitor)
{
  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor           vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor         halfedge_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::edge_descriptor             edge_descriptor;

  typedef typename GT::FT                                                         FT;
  typedef typename boost::property_traits<VPMS>::value_type                       Point;
  typedef typename boost::property_traits<VPMS>::reference                        Point_ref;

  typedef typename AABBTree::AABB_traits                                          AABB_traits;

  typedef internal::Projection_traits<TriangleMesh, VPMS, VPMT, FacePatchMap_T, AABB_traits> Projection_traits;

  if(visitor.stop())
    throw CGAL::internal::Throw_at_output_exception();

  // by construction the whole range has the same position
  const halfedge_descriptor h = vertex_with_tolerance.first;
  const vertex_descriptor v = target(h, tm_S);
  const Point_ref query = get(vpm_S, v);
  const FT sq_tolerance = CGAL::square(vertex_with_tolerance.second);
  const std::size_t patch_id = get(vertex_patch_map_S, v);

#ifdef CGAL_PMP_SNAP_DEBUG_PP
  std::cout << "--------------------------- Query: " << v << " (" << query << ")" << std::endl;
#endif

  visitor.on_vertex_edge_inquiry(v, tm_S);

  Projection_traits traversal_traits(h, patch_id, sq_tolerance, tm_S, vpm_S,
                                     tm_T, face_patch_map_T, vpm_T, aabb_tree_ptr->traits());
  aabb_tree_ptr->traversal(query, traversal_traits);

  if(!traversal_traits.closest_point_initialized())
  {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
  std::cout << "Couldn't find any single projection point" << std::endl;
#endif
    return;
  }

  const Point& closest_p = traversal_traits.closest_point();

  // The filtering in the AABB tree checks the dist query <-> node bbox, which might be smaller than
  // the actual distance between the query <-> closest point
  edge_descriptor closest_e = traversal_traits.closest_primitive_id();
  bool is_close_enough =
    gt.compare_squared_distance_3_object()(query,
                                           gt.construct_segment_3_object()(get(vpm_T, source(closest_e, tm_T)),
                                                                           get(vpm_T, target(closest_e, tm_T))),
                                           sq_tolerance) != LARGER;

#ifdef CGAL_PMP_SNAP_DEBUG_PP
  std::cout << "  Closest point: (" << closest_p << ")" << std::endl
            << "  on edge: " << traversal_traits.closest_primitive_id()
            << "  at sq distance " << gt.compute_squared_distance_3_object()(query, closest_p)
            << " with squared tolerance: " << sq_tolerance
            << " && close enough? " << is_close_enough << std::endl;
#endif

  if(!is_close_enough)
    return;

  CGAL_assertion(get(vpm_T, source(closest_e, tm_T)) != query &&
                 get(vpm_T, target(closest_e, tm_T)) != query);

  halfedge_descriptor closest_h = halfedge(closest_e, tm_T);
  CGAL_assertion(is_border(edge(closest_h, tm_T), tm_T));

  if(!is_border(closest_h, tm_T))
    closest_h = opposite(closest_h, tm_T);

  // Using a map because we need to know if the same halfedge is split multiple times
  Edges_to_split_map_inserter<ConcurrencyTag>()(edges_to_split, closest_h, vertex_with_tolerance.first, closest_p);

  visitor.on_vertex_edge_match(v, tm_S, closest_h, tm_T, closest_p);
}

#ifdef CGAL_LINKED_WITH_TBB
template <typename PointWithToleranceContainer,
          typename TriangleMesh, typename EdgeToSplitMap, typename AABBTree,
          typename VertexPatchMap_S, typename FacePatchMap_T,
          typename VPMS, typename VPMT, typename GT, typename Visitor>
struct Parallel_find_splittable_edge
{
private:
  const PointWithToleranceContainer& m_points_with_tolerance;
  EdgeToSplitMap& m_edges_to_split;
  const AABBTree* m_aabb_tree_ptr;
  const TriangleMesh& m_tm_S;
  const VertexPatchMap_S m_vertex_patch_map_S;
  const VPMS m_vpm_S;
  const TriangleMesh& m_tm_T;
  const FacePatchMap_T m_face_patch_map_T;
  const VPMT m_vpm_T;
  const GT& m_gt;
  Visitor& m_visitor;

public:
  Parallel_find_splittable_edge(const PointWithToleranceContainer& points_with_tolerance,
                                EdgeToSplitMap& edges_to_split,
                                const AABBTree* aabb_tree_ptr,
                                const TriangleMesh& tm_S,
                                const VertexPatchMap_S vertex_patch_map_S,
                                const VPMS vpm_S,
                                const TriangleMesh& tm_T,
                                const FacePatchMap_T face_patch_map_T,
                                const VPMT vpm_T,
                                const GT& gt,
                                Visitor& visitor)
    :
      m_points_with_tolerance(points_with_tolerance),
      m_edges_to_split(edges_to_split), m_aabb_tree_ptr(aabb_tree_ptr),
      m_tm_S(tm_S), m_vertex_patch_map_S(vertex_patch_map_S), m_vpm_S(vpm_S),
      m_tm_T(tm_T), m_face_patch_map_T(face_patch_map_T), m_vpm_T(vpm_T),
      m_gt(gt), m_visitor(visitor)
  { }

