File: SCIP_mixed_integer_program_traits.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (234 lines) | stat: -rw-r--r-- 8,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2018  Liangliang Nan. All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Solver_interface/include/CGAL/SCIP_mixed_integer_program_traits.h $
// $Id: include/CGAL/SCIP_mixed_integer_program_traits.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Liangliang Nan

#ifndef CGAL_SCIP_MIXED_INTEGER_PROGRAM_TRAITS_H
#define CGAL_SCIP_MIXED_INTEGER_PROGRAM_TRAITS_H

#include <CGAL/Mixed_integer_program_traits.h>

#if defined(CGAL_USE_SCIP) || defined(DOXYGEN_RUNNING)

#include "scip/scip.h"
#include "scip/scipdefplugins.h"

#include <cmath>
#include <iostream>
#include <string>
#include <vector>

namespace CGAL {

#if (_MSC_VER == 1500)
#undef SCIP_CALL(x)
#define SCIP_CALL(x) (x)
#endif

/// \ingroup PkgSolverInterfaceMIP
///
/// This class provides an interface for formulating and solving
/// constrained or unconstrained mixed integer programs using
/// \ref thirdpartySCIP (which must be available on the system).
///
/// \cgalModels{MixedIntegerProgramTraits}
///
/// \sa `GLPK_mixed_integer_program_traits`
template <typename FT>
class SCIP_mixed_integer_program_traits
  : public Mixed_integer_program_traits<FT>
{
  /// \cond SKIP_IN_MANUAL
public:
  typedef CGAL::Mixed_integer_program_traits<FT>          Base_class;
  typedef typename Base_class::Variable                   Variable;
  typedef typename Base_class::Linear_constraint          Linear_constraint;
  typedef typename Base_class::Linear_objective           Linear_objective;
  typedef typename Linear_objective::Sense                Sense;
  typedef typename Variable::Variable_type                Variable_type;

public:
  /// Solves the program. Returns `false` if fails.
  virtual bool solve()
  {
    Base_class::error_message_.clear();

    Scip* scip = 0;
    SCIP_CALL(SCIPcreate(&scip));
    SCIP_CALL(SCIPincludeDefaultPlugins(scip));

    // Disables scip output to stdout
    SCIPmessagehdlrSetQuiet(SCIPgetMessagehdlr(scip), TRUE);

    // Uses wall clock time because getting CPU user seconds
    // involves calling times() which is very expensive
    SCIP_CALL(SCIPsetIntParam(scip, "timing/clocktype", SCIP_CLOCKTYPE_WALL));

    // Creates empty problem
    SCIP_CALL(SCIPcreateProbBasic(scip, "Solver_interface"));

    // Creates variables
    std::vector<SCIP_VAR*> scip_variables;
    for (std::size_t i = 0; i < Base_class::variables_.size(); ++i) {
      const Variable* var = Base_class::variables_[i];
      SCIP_VAR* v = 0;

      double lb, ub;
      var->get_bounds(lb, ub);

      switch (var->variable_type())
      {
        case Variable::CONTINUOUS:
          SCIP_CALL(SCIPcreateVar(scip, &v, var->name().c_str(), lb, ub, 0.0, SCIP_VARTYPE_CONTINUOUS, TRUE, FALSE, 0, 0, 0, 0, 0));
          break;
        case Variable::INTEGER:
          SCIP_CALL(SCIPcreateVar(scip, &v, var->name().c_str(), lb, ub, 0.0, SCIP_VARTYPE_INTEGER, TRUE, FALSE, 0, 0, 0, 0, 0));
          break;
        case Variable::BINARY:
          SCIP_CALL(SCIPcreateVar(scip, &v, var->name().c_str(), 0, 1, 0.0, SCIP_VARTYPE_BINARY, TRUE, FALSE, 0, 0, 0, 0, 0));
          break;
      }
      // Adds the SCIP_VAR object to the scip problem
      SCIP_CALL(SCIPaddVar(scip, v));

      // Stores the SCIP_VAR pointer for later access
      scip_variables.push_back(v);
    }

    // Adds constraints

    std::vector<SCIP_CONS*> scip_constraints;
    for (std::size_t i = 0; i < Base_class::constraints_.size(); ++i) {
      const Linear_constraint* c = Base_class::constraints_[i];
      const std::unordered_map<const Variable*, double>& coeffs = c->coefficients();
      typename std::unordered_map<const Variable*, double>::const_iterator cur = coeffs.begin();

      std::vector<SCIP_VAR*>  cstr_variables(coeffs.size());
      std::vector<double>    cstr_values(coeffs.size());
      std::size_t idx = 0;
      for (; cur != coeffs.end(); ++cur) {
        std::size_t var_idx = cur->first->index();
        double coeff = cur->second;
        cstr_variables[idx] = scip_variables[var_idx];
        cstr_values[idx] = coeff;
        ++idx;
      }

