1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Shape_regularization/include/CGAL/Shape_regularization/QP_regularization.h $
// $Id: include/CGAL/Shape_regularization/QP_regularization.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Dmitry Anisimov, Gennadii Sytov, Jean-Philippe Bauchet, Florent Lafarge
//
#ifndef CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H
#define CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H
#include <CGAL/license/Shape_regularization.h>
// Internal includes.
#include <CGAL/Shape_regularization/internal/utils.h>
// Reference papers:
// [1] J. P. Bauchet and F. Lafarge, KIPPI: KInetic Polygonal Partitioning of Images, Section 3, 2018.
namespace CGAL {
namespace Shape_regularization {
/*!
\ingroup PkgShapeRegularizationRef
\brief Shape regularization algorithm based on the quadratic programming
global optimization.
Given a quadratic programming solver via the class `QuadraticProgramTraits`, this version of the
shape regularization algorithm enables to regularize a set of user-specified
geometric objects provided a way
- to access neighbors of each object via the `NeighborQuery` class;
- to obtain a maximum bound on a regularization characteristic (angle-orientation/
distance-offset/etc.) with respect to which an object is being regularized
via the `RegularizationType` class;
- to obtain a target value for each pair of neighbor objects via
the `RegularizationType` class.
This class is generic and forms a framework for different types of user-specified
regularizations. Please refer to the user manual in order to learn how to use it.
In particular, section \ref QP_Regularization_Segments "Regularizing 2D Segments"
shows an example.
\tparam GeomTraits
a model of `Kernel`
\tparam InputRange
a model of `ConstRange`
\tparam NeighQuery
a model of `NeighborQuery`
\tparam RegType
a model of `RegularizationType`
\tparam QPSolver
a model of `QuadraticProgramTraits`
*/
template<
typename GeomTraits,
typename InputRange,
typename NeighQuery,
typename RegType,
typename QPSolver>
class QP_regularization {
private:
class Parameters {
public:
using FT = typename GeomTraits::FT;
const FT weight, lambda;
const FT neg_inf, pos_inf;
const FT val_neg, val_pos;
Parameters():
weight(FT(100000)),
lambda(FT(4) / FT(5)),
neg_inf(-internal::max_value<FT>()),
pos_inf(+internal::max_value<FT>()),
val_neg(FT(-2) * lambda),
val_pos(FT(+2) * lambda)
{ }
};
public:
/// \cond SKIP_IN_MANUAL
using Traits = GeomTraits;
using Input_range = InputRange;
using Neighbor_query = NeighQuery;
using Regularization_type = RegType;
using Quadratic_program = QPSolver;
using FT = typename Traits::FT;
using Indices = std::vector<std::size_t>;
using Size_pair = std::pair<std::size_t, std::size_t>;
/// \endcond
/// \name Initialization
/// @{
/*!
\brief initializes all internal data structures.
\tparam NamedParameters
a sequence of \ref bgl_namedparameters "Named Parameters"
\param input_range
a const range of input objects for shape regularization
\param neighbor_query
an instance of `NeighQuery` that is used internally to
access object neighbors
\param regularization_type
an instance of `RegType` that is used internally to
obtain object bounds and target values
\param quadratic_program
an instance of `QPSolver` to solve the quadratic programming problem
\param np
an optional sequence of \ref bgl_namedparameters "Named Parameters"
among the ones listed below; this parameter can be omitted,
the default values are then used
\cgalNamedParamsBegin
\cgalParamNBegin{geom_traits}
\cgalParamDescription{an instance of geometric traits class}
\cgalParamType{a model of `Kernel`}
\cgalParamDefault{`GeomTraits()`}
\cgalParamNEnd
\cgalNamedParamsEnd
\pre input_range.size() >= 2
*/
template<typename NamedParameters = parameters::Default_named_parameters>
QP_regularization(
const InputRange& input_range,
NeighQuery& neighbor_query,
RegType& regularization_type,
QPSolver& quadratic_program,
const NamedParameters& np = parameters::default_values()) :
m_input_range(input_range),
m_neighbor_query(neighbor_query),
m_regularization_type(regularization_type),
m_quadratic_program(quadratic_program),
m_traits(parameters::choose_parameter(parameters::get_parameter(
np, internal_np::geom_traits), GeomTraits())),
m_parameters(Parameters()) {
clear();
}
/// @}
/// \name Regularization
/// @{
/*!
\brief runs the shape regularization algorithm.
*/
void regularize() {
if (m_input_range.size() < 2) return;
CGAL_precondition(m_input_range.size() >= 2);
// Graph = edges connecting neighbor segments.
build_graph_of_neighbors();
if (m_graph.size() == 0) {
std::cerr << "Error: the number of edges in the graph is zero!" << std::endl;
clear(); return;
}
// Bounds = number of input segments.
obtain_bounds();
if (m_bounds.size() == 0) {
std::cerr << "Error: the number of bound values is zero!" << std::endl;
clear(); return;
}
if (m_bounds.size() != m_input_range.size()) {
std::cerr << "Error: the number of bounds is not equal to the number " <<
"of input segments!" << std::endl;
clear(); return;
}
// Targets = number of graph edges.
obtain_targets();
if (m_targets.size() == 0) {
// std::cerr << "Warning: the number of target values is zero!" << std::endl;
clear(); return;
}
// QP data.
set_qp_data(m_quadratic_program);
// Solve.
std::vector<FT> solution;
solve_quadratic_program(m_quadratic_program, solution);
if (solution.size() != m_input_range.size() + m_targets.size()) {
std::cerr << "Error: the number of solution values is not equal to the " <<
"number of input segments + the number of edges in the graph!" << std::endl;
clear(); return;
}
// Update.
m_regularization_type.update(solution);
}
/// @}
/// \name Memory Management
/// @{
/*!