  void operator()(const tbb::blocked_range<size_t>& r) const
  {
    for(std::size_t i=r.begin(); i!=r.end(); ++i)
    {
      find_splittable_edge<CGAL::Parallel_tag>(m_points_with_tolerance[i], m_edges_to_split, m_aabb_tree_ptr,
                                               m_tm_S, m_vertex_patch_map_S, m_vpm_S,
                                               m_tm_T, m_face_patch_map_T, m_vpm_T, m_gt, m_visitor);
    }
  }
};
#endif

template <typename EdgesToSplitContainer,
          typename TriangleMesh,
          typename VPMS, typename VPMT, typename GeomTraits,
          typename Visitor>
std::size_t split_edges(EdgesToSplitContainer& edges_to_split,
                        TriangleMesh& tm_S,
                        VPMS vpm_S,
                        TriangleMesh& tm_T,
                        VPMT vpm_T,
                        const GeomTraits& gt,
                        Visitor& visitor,
                        const bool is_source_mesh_fixed) // when snapping is B --> A and the mesh B is fixed
{
#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << "split " << edges_to_split.size() << " edges" << std::endl;
#endif

  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor           vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor         halfedge_descriptor;

  typedef typename boost::property_traits<VPMS>::value_type                       Point;
  typedef typename boost::property_traits<VPMT>::reference                        Point_ref;

  typedef std::pair<halfedge_descriptor, Point>                                   Vertex_with_new_position;
  typedef std::vector<Vertex_with_new_position>                                   Vertices_with_new_position;
  typedef std::pair<const halfedge_descriptor, Vertices_with_new_position>        Edge_and_splitters;

#ifdef CGAL_PMP_SNAPPING_PRINT_RUNTIME
  CGAL::Real_timer timer;
  timer.start();
#endif

  visitor.start_vertex_edge_snapping();

  std::size_t snapped_n = 0;

  for(Edge_and_splitters& es : edges_to_split)
  {
    halfedge_descriptor h_to_split = es.first;
    CGAL_assertion(is_border(h_to_split, tm_T));

    Vertices_with_new_position& splitters = es.second;

    if(splitters.size() > 1)
    {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
      std::cout << " _______ Multiple splitting points on the same halfedge" << std::endl;
#endif

      const Point_ref hsp = get(vpm_T, source(h_to_split, tm_T));
      std::sort(splitters.begin(), splitters.end(),
                [&](const Vertex_with_new_position& l, const Vertex_with_new_position& r) -> bool
                {
                  return gt.less_distance_to_point_3_object()(hsp, l.second, r.second);
                });
    }

    // Inserting new points ordered from the source to the target of (the initial) 'h'
    bool first_split = true;
    Point previous_split_position = get(vpm_S, *(vertices(tm_S).begin())); // dummy value to avoid "used uninitialized" warning
    for(const Vertex_with_new_position& vnp : splitters)
    {
      if(visitor.stop())
        return snapped_n;

      const halfedge_descriptor splitter_h = vnp.first;
      const vertex_descriptor splitter_v = target(splitter_h, tm_S);
      const Point new_position = is_source_mesh_fixed ? get(vpm_S, splitter_v) : vnp.second;

      bool do_split = true;

      // In case of self-snapping, avoid degenerate caps
      const bool is_same_mesh = (&tm_T == &tm_S);
      if(is_same_mesh && target(next(opposite(h_to_split, tm_T), tm_T), tm_T) == splitter_v)
        do_split = false;

      // Do not split if it would create a degenerate needle
      if((new_position == get(vpm_T, target(h_to_split, tm_T))) ||
         (new_position == get(vpm_T, source(h_to_split, tm_T))))
        do_split = false;

      if(!first_split && new_position == previous_split_position)
        do_split = false;

      // check if the new faces after split will not be degenerate
      const Point& p0 = new_position;
      Point_ref p1 = get(vpm_T, source(h_to_split, tm_T));
      Point_ref p2 = get(vpm_T, target(next(opposite(h_to_split, tm_T), tm_T), tm_T));
      Point_ref p3 = get(vpm_T, target(h_to_split, tm_T));

      /* Chooses the diagonal that will split the quad in two triangles that maximizes
       * the scalar product of the un-normalized normals of the two triangles.
       *
       * The lengths of the un-normalized normals (computed using cross-products of two vectors)
       * are proportional to the area of the triangles.
       * Maximizing the scalar product of the two normals will avoid skinny triangles,
       * and will also take into account the cosine of the angle between the two normals.
       *
       * In particular, if the two triangles are oriented in different directions,
       * the scalar product will be negative.
       */
      auto p1p3 = CGAL::cross_product(p2-p1, p3-p2) * CGAL::cross_product(p0-p3, p1-p0);
      auto p0p2 = CGAL::cross_product(p1-p0, p1-p2) * CGAL::cross_product(p3-p2, p3-p0);
      bool first_split_face = (p0p2 > p1p3);

      if(first_split_face)
      {
        if(p0p2 <= 0 || collinear(p0,p1,p2) || collinear(p0,p2,p3))
          do_split = false;
      }
      else
      {
        if(p1p3 <= 0 || collinear(p0,p1,p3) || collinear(p1,p2,p3))
          do_split = false;
      }

