File: refine_impl.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (367 lines) | stat: -rw-r--r-- 14,054 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Copyright (c) 2015 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/internal/refine_impl.h $
// $Id: include/CGAL/Polygon_mesh_processing/internal/refine_impl.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Jane Tournois

#ifndef CGAL_POLYGON_MESH_PROCESSING_REFINE_POLYHEDRON_3_H
#define CGAL_POLYGON_MESH_PROCESSING_REFINE_POLYHEDRON_3_H

#include <CGAL/license/Polygon_mesh_processing/meshing_hole_filling.h>

#include <CGAL/assertions.h>
#ifdef CGAL_PMP_FAIR_DEBUG
#include <CGAL/Timer.h>
#endif
#include <CGAL/squared_distance_3.h>
#include <CGAL/Kernel/global_functions_3.h>
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/boost/graph/Euler_operations.h>
#include <CGAL/boost/graph/properties.h>
#include <CGAL/Polygon_mesh_processing/repair_degeneracies.h>
#include <CGAL/property_map.h>

#include <cmath>
#include <map>
#include <set>
#include <list>

namespace CGAL {

namespace Polygon_mesh_processing {

namespace internal {

template<class PolygonMesh, class VertexPointMap>
class Refine_Polyhedron_3 {
//// typedefs
  typedef typename boost::property_traits<VertexPointMap>::value_type     Point_3;
  typedef typename boost::property_traits<VertexPointMap>::reference      Point_3_ref;

  typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor    vertex_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor  halfedge_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::face_descriptor      face_descriptor;

  typedef Halfedge_around_face_circulator<PolygonMesh>    Halfedge_around_facet_circulator;
  typedef Halfedge_around_target_circulator<PolygonMesh>  Halfedge_around_vertex_circulator;

  typedef typename CGAL::Kernel_traits<Point_3>::type                     Traits;

private:
  PolygonMesh& pmesh;
  VertexPointMap vpmap;
  Traits traits = {};

  bool flippable(halfedge_descriptor h)
  {
    // this check is added so that edge flip does not break manifoldness
    // it might happen when there is an edge where flip_edge(h) will be placed (i.e. two edges collide after flip)
    vertex_descriptor v_tip_0 = target(next(h,pmesh),pmesh);
    vertex_descriptor v_tip_1 = target(next(opposite(h,pmesh),pmesh),pmesh);

#ifdef CGAL_PMP_REFINE_DEBUG_PP
    std::cout << "flippable() " << h << std::endl;
    std::cout << "\t" << source(h, pmesh) << ": " << pmesh.point(source(h, pmesh)) << std::endl;
    std::cout << "\t" << target(h, pmesh) << ": " << pmesh.point(target(h, pmesh)) << std::endl;
    std::cout << "\t" << v_tip_0 << ": " << pmesh.point(v_tip_0) << std::endl;
    std::cout << "\t" << v_tip_1 << ": " << pmesh.point(v_tip_1) << std::endl;
#endif

    Halfedge_around_vertex_circulator v_cir(next(h,pmesh), pmesh), v_end(v_cir);
    do {
      if(target(opposite(*v_cir, pmesh),pmesh) == v_tip_1) { return false; }
    } while(++v_cir != v_end);

    // also eliminate collinear triangle generation
    if( CGAL::collinear(get(vpmap, v_tip_0), get(vpmap, v_tip_1), get(vpmap, target(h, pmesh))) ||
        CGAL::collinear(get(vpmap, v_tip_0), get(vpmap, v_tip_1), get(vpmap, target(opposite(h, pmesh),pmesh))) ) {
      return false;
    }

    return true;
  }

  bool relax(halfedge_descriptor h)
  {
#ifdef CGAL_PMP_REFINE_DEBUG_PP
    Point_3_ref p = get(vpmap, source(h,pmesh));
    Point_3_ref q = get(vpmap, target(h,pmesh));
    Point_3_ref r = get(vpmap, target(next(h,pmesh),pmesh));
    Point_3_ref s = get(vpmap, target(next(opposite(h,pmesh),pmesh),pmesh));

    std::cout << "relax() " << h << std::endl;
    std::cout << "\t" << source(h, pmesh) << ": " << p << std::endl;
    std::cout << "\t" << target(h, pmesh) << ": " << q << std::endl;
    std::cout << "\t" << target(next(h,pmesh),pmesh) << ": " << r << std::endl;
    std::cout << "\t" << target(next(opposite(h,pmesh),pmesh),pmesh) << ": " << s << std::endl;
#endif

    if(internal::should_flip(edge(h, pmesh), pmesh, vpmap, traits))
    {
      if(flippable(h)) {
        Euler::flip_edge(h,pmesh);
        return true;
      }
    }
    return false;
  }

  template<class VertexOutputIterator,
           class FaceOutputIterator,
           class FaceRange>
  bool subdivide(const FaceRange& faces,
                 const std::set<halfedge_descriptor>& border_edges,
                 std::map<vertex_descriptor, double>& scale_attribute,
                 VertexOutputIterator& vertex_out,
                 FaceOutputIterator& facet_out,
                 std::vector<face_descriptor>& new_faces,
                 double alpha)
  {
    for(face_descriptor fd : faces)
    {
      CGAL_assertion(is_valid_face_descriptor(fd, pmesh));