      // Creates SCIP_CONS object
      SCIP_CONS* cons = 0;
      const std::string& name = c->name();

      double lb, ub;
      c->get_bounds(lb, ub);

      SCIP_CALL(SCIPcreateConsLinear(scip, &cons, name.c_str(), int(coeffs.size()), cstr_variables.data(), cstr_values.data(), lb, ub, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE));

      // Adds the constraint to scip
      SCIP_CALL(SCIPaddCons(scip, cons));

      // Stores the constraint for later on
      scip_constraints.push_back(cons);
    }

    // Sets objective

    // Determines the coefficient of each variable in the objective function
    const std::unordered_map<const Variable*, double>& obj_coeffs = Base_class::objective_->coefficients();
    typename std::unordered_map<const Variable*, double>::const_iterator cur = obj_coeffs.begin();
    for (; cur != obj_coeffs.end(); ++cur) {
      const Variable* var = cur->first;
      double coeff = cur->second;
      SCIP_CALL(SCIPchgVarObj(scip, scip_variables[var->index()], coeff));
    }

    // Sets the objective sense
    bool minimize = (Base_class::objective_->sense() == Linear_objective::MINIMIZE);
    SCIP_CALL(SCIPsetObjsense(scip, minimize ? SCIP_OBJSENSE_MINIMIZE : SCIP_OBJSENSE_MAXIMIZE));

    // Turns presolve on (it's the SCIP default).
    bool presolve = true;
    if (presolve)
      SCIP_CALL(SCIPsetIntParam(scip, "presolving/maxrounds", -1)); // maximal number of presolving rounds (-1: unlimited, 0: off)
    else
      SCIP_CALL(SCIPsetIntParam(scip, "presolving/maxrounds", 0));  // disable presolve

    bool status = false;
    // This tells scip to start the solution process
    if (SCIPsolve(scip) == SCIP_OKAY) {
      // Gets the best found solution from scip
      SCIP_SOL* sol = SCIPgetBestSol(scip);
      if (sol) {
        // If optimal or feasible solution is found.
        Base_class::result_.resize(Base_class::variables_.size());
        for (std::size_t i = 0; i < Base_class::variables_.size(); ++i) {
          FT x = SCIPgetSolVal(scip, sol, scip_variables[i]);

          Variable* v = Base_class::variables_[i];
          if (v->variable_type() != Variable::CONTINUOUS)
            x = static_cast<int>(std::round(x));

          v->set_solution_value(x);
          Base_class::result_[i] = x;
        }
        status = true;
      }
    }

    // Reports the status: optimal, infeasible, etc.
    SCIP_STATUS scip_status = SCIPgetStatus(scip);
    switch (scip_status) {
      case SCIP_STATUS_OPTIMAL:
        // Provides info only if fails.
        break;
      case SCIP_STATUS_GAPLIMIT:
        // To be consistent with the other solvers.
        // Provides info only if fails.
        break;
      case SCIP_STATUS_INFEASIBLE:
        Base_class::error_message_ = "model was infeasible";
        break;
      case SCIP_STATUS_UNBOUNDED:
        Base_class::error_message_ = "model was unbounded";
        break;
      case SCIP_STATUS_INFORUNBD:
        Base_class::error_message_ = "model was either infeasible or unbounded";
        break;
      case SCIP_STATUS_TIMELIMIT:
        Base_class::error_message_ = "aborted due to time limit";
        break;
      default:
        Base_class::error_message_ = "aborted with status: " + std::to_string(scip_status);
        break;
    }

    SCIP_CALL(SCIPresetParams(scip));

    // Since the SCIPcreateVar captures all variables, we have to release them now
    for (std::size_t i = 0; i < scip_variables.size(); ++i)
      SCIP_CALL(SCIPreleaseVar(scip, &scip_variables[i]));
    scip_variables.clear();

    // The same for the constraints
    for (std::size_t i = 0; i < scip_constraints.size(); ++i)
      SCIP_CALL(SCIPreleaseCons(scip, &scip_constraints[i]));
    scip_constraints.clear();

    // After releasing all vars and cons we can free the scip problem.
    // Remember this has always to be the last call to scip
    SCIP_CALL(SCIPfree(&scip));

    return status;
  }
  /// \endcond
};

} // namespace CGAL

#endif // CGAL_USE_SCIP or DOXYGEN_RUNNING

#endif // CGAL_SCIP_MIXED_INTEGER_PROGRAM_TRAITS_H