      if(do_split && !is_source_mesh_fixed)
      {
        for(halfedge_descriptor h : halfedges_around_target(splitter_v, tm_S))
        {
          if(!is_border(h,tm_S) && collinear(get(vpm_S, source(h,tm_S)), new_position, get(vpm_S, target(next(h,tm_S),tm_S))))
          {
            do_split = false;
            break;
          }
        }

        if(do_split)
          put(vpm_S, splitter_v, new_position);
      }

#ifdef CGAL_PMP_SNAP_DEBUG_PP
      std::cout << " -.-.-. Splitting " << edge(h_to_split, tm_T) << " |||| "
                << " Vs " << source(h_to_split, tm_T) << " (" << tm_T.point(source(h_to_split, tm_T)) << ")"
                << " --- Vt " << target(h_to_split, tm_T) << " (" << tm_T.point(target(h_to_split, tm_T)) << ")" << std::endl;
      std::cout << "With point: " << new_position << " (init: " << vnp.second << ")" << std::endl;
      std::cout << "Actually split? " << do_split << std::endl;
#endif

      // Split and update positions
      vertex_descriptor new_v = boost::graph_traits<TriangleMesh>::null_vertex();
      if(do_split)
      {
        visitor.before_vertex_edge_snap(h_to_split, tm_T, vnp.second);

        CGAL::Euler::split_edge(h_to_split, tm_T);
        new_v = source(h_to_split, tm_T);
        put(vpm_T, new_v, new_position); // position of the new point on the target mesh

        visitor.after_vertex_edge_snap(new_v, tm_T);
      }
      else
      {
        continue;
      }

      first_split = false;
      previous_split_position = new_position;
      ++snapped_n;

      halfedge_descriptor v0, v1, v2, v3;
      v0 = opposite(h_to_split, tm_T);
      v1 = next(v0, tm_T);
      v2 = next(v1, tm_T);
      v3 = next(v2, tm_T);
      // halfedge_descriptor new_hd =
      first_split_face ? CGAL::Euler::split_face(v0, v2, tm_T)
                       : CGAL::Euler::split_face(v1, v3, tm_T);
      if(first_split_face)
        visitor.after_split_face(v0, v2, tm_T);
      else
        visitor.after_split_face(v1, v3, tm_T);
    }
  }

  visitor.end_vertex_edge_snapping();

#ifdef CGAL_PMP_SNAPPING_PRINT_RUNTIME
  timer.stop();
  std::cout << "time for actual snapping (vertex-edge) " << timer.time() << " s." << std::endl;
#endif

  return snapped_n;
}

// Collect border points that can be projected onto a border edge
//
// If multiple vertices on the source border have the same geometric position, they are moved
// all at once and we use the smallest tolerance from all source vertices with that position.
// This is done to solve situation such as:
//          ||
//          ||
//      ____||____
//      ----------
// (vertex-vertex snapping into non-conformal snapping) in one go.
template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename HalfedgeRange, typename TriangleMesh,
          typename LockedVertexMap, typename LockedHalfedgeMap, typename ToleranceMap,
          typename VertexPatchMap_S, typename FacePatchMap_T,
          typename Visitor,
          typename SourceNamedParameters, typename TargetNamedParameters>
std::size_t snap_non_conformal_one_way(const HalfedgeRange& halfedge_range_S,
                                       TriangleMesh& tm_S,
                                       ToleranceMap tolerance_map_S,
                                       VertexPatchMap_S vertex_patch_map_S,
                                       LockedVertexMap locked_vertices_S,
                                       const HalfedgeRange& halfedge_range_T,
                                       TriangleMesh& tm_T,
                                       FacePatchMap_T face_patch_map_T,
                                       LockedHalfedgeMap locked_halfedges_T,
                                       const bool is_source_mesh_fixed,
                                       Visitor& visitor,
                                       const SourceNamedParameters& snp,
                                       const TargetNamedParameters& tnp)
{
  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor           vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor         halfedge_descriptor;

  typedef typename GetGeomTraits<TriangleMesh, TargetNamedParameters>::type       GT;
  typedef typename GT::FT                                                         FT;

  typedef typename GetVertexPointMap<TriangleMesh, SourceNamedParameters>::type   VPMS;
  typedef typename GetVertexPointMap<TriangleMesh, TargetNamedParameters>::type   VPMT;

  typedef typename boost::property_traits<VPMT>::value_type                       Point;

  typedef CGAL::AABB_halfedge_graph_segment_primitive<TriangleMesh, VPMT>         Primitive;
  typedef CGAL::AABB_traits_3<GT, Primitive>                                      AABB_Traits;
  typedef CGAL::AABB_tree<AABB_Traits>                                            AABB_tree;

  typedef std::pair<halfedge_descriptor, Point>                                   Vertex_with_new_position;
  typedef std::vector<Vertex_with_new_position>                                   Vertices_with_new_position;

  using parameters::get_parameter;
  using parameters::choose_parameter;