      vertex_descriptor vi = target(halfedge(fd,pmesh),pmesh);
      vertex_descriptor vj = target(next(halfedge(fd,pmesh),pmesh),pmesh);
      vertex_descriptor vk = target(prev(halfedge(fd,pmesh),pmesh),pmesh);
      Point_3 c = CGAL::centroid(get(vpmap,vi), get(vpmap,vj), get(vpmap,vk));
      double sac  = (scale_attribute[vi] + scale_attribute[vj] + scale_attribute[vk])/3.0;
      double dist_c_vi = to_double(CGAL::approximate_sqrt(CGAL::squared_distance(c, get(vpmap, vi))));
      double dist_c_vj = to_double(CGAL::approximate_sqrt(CGAL::squared_distance(c, get(vpmap, vj))));
      double dist_c_vk = to_double(CGAL::approximate_sqrt(CGAL::squared_distance(c, get(vpmap, vk))));
      if((alpha * dist_c_vi > sac) &&
         (alpha * dist_c_vj > sac) &&
         (alpha * dist_c_vk > sac) &&
         (alpha * dist_c_vi > scale_attribute[vi]) &&
         (alpha * dist_c_vj > scale_attribute[vj]) &&
         (alpha * dist_c_vk > scale_attribute[vk]))
      {
        halfedge_descriptor h = Euler::add_center_vertex(halfedge(fd,pmesh),pmesh);
        put(vpmap, target(h,pmesh), c);
          scale_attribute[target(h,pmesh)] = sac;
          *vertex_out++ = target(h,pmesh);

          // collect 2 new facets for next round
          face_descriptor h1 = face(opposite(next(h,pmesh),pmesh),pmesh);
          face_descriptor h2 = face(opposite(h,pmesh),pmesh);
          new_faces.push_back(h1); new_faces.push_back(h2);
          *facet_out++ = h1;    *facet_out++ = h2;
          // relax edges of the  patching mesh
          halfedge_descriptor e_ij = prev(h,pmesh);
          halfedge_descriptor e_ik = next(opposite(h,pmesh),pmesh);
          halfedge_descriptor e_jk = prev(opposite(next(h,pmesh),pmesh),pmesh);

          if(border_edges.find(e_ij) == border_edges.end()){
            relax(e_ij);
          }
          if(border_edges.find(e_ik) == border_edges.end()){
            relax(e_ik);
          }
          if(border_edges.find(e_jk) == border_edges.end()){
            relax(e_jk);
          }
      }
    }
    return !new_faces.empty();
  }

  template<typename FaceRange>
  bool relax(const FaceRange& faces,
             const std::vector<face_descriptor>& new_faces,
             const std::set<halfedge_descriptor>& border_edges)
  {
    int flips = 0;
    std::list<halfedge_descriptor> interior_edges;
    std::set<halfedge_descriptor> included_map;

    collect_interior_edges(faces, border_edges, interior_edges, included_map);
    collect_interior_edges(new_faces, border_edges, interior_edges, included_map);

    #ifdef CGAL_PMP_REFINE_DEBUG
    std::cerr << "Test " << interior_edges.size() << " edges " << std::endl;
    #endif
    //do not just use std::set (included_map) for iteration, the order effects the output (we like to make it deterministic)
    for(halfedge_descriptor h : interior_edges)
    {
      if (relax(h)) {
        ++flips;
      }
    }

    #ifdef CGAL_PMP_REFINE_DEBUG
    std::cerr  << "|flips| = " << flips << std::endl;
    #endif
    return flips > 0;
  }

  template<typename FaceRange>
  void collect_interior_edges(const FaceRange& faces,
        const std::set<halfedge_descriptor>& border_edges,
        std::list<halfedge_descriptor>& interior_edges,
        std::set<halfedge_descriptor>& included_map)
  {
    for(face_descriptor fd : faces)
    {
      Halfedge_around_face_circulator<PolygonMesh> circ(halfedge(fd, pmesh), pmesh), done(circ);
      do {
        halfedge_descriptor h = *circ;
        if (border_edges.find(h) == border_edges.end()){
          // do not remove included_map and use if(&*h < &*oh) { interior_edges.push_back(h) }
          // which will change the order of edges from run to run
          halfedge_descriptor oh = opposite(h, pmesh);
          halfedge_descriptor h_rep = (h < oh) ? h : oh; // AF: was &*h < &*oh
          if (included_map.insert(h_rep).second) {
            interior_edges.push_back(h_rep);
          }
        }
      } while (++circ != done);
    }
  }

  double average_length(vertex_descriptor vh,
                        const std::set<face_descriptor>& interior_map,
                        bool accept_internal_facets)
  {
    const Point_3_ref vp = get(vpmap, vh);
    Halfedge_around_target_circulator<PolygonMesh> circ(halfedge(vh,pmesh),pmesh), done(circ);
    int deg = 0;
    double sum = 0;
    do {
      face_descriptor f(face(*circ,pmesh)), f_op(face(opposite(*circ,pmesh),pmesh));

      if(!accept_internal_facets) {
        if(interior_map.find(f) != interior_map.end() && interior_map.find(f_op) != interior_map.end())
        { continue; } // which means current edge is an interior edge and should not be included in scale attribute calculation
      }

      const Point_3_ref vq = get(vpmap, target(opposite(*circ,pmesh),pmesh));
      sum += to_double(CGAL::approximate_sqrt(CGAL::squared_distance(vp, vq)));
      ++deg;
    } while(++circ != done);

