1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// Copyright (c) 2020 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/internal/simplify_polyline.h $
// $Id: include/CGAL/Polygon_mesh_processing/internal/simplify_polyline.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Sébastien Loriot
#ifndef CGAL_POLYGON_MESH_PROCESSING_SIMPLIFY_POLYLINE_H
#define CGAL_POLYGON_MESH_PROCESSING_SIMPLIFY_POLYLINE_H
#include <CGAL/license/Polygon_mesh_processing/geometric_repair.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <type_traits>
namespace CGAL {
namespace Polygon_mesh_processing {
namespace experimental {
enum Polyline_simplification_algorithms { DOUGLAS_PEUCKER, ITERATIVE };
template <typename PointRangeIn, typename PointRangeOut,
typename NamedParametersIn = parameters::Default_named_parameters,
typename NamedParametersOut = parameters::Default_named_parameters>
void simplify_polyline(const PointRangeIn& input,
PointRangeOut& output,
const double max_squared_frechet_distance,
const NamedParametersIn& np_in = parameters::default_values(),
const NamedParametersOut& np_out = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
static_assert(std::is_same<
typename std::iterator_traits<typename PointRangeIn::const_iterator>::value_type,
typename std::iterator_traits<typename PointRangeOut::const_iterator>::value_type >::value, "");
typedef typename GetPointMap<PointRangeIn, NamedParametersIn>::type Point_map_in;
typedef typename GetPointMap<PointRangeOut, NamedParametersOut>::type Point_map_out;
typedef typename Point_set_processing_3_np_helper<PointRangeIn, NamedParametersIn>::Geom_traits Kernel;
Point_map_in in_pm = choose_parameter<Point_map_in>(get_parameter(np_in, internal_np::point_map));
Point_map_out out_pm = choose_parameter<Point_map_out>(get_parameter(np_out, internal_np::point_map));
const Polyline_simplification_algorithms algorithm =
choose_parameter(get_parameter(np_in, internal_np::algorithm), DOUGLAS_PEUCKER);
switch(algorithm)
{
case ITERATIVE:
{
const bool is_closed = input.front()==input.back();
std::size_t nb_points = is_closed ? input.size()-1 : input.size();
// skip points in the input range that do not contains any information
if (nb_points<=2)
{
output.reserve(input.size());
for (const auto& p : input)
{
output.push_back(p);
put(out_pm, output.back(), get(in_pm, p));
}
return;
}
auto is_valid_approx = [&input, &in_pm, max_squared_frechet_distance](
std::size_t b, std::size_t e,
const typename Kernel::Line_3& line)
{
typename Kernel::Compare_squared_distance_3 compare_squared_distance;
for (std::size_t i=b+1; i<e; ++i)
{
if (compare_squared_distance(get(in_pm, input[i]), line, max_squared_frechet_distance) == LARGER)
return false;
}
return true;
};
std::size_t bi=0;
while(bi!=nb_points)
{
std::size_t ei=bi+2;
output.push_back(input[bi]);
put(out_pm, output.back(), get(in_pm, input[bi]));
while(ei<nb_points)
{
typename Kernel::Line_3 sl(get(in_pm,input[bi]), get(in_pm,input[ei]));
if (is_valid_approx(bi,ei,sl))
++ei; // we skip ei-1
else
{
bi=ei-1; // ei-1 shall not be skipped
break;
}
}
if(ei>=nb_points) break;
}
output.push_back(input[nb_points-1]);
put(out_pm, output.back(), get(in_pm, input[nb_points-1]));
if (is_closed)
{
output.push_back(input.back());
put(out_pm, output.back(), get(in_pm, input.back()));
}
return;
}
case DOUGLAS_PEUCKER:
{
const bool is_closed = input.front()==input.back();
std::size_t nb_points = is_closed ? input.size()-1 : input.size();
if (nb_points<=2)
{
output.reserve(input.size());
for (const auto& p : input)
{
output.push_back(p);
put(out_pm, output.back(), get(in_pm, p));
}
return;
}
std::vector< std::pair<std::size_t, std::size_t> > ranges;
ranges.push_back(std::make_pair(0, nb_points-1));
std::vector<bool> kept(input.size(), false);
if (is_closed) kept[nb_points]=true;
while( !ranges.empty() )
{
std::size_t rb, re;
std::tie(rb, re) = ranges.back();
ranges.pop_back();
kept[rb]=true;
kept[re]=true;
if (rb+1==re) continue;
typename Kernel::Line_3 line(get(in_pm, input[rb]), get(in_pm, input[re]));
double max_d = max_squared_frechet_distance;
std::size_t max_i = 0;
for (std::size_t i=rb; i<re; ++i)
{
double d = squared_distance(line, get(in_pm, input[i]));
if (d > max_d)
{
max_d = d;
max_i = i;
}
}
if (max_i != 0)
{
ranges.push_back( std::make_pair(max_i, re) );
ranges.push_back( std::make_pair(rb, max_i) );
}
}
std::size_t nb_kept=0;
for (std::size_t i=0; i<input.size(); ++i)
if (kept[i]) ++nb_kept;
output.reserve(nb_kept);
for (std::size_t i=0; i<input.size(); ++i)
if (kept[i])
{
output.push_back(input[i]);
put(out_pm, output.back(), get(in_pm, input[i]));
}
//TODO if is_closed-==true, shall we add en extra step to see if we can remove output.front() and output[output.size()-2] (initial endpoints)
}
}
}
} } } // end of CGAL::Polygon_mesh_processing::experimental namespace
#endif // CGAL_POLYGON_MESH_PROCESSING_SIMPLIFY_POLYLINE_H
|