  VPMS vpm_S = choose_parameter(get_parameter(snp, internal_np::vertex_point), get_property_map(vertex_point, tm_S));
  VPMT vpm_T = choose_parameter(get_parameter(tnp, internal_np::vertex_point), get_property_map(vertex_point, tm_T));
  const GT gt = choose_parameter<GT>(get_parameter(snp, internal_np::geom_traits));

#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << "Gather unique points in source range..." << std::endl;
#endif

  typedef std::pair<halfedge_descriptor, FT>                                      Vertex_with_tolerance;
  typedef std::vector<Vertex_with_tolerance>                                      Vertices_with_tolerance;

  Vertices_with_tolerance vertices_to_snap;
  vertices_to_snap.reserve(halfedge_range_S.size()); // ensures that iterators stay valid

  // Take the min tolerance for all points that have the same coordinates
  std::map<Point, FT> point_tolerance_map;

  for(halfedge_descriptor h : halfedge_range_S)
  {
    if(get(locked_vertices_S, target(h, tm_S)))
      continue;

    // Skip the source vertex if its two incident halfedges are geometrically identical (it means that
    // the two halfedges are already stitchable and we don't want this common vertex to be used
    // to split a halfedge somewhere else)
    if(get(vpm_S, source(h, tm_S)) == get(vpm_S, target(next(h, tm_S), tm_S)))
      continue;

    const vertex_descriptor v = target(h, tm_S);
    const FT tolerance = get(tolerance_map_S, v);

    vertices_to_snap.emplace_back(h, tolerance);

    std::pair<Point, FT> entry(get(vpm_S, v), tolerance);
    std::pair<typename std::map<Point, FT>::iterator, bool> is_insert_successful =
      point_tolerance_map.insert(entry);
    if(!is_insert_successful.second)
      is_insert_successful.first->second = (std::min)(is_insert_successful.first->second, tolerance);

    #ifdef CGAL_PMP_SNAP_DEBUG_PP
    std::cout << "Non-conformal query: " << v << " (" << get(vpm_S, v) << "), tolerance: " << tolerance << std::endl;
#endif
  }

  for(auto& p : vertices_to_snap)
    p.second = point_tolerance_map[get(vpm_S, target(p.first, tm_S))];

  // Since primitives are inserted one by one, the shared data cannot be in the constructor of the tree
  AABB_Traits aabb_traits;
  aabb_traits.set_shared_data(tm_T, vpm_T);
  AABB_tree aabb_tree(aabb_traits);

  for(halfedge_descriptor h : halfedge_range_T)
  {
    CGAL_precondition(is_border(edge(h, tm_T), tm_T));
    if(get(locked_halfedges_T, h))
    {
#ifdef CGAL_PMP_SNAP_DEBUG_PP
      std::cout << edge(h, tm_T) << " is locked and not a valid target" << std::endl;
#endif
      continue;
    }

    aabb_tree.insert(Primitive(edge(h, tm_T), tm_T, vpm_T));
  }

  // Now, check which edges of the target range ought to be split by source vertices
#ifdef CGAL_PMP_SNAP_DEBUG_PP
  std::cout << "Collect edges to split with " << vertices_to_snap.size() << " vertices" << std::endl;
#endif

#ifdef CGAL_PMP_SNAPPING_PRINT_RUNTIME
  CGAL::Real_timer timer;
  timer.start();
#endif

#ifndef CGAL_LINKED_WITH_TBB
  static_assert (!(std::is_convertible<ConcurrencyTag, Parallel_tag>::value),
                             "Parallel_tag is enabled but TBB is unavailable.");
#else // CGAL_LINKED_WITH_TBB
  if(std::is_convertible<ConcurrencyTag, Parallel_tag>::value)
  {
#ifdef CGAL_PMP_SNAP_DEBUG
    std::cout << "Parallel find splittable edges!" << std::endl;
#endif

    typedef tbb::concurrent_hash_map<halfedge_descriptor,
                                     Vertices_with_new_position>                 Concurrent_edge_to_split_container;
    typedef internal::Parallel_find_splittable_edge<
              Vertices_with_tolerance, TriangleMesh,
              Concurrent_edge_to_split_container, AABB_tree,
              VertexPatchMap_S, FacePatchMap_T, VPMS, VPMT, GT, Visitor>         Functor;

    Concurrent_edge_to_split_container edges_to_split;
    Functor f(vertices_to_snap, edges_to_split, &aabb_tree,
              tm_S, vertex_patch_map_S, vpm_S, tm_T, face_patch_map_T, vpm_T,
              gt, visitor);

    try
    {
      tbb::parallel_for(tbb::blocked_range<std::size_t>(0, vertices_to_snap.size()), f);
    }
    catch(const CGAL::internal::Throw_at_output_exception&)
    {
      return 0;
    }
#if TBB_USE_CAPTURED_EXCEPTION
    catch(const tbb::captured_exception& e)
    {
      const std::string tn1(e.name());
      const std::string tn2(typeid(const CGAL::internal::Throw_at_output_exception&).name());
      if(tn1 != tn2)
      {
        std::cerr << "Unexpected throw: " << tn1 << std::endl;
        throw;
      }

      return 0;
    }
#endif

#ifdef CGAL_PMP_SNAPPING_PRINT_RUNTIME
    timer.stop();
    std::cout << "time for find split edges (parallel): " << timer.time() << std::endl;
#endif