    CGAL_assertion(deg != 0); // this might happen when accept_internal_facets = false but there is
    return sum/deg;
  }

  template<typename FaceRange>
  void calculate_scale_attribute(const FaceRange& faces,
                                 const std::set<face_descriptor>& interior_map,
                                 std::map<vertex_descriptor, double>& scale_attribute,
                                 bool accept_internal_facets)
  {
    for(face_descriptor fd : faces)
    {
      Halfedge_around_face_circulator<PolygonMesh> circ(halfedge(fd,pmesh),pmesh), done(circ);
      do {
        vertex_descriptor v = target(*circ,pmesh);
        auto v_insert = scale_attribute.emplace(v, 0);
        if(!v_insert.second) { continue; } // already calculated
        v_insert.first->second = average_length(v, interior_map, accept_internal_facets);
      } while(++circ != done);
    }
  }

  template<typename FaceRange>
  bool contain_internal_facets(const FaceRange& faces,
                               const std::set<face_descriptor>& interior_map) const
  {
    for(face_descriptor fd : faces)
    {
      Halfedge_around_face_circulator<PolygonMesh> circ(halfedge(fd,pmesh),pmesh), done(circ);
      do {
        Halfedge_around_target_circulator<PolygonMesh> circ_v(*circ,pmesh), done_v(circ_v);
        bool internal_v = true;
        do {
          face_descriptor f(face(*circ,pmesh)), f_op(face(opposite(*circ_v,pmesh),pmesh));

          if(interior_map.find(f) == interior_map.end() || interior_map.find(f_op) == interior_map.end()) {
            internal_v = false;
            break;
          }
        } while(++circ_v != done_v);

        if(internal_v) { return true; }
      } while(++circ != done);
    }
    return false;
  }

public:
  Refine_Polyhedron_3(PolygonMesh& pmesh
                    , VertexPointMap vpmap_)
    : pmesh(pmesh)
    , vpmap(vpmap_)
  {}

  template<class FaceRange, class FacetOutputIterator, class VertexOutputIterator>
  void refine(const FaceRange& faces,
              FacetOutputIterator& facet_out,
              VertexOutputIterator& vertex_out,
              double alpha)
  {
      // do not use just std::set, the order effects the output (for the same input we want to get same output)
    std::set<face_descriptor> interior_map(std::begin(faces), std::end(faces));

    // store boundary edges - to be used in relax
    std::set<halfedge_descriptor> border_edges;
    for(face_descriptor f : faces)
    {
      Halfedge_around_face_circulator<PolygonMesh> circ(halfedge(f,pmesh),pmesh), done(circ);
      do {
        if(interior_map.find(face(opposite(*circ,pmesh),pmesh)) == interior_map.end()) {
          border_edges.insert(*circ);
        }
      } while(++circ != done);
    }

    // check whether there is any need to accept internal facets
    bool accept_internal_facets = contain_internal_facets(faces, interior_map);
    std::map<vertex_descriptor, double> scale_attribute;
    calculate_scale_attribute(faces, interior_map, scale_attribute, accept_internal_facets);

    std::vector<face_descriptor> all_faces(std::begin(faces), std::end(faces));
    #ifdef CGAL_PMP_REFINE_DEBUG
    CGAL::Timer total_timer; total_timer.start();
    #endif
    for(int i = 0; i < 10; ++i)
    {
      std::vector<face_descriptor> new_faces;
      #ifdef CGAL_PMP_REFINE_DEBUG
      CGAL::Timer timer; timer.start();
      #endif
      bool is_subdivided = subdivide(all_faces, border_edges, scale_attribute, vertex_out, facet_out, new_faces, alpha);
      #ifdef CGAL_PMP_REFINE_DEBUG
      std::cerr  << "**Timer** subdivide() :" << timer.time() << std::endl; timer.reset();
      #endif
      if(!is_subdivided)
        break;

      bool is_relaxed = relax(faces, new_faces, border_edges);
      #ifdef CGAL_PMP_REFINE_DEBUG
      std::cerr << "**Timer** relax() :" << timer.time() << std::endl;
      #endif
      if(!is_relaxed)
        break;
      all_faces.insert(all_faces.end(), new_faces.begin(), new_faces.end());
    }

    #ifdef CGAL_PMP_REFINE_DEBUG
    std::cerr << "**Timer** TOTAL: " << total_timer.time() << std::endl;
    #endif
  }

}; //end class Refine_Polyhedron_3

}//namespace internal

}//namespace Polygon_mesh_processing

}//namespace CGAL

#endif //CGAL_POLYGON_MESH_PROCESSING_REFINE_POLYHEDRON_3_H