    return split_edges(edges_to_split, tm_S, vpm_S, tm_T, vpm_T, gt, visitor, is_source_mesh_fixed);
  }
  else
#endif // CGAL_LINKED_WITH_TBB
  {
#ifdef CGAL_PMP_SNAP_DEBUG
    std::cout << "Sequential find splittable edges!" << std::endl;
#endif

    std::map<halfedge_descriptor, Vertices_with_new_position> edges_to_split;

    try
    {
      for(const Vertex_with_tolerance& vt : vertices_to_snap)
      {
        internal::find_splittable_edge(vt, edges_to_split, &aabb_tree,
                                       tm_S, vertex_patch_map_S, vpm_S,
                                       tm_T, face_patch_map_T, vpm_T,
                                       gt, visitor);
      }
    }
    catch(const CGAL::internal::Throw_at_output_exception&)
    {
      return 0;
    }

#ifdef CGAL_PMP_SNAPPING_PRINT_RUNTIME
    timer.stop();
    std::cout << "time for find split edges (sequential): " << timer.time() << std::endl;
#endif

    return split_edges(edges_to_split, tm_S, vpm_S, tm_T, vpm_T, gt, visitor, is_source_mesh_fixed);
  }
}

// \ingroup PMP_geometric_repair_grp
//
// Attempts to snap the vertices in `halfedge_range_A` onto edges of `halfedge_range_B`, and reciprocally.
// A vertex from the first range is only snapped to an edge of the second range if the distance to
// the edge is smaller than the tolerance prescribed at the vertex.
//
// \warning This function does not give any guarantee on the conformity between the two meshes after the snapping.
// \warning This function does not merge vertices or the meshes, it is purely geometric.
//
// \tparam TriangleMesh a model of `FaceListGraph` and `MutableFaceGraph`
// \tparam HalfedgeRange_A a model of `Range` with value type `boost::graph_traits<TriangleMesh>::%halfedge_descriptor`
// \tparam HalfedgeRange_B a model of `Range` with value type `boost::graph_traits<TriangleMesh>::%halfedge_descriptor`
// \tparam ToleranceMap_A a model of `ReadablePropertyMap` with key type `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
//                        and value type `GetGeomTraits<TriangleMesh, NamedParameters_A>::type::FT`
// \tparam ToleranceMap_B a model of `ReadablePropertyMap` with key type `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
//                        and value type `GetGeomTraits<TriangleMesh, NamedParameters_A>::type::FT`
// \tparam NamedParameters_A a sequence of \ref bgl_namedparameters "Named Parameters"
// \tparam NamedParameters_B a sequence of \ref bgl_namedparameters "Named Parameters"
//
// \param halfedge_range_A a range of halfedges of the first mesh defining a set of vertices (as targets of the halfeges)
// \param tm_A the first mesh to which the vertices in `halfedge_range_A` belong
// \param tolerance_map_A a tolerance map associating to each vertex of the first range a tolerance value
// \param halfedge_range_B a range of vertices of the second mesh defining a set of vertices (as targets of the halfeges)
// \param tolerance_map_B a tolerance map associating to each vertex of the second range a tolerance value
// \param tm_B the target mesh to which the vertices in `halfedge_range_B` belong
// \param np_A an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
//
// \cgalNamedParamsBegin
//   \cgalParamBegin{vertex_point_map}
//     the property map with the points associated to the vertices of the source mesh.
//     The type of this map is model of `ReadWritePropertyMap`. If this parameter is omitted,
//     an internal property map for `CGAL::vertex_point_t` must be available in `TriangleMesh`.
//   \cgalParamEnd
//   \cgalParamBegin{geom_traits}
//     a geometric traits class instance, must be a model of `Kernel`
//   \cgalParamEnd
// \cgalNamedParamsEnd
//
// \param np_B an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
//
// \cgalNamedParamsBegin
//   \cgalParamBegin{vertex_point_map}
//     the property map with the points associated to the vertices of the target mesh.
//     The type of this map is model of `ReadablePropertyMap`. If this parameter is omitted,
//     an internal property map for `CGAL::vertex_point_t` must be available in `TriangleMesh`.
//   \cgalParamEnd
// \cgalNamedParamsEnd
//
// \return the number of snapped vertex pairs
//
template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename HalfedgeRange, typename TriangleMesh,
          typename ToleranceMap_A, typename ToleranceMap_B,
          typename NamedParameters_A, typename NamedParameters_B>
std::size_t snap_non_conformal(HalfedgeRange& halfedge_range_A,
                               TriangleMesh& tm_A,
                               ToleranceMap_A tolerance_map_A,
                               HalfedgeRange& halfedge_range_B,
                               TriangleMesh& tm_B,
                               ToleranceMap_B tolerance_map_B,
                               const bool is_self_snapping, // == true if range and meshes are equal
                               const NamedParameters_A& np_A,
                               const NamedParameters_B& np_B)
{
#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout.precision(17);
  std::cerr.precision(17);
#endif

  typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor           vertex_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor         halfedge_descriptor;
  typedef typename boost::graph_traits<TriangleMesh>::face_descriptor             face_descriptor;

  typedef CGAL::dynamic_vertex_property_t<bool>                                   Vertex_bool_tag;
  typedef CGAL::dynamic_vertex_property_t<std::size_t>                            Vertex_size_t_tag;
  typedef CGAL::dynamic_halfedge_property_t<bool>                                 Halfedge_bool_tag;

  typedef typename boost::property_map<TriangleMesh, Vertex_bool_tag>::type       Locked_vertices;
  typedef typename boost::property_map<TriangleMesh, Halfedge_bool_tag>::type     Locked_halfedges;
  typedef typename boost::property_map<TriangleMesh, Vertex_size_t_tag>::type     Vertex_patch;

  typedef typename internal_np::Lookup_named_param_def <
    internal_np::face_patch_t, NamedParameters_A,
      Constant_property_map<face_descriptor, std::size_t> /*default*/ >::type     Face_patch_map_A;
  typedef typename internal_np::Lookup_named_param_def <
    internal_np::face_patch_t, NamedParameters_B,
      Constant_property_map<face_descriptor, std::size_t> /*default*/ >::type     Face_patch_map_B;

  typedef typename internal_np::Lookup_named_param_def <
    internal_np::visitor_t,
    NamedParameters_A,
    internal::Snapping_default_visitor<TriangleMesh> // default
  >::reference                                                                    Visitor;

  using CGAL::parameters::choose_parameter;
  using CGAL::parameters::get_parameter;
  using CGAL::parameters::get_parameter_reference;

  const bool is_same_mesh = (&tm_A == &tm_B);
  const bool simplify_first_mesh = choose_parameter(get_parameter(np_A, internal_np::do_simplify_border), false);
  const bool simplify_second_mesh = choose_parameter(get_parameter(np_B, internal_np::do_simplify_border), false);
  const bool is_second_mesh_fixed = choose_parameter(get_parameter(np_B, internal_np::do_lock_mesh), false);

  internal::Snapping_default_visitor<TriangleMesh> default_visitor;
  Visitor visitor = choose_parameter(get_parameter_reference(np_A, internal_np::visitor), default_visitor);

  if(visitor.stop())
    return 0;

  // vertex-vertex and vertex-edge snapping is only considered within compatible patches
  Face_patch_map_A face_patch_map_A = choose_parameter(get_parameter(np_A, internal_np::face_patch),
                                                       Constant_property_map<face_descriptor, std::size_t>(-1));
  Face_patch_map_B face_patch_map_B = choose_parameter(get_parameter(np_B, internal_np::face_patch),
                                                       Constant_property_map<face_descriptor, std::size_t>(-1));

  Vertex_patch vertex_patch_map_A = get(Vertex_size_t_tag(), tm_A);
  Vertex_patch vertex_patch_map_B = get(Vertex_size_t_tag(), tm_B);

  for(const halfedge_descriptor h : halfedge_range_A)
  {
    CGAL_precondition(is_border(h, tm_A));
    halfedge_descriptor h_opp = opposite(h, tm_A);
    for(const vertex_descriptor v : vertices_around_face(h_opp, tm_A))
      put(vertex_patch_map_A, v, get(face_patch_map_A, face(h_opp, tm_A)));
  }

  // @todo avoid that when 'self_snapping' is true
  for(const halfedge_descriptor h : halfedge_range_B)
  {
    CGAL_precondition(is_border(h, tm_B));
    halfedge_descriptor h_opp = opposite(h, tm_B);
    for(const vertex_descriptor v : vertices_around_face(h_opp, tm_B))
      put(vertex_patch_map_B, v, get(face_patch_map_B, face(h_opp, tm_B)));
  }

#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << "Non-conformal snapping... Range sizes: "
            << std::distance(halfedge_range_A.begin(), halfedge_range_A.end()) << " and "
            << std::distance(halfedge_range_B.begin(), halfedge_range_B.end()) << std::endl;
#endif

  CGAL_expensive_precondition(is_valid_polygon_mesh(tm_S) && is_triangle_mesh(tm_S));
  CGAL_expensive_precondition(is_valid_polygon_mesh(tm_T) && is_triangle_mesh(tm_T));

  // Steps:
  // - #1 Simplify the source range
  // - #1bis Simplify the target range (if it's not locked)
  // - #2 two-way vertex-vertex snapping
  // - #3 two-way vertex-edge snapping

  //////////////////////////////////////////////////////////////////////////////////////////////////
  /// #1 and #1bis (Simplification of borders)
  //////////////////////////////////////////////////////////////////////////////////////////////////

  if(visitor.stop())
    return 0;

#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << "Simplify ranges (" << simplify_first_mesh << " " << simplify_second_mesh << ")..." << std::endl;
#endif

  if(simplify_first_mesh)
  {
    internal::simplify_range(halfedge_range_A, tm_A, tolerance_map_A, np_A);

#ifdef CGAL_PMP_SNAP_DEBUG_OUTPUT
    std::ofstream("results/simplified_A.off") << std::setprecision(17) << tm_A;
#endif
  }

  if(!is_self_snapping && !is_second_mesh_fixed && simplify_second_mesh)
  {
    internal::simplify_range(halfedge_range_B, tm_B, tolerance_map_B, np_B);

#ifdef CGAL_PMP_SNAP_DEBUG_OUTPUT
    std::ofstream("results/simplified_B.off") << std::setprecision(17) << tm_B;
#endif
  }

  //////////////////////////////////////////////////////////////////////////////////////////////////
  /// #2 (Two-way vertex-vertex snapping)
  //////////////////////////////////////////////////////////////////////////////////////////////////

  std::size_t snapped_n = 0;

  // We keep in memory pairs of source/target edges that are stitchable after vertex-vertex snapping
  // --> these halfedges should not be considered as targets in non-conformal snapping
  // Similarly, matching vertices whose incident edges have matching directions are also locked
  Locked_vertices locked_vertices_A = get(Vertex_bool_tag(), tm_A, false);
  Locked_vertices locked_vertices_B = get(Vertex_bool_tag(), tm_B, false);
  Locked_halfedges locked_halfedges_A = get(Halfedge_bool_tag(), tm_A, false);
  Locked_halfedges locked_halfedges_B = get(Halfedge_bool_tag(), tm_B, false);

  std::vector<std::pair<vertex_descriptor, vertex_descriptor> > locked_vertices;
  std::vector<halfedge_descriptor> locked_halfedges_A_vector, locked_halfedges_B_vector;

  snapped_n += internal::snap_vertices_two_way<ConcurrencyTag>(
                 halfedge_range_A, tm_A, tolerance_map_A, vertex_patch_map_A,
                 halfedge_range_B, tm_B, tolerance_map_B, vertex_patch_map_B,
                 std::back_inserter(locked_vertices),
                 std::back_inserter(locked_halfedges_A_vector),
                 std::back_inserter(locked_halfedges_B_vector),
                 is_second_mesh_fixed, np_A, np_B);

  for(const auto& vpair : locked_vertices)
  {
    put(locked_vertices_A, vpair.first, true);
    put(locked_vertices_B, vpair.second, true);
    if(is_same_mesh)
    {
      put(locked_vertices_B, vpair.first, true);
      put(locked_vertices_A, vpair.second, true);
    }
  }

  for(const halfedge_descriptor h : locked_halfedges_A_vector)
    put(locked_halfedges_A, h, true);
  for(const halfedge_descriptor h : locked_halfedges_B_vector)
    put(locked_halfedges_B, h, true);

  if(is_same_mesh)
  {
    for(const halfedge_descriptor h : locked_halfedges_A_vector)
      put(locked_halfedges_B, h, true);
    for(const halfedge_descriptor h : locked_halfedges_B_vector)
      put(locked_halfedges_A, h, true);
  }

#ifdef CGAL_PMP_SNAP_DEBUG_OUTPUT
  std::ofstream("results/vertex_vertex_A.off") << std::setprecision(17) << tm_A;
  std::ofstream("results/vertex_vertex_B.off") << std::setprecision(17) << tm_B;
#endif

  //////////////////////////////////////////////////////////////////////////////////////////////////
  /// #3 (Two one-way vertex-edge snappings)
  //////////////////////////////////////////////////////////////////////////////////////////////////

  if(visitor.stop())
    return snapped_n;

#ifdef CGAL_PMP_SNAP_DEBUG
  std::cout << " ///////////// Two one-way vertex-edge snapping (A --> B) " << std::endl;
#endif

  visitor.start_first_vertex_edge_phase();

  snapped_n += internal::snap_non_conformal_one_way<ConcurrencyTag>(
                 halfedge_range_A, tm_A, tolerance_map_A, vertex_patch_map_A, locked_vertices_A,
                 halfedge_range_B, tm_B, face_patch_map_B, locked_halfedges_B,
                 false /*source is never fixed*/, visitor, np_A, np_B);

  visitor.end_first_vertex_edge_phase();

#ifdef CGAL_PMP_SNAP_DEBUG_OUTPUT
  std::ofstream("results/vertex_edge_A.off") << std::setprecision(17) << tm_A;
  std::ofstream("results/vertex_edge_B.off") << std::setprecision(17) << tm_B;
#endif

  if(!is_self_snapping)
  {
    if(visitor.stop())
      return snapped_n;

#ifdef CGAL_PMP_SNAP_DEBUG
    std::cout << " ///////////// Two one-way vertex-edge snapping (B --> A) " << std::endl;
#endif

    visitor.start_second_vertex_edge_phase();

    snapped_n += internal::snap_non_conformal_one_way<ConcurrencyTag>(
                   halfedge_range_B, tm_B, tolerance_map_B, vertex_patch_map_B, locked_vertices_B,
                   halfedge_range_A, tm_A, face_patch_map_A, locked_halfedges_A,
                   is_second_mesh_fixed, visitor, np_B, np_A);

    visitor.end_second_vertex_edge_phase();
  }

  return snapped_n;
}

} // namespace internal

namespace experimental {

////////////////////////////////////////////////////////////////////////////////////////////////////
/// Convenience overloads
////////////////////////////////////////////////////////////////////////////////////////////////////

template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename TriangleMesh,
          typename ToleranceMap_A, typename ToleranceMap_B,
          typename NamedParameters_A = parameters::Default_named_parameters,
          typename NamedParameters_B = parameters::Default_named_parameters>
std::size_t snap_borders(TriangleMesh& tm_A,
                         ToleranceMap_A tolerance_map_A,
                         TriangleMesh& tm_B,
                         ToleranceMap_B tolerance_map_B,
                         const NamedParameters_A& np_A = parameters::default_values(),
                         const NamedParameters_B& np_B = parameters::default_values(),
                         const typename std::enable_if_t<!std::is_same<TriangleMesh, ToleranceMap_A>::value>* = 0 // Added to please MSVC 2015
  )
{
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor        halfedge_descriptor;

  std::vector<halfedge_descriptor> border_vertices_A;
  border_halfedges(tm_A, std::back_inserter(border_vertices_A));
  std::vector<halfedge_descriptor> border_vertices_B;
  border_halfedges(tm_B, std::back_inserter(border_vertices_B));

  return internal::snap_non_conformal<ConcurrencyTag>(border_vertices_A, tm_A, tolerance_map_A,
                                                      border_vertices_B, tm_B, tolerance_map_B,
                                                      false /*not self snapping*/, np_A, np_B);
}

template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename TriangleMesh,
          typename NamedParameters_A = parameters::Default_named_parameters,
          typename NamedParameters_B = parameters::Default_named_parameters>
std::size_t snap_borders(TriangleMesh& tm_A,
                         TriangleMesh& tm_B,
                         const NamedParameters_A& np_A = parameters::default_values(),
                         const NamedParameters_B& np_B = parameters::default_values())
{
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor        halfedge_descriptor;

  typedef typename GetGeomTraits<TriangleMesh>::type                             GT;
  typedef typename GT::FT                                                        FT;

  typedef CGAL::dynamic_vertex_property_t<FT>                                    Vertex_property_tag;
  typedef typename boost::property_map<TriangleMesh, Vertex_property_tag>::type  Tolerance_map;

  std::vector<halfedge_descriptor> border_vertices_A;
  std::vector<halfedge_descriptor> border_vertices_B;
  border_halfedges(tm_A, std::back_inserter(border_vertices_A));
  border_halfedges(tm_B, std::back_inserter(border_vertices_B));

  const FT tol_mx((std::numeric_limits<double>::max)());
  Tolerance_map tolerance_map_A = get(Vertex_property_tag(), tm_A);
  internal::assign_tolerance_with_local_edge_length_bound(border_vertices_A, tolerance_map_A, tol_mx, tm_A, np_A);
  Tolerance_map tolerance_map_B = get(Vertex_property_tag(), tm_B);
  internal::assign_tolerance_with_local_edge_length_bound(border_vertices_B, tolerance_map_B, tol_mx, tm_B, np_B);

  return internal::snap_non_conformal<ConcurrencyTag>(border_vertices_A, tm_A, tolerance_map_A,
                                                      border_vertices_B, tm_B, tolerance_map_B,
                                                      false /*no self snapping*/, np_A, np_B);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////
// Same as above, but with a single mesh

template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename TriangleMesh,
          typename ToleranceMap,
          typename CGAL_NP_TEMPLATE_PARAMETERS>
std::size_t snap_borders(TriangleMesh& tm,
                         ToleranceMap tolerance_map,
                         const CGAL_NP_CLASS& np = parameters::default_values(),
                         const typename std::enable_if_t<!std::is_same<TriangleMesh, ToleranceMap>::value>* = 0 // Added to please MSVC 2015
)
{
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor        halfedge_descriptor;

  std::vector<halfedge_descriptor> border_vertices;
  border_halfedges(tm, std::back_inserter(border_vertices));

  return internal::snap_non_conformal<ConcurrencyTag>(border_vertices, tm, tolerance_map,
                                                      border_vertices, tm, tolerance_map,
                                                      true /*self snapping*/, np, np);
}

template <typename ConcurrencyTag = CGAL::Sequential_tag,
          typename TriangleMesh,
          typename CGAL_NP_TEMPLATE_PARAMETERS>
std::size_t snap_borders(TriangleMesh& tm,
                         const CGAL_NP_CLASS& np = parameters::default_values())
{
  typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor        halfedge_descriptor;

  typedef typename GetGeomTraits<TriangleMesh>::type                             GT;
  typedef typename GT::FT                                                        FT;

  typedef CGAL::dynamic_vertex_property_t<FT>                                    Vertex_property_tag;
  typedef typename boost::property_map<TriangleMesh, Vertex_property_tag>::type  Tolerance_map;

  std::vector<halfedge_descriptor> border_vertices;
  border_halfedges(tm, std::back_inserter(border_vertices));

  const FT tol_mx((std::numeric_limits<double>::max)());
  Tolerance_map tolerance_map = get(Vertex_property_tag(), tm);
  internal::assign_tolerance_with_local_edge_length_bound(border_vertices, tolerance_map, tol_mx, tm, np);

  return internal::snap_non_conformal<ConcurrencyTag>(border_vertices, tm, tolerance_map,
                                                      border_vertices, tm, tolerance_map,
                                                      true /*self snapping*/, np, np);
}

//TODO:add an option to preserve orientation?

} // end namespace experimental
} // end namespace Polygon_mesh_processing
} // end namespace CGAL

#endif // CGAL_POLYGON_MESH_PROCESSING_SNAPPING_SNAP_H