\brief clears all internal data structures.
This method does not release the allocated memory
but only removes the class internal data.
*/
void clear() {
m_graph.clear();
m_bounds.clear();
m_targets.clear();
m_max_bound = -FT(1);
}
/*!
\brief releases all memory that is used internally.
This method first calls the `clear()` method and
then releases the allocated memory.
*/
void release_memory() {
clear();
m_bounds.shrink_to_fit();
}
/// @}
private:
const Input_range& m_input_range;
Neighbor_query& m_neighbor_query;
Regularization_type& m_regularization_type;
Quadratic_program& m_quadratic_program;
// The field m_traits is not currently used. We should probably remove the
// reference in case it will be used in the future!
const Traits m_traits;
const Parameters m_parameters;
FT m_max_bound;
std::set<Size_pair> m_graph;
std::vector<FT> m_bounds;
std::map<Size_pair, FT> m_targets;
void build_graph_of_neighbors() {
Size_pair pair;
Indices neighbors;
m_graph.clear();
for (std::size_t i = 0; i < m_input_range.size(); ++i) {
m_neighbor_query(i, neighbors);
for (const std::size_t neighbor : neighbors) {
i < neighbor ?
pair = std::make_pair(i, neighbor) :
pair = std::make_pair(neighbor, i);
m_graph.insert(pair);
}
}
CGAL_assertion(m_graph.size() > 0);
}
void obtain_bounds() {
m_bounds.clear();
m_bounds.reserve(m_input_range.size());
m_max_bound = -FT(1);
for (std::size_t i = 0; i < m_input_range.size(); ++i) {
const FT bound = m_regularization_type.bound(i);
CGAL_assertion(bound >= FT(0));
m_bounds.push_back(bound);
m_max_bound = (CGAL::max)(bound, m_max_bound);
}
CGAL_assertion(m_max_bound >= FT(0));
CGAL_assertion(m_bounds.size() == m_input_range.size());
}
void obtain_targets() {
m_targets.clear();
for (const auto& pair : m_graph) {
const std::size_t i = pair.first;
const std::size_t j = pair.second;
const FT target = m_regularization_type.target(i, j);
if (CGAL::abs(target) <
m_regularization_type.bound(i) + m_regularization_type.bound(j)) {
m_targets[pair] = target;
}
}
CGAL_assertion(m_targets.size() >= 0);
}
void set_qp_data(Quadratic_program& qp) const {
const std::size_t k = m_input_range.size(); // k segments
const std::size_t e = m_targets.size(); // e graph edges
const std::size_t n = k + e; // number of variables
const std::size_t m = 2 * e + n; // number of constraints
qp.resize(n, m);
set_quadratic_term(n, k, qp);
set_linear_term(n, k, qp);
set_constant_term(qp);
set_constraint_matrix(n, k, qp);
set_constraint_bounds(m, k, e, qp);
}
void set_quadratic_term(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
for (std::size_t i = 0; i < n; ++i) {
FT value = FT(0);
if (i < k) {
value = FT(2) * m_parameters.weight * (FT(1) - m_parameters.lambda) /
(m_bounds[i] * m_bounds[i] * FT(k));
}
qp.set_P(i, i, value);
}
// CGAL_assertion(qp.P_size() == n);
}
void set_linear_term(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
for (std::size_t i = 0; i < n; ++i) {
FT value = FT(0);
if (i >= k) {
value = m_parameters.lambda * m_parameters.weight /
(FT(4) * m_max_bound * FT(n - k));
}
qp.set_q(i, value);
}
// CGAL_assertion(qp.q_size() == n);
}
void set_constant_term(
Quadratic_program& qp) const {
const FT value = FT(0);
qp.set_r(value);
}
void set_constraint_matrix(
const std::size_t n,
const std::size_t k,
Quadratic_program& qp) const {
CGAL_assertion(n >= k);
std::size_t it = 0;
std::size_t ij = k;
for (const auto& target : m_targets) {
const std::size_t i = target.first.first;
const std::size_t j = target.first.second;
qp.set_A(it, i, m_parameters.val_neg);
qp.set_A(it, j, m_parameters.val_pos);
qp.set_A(it, ij, -FT(1));
++it;
qp.set_A(it, i, m_parameters.val_pos);
qp.set_A(it, j, m_parameters.val_neg);
qp.set_A(it, ij, -FT(1));
++it; ++ij;
}
// Used to set bounds for each variable li <= xi <= ui.
const std::size_t s = m_targets.size() * 2;
for (std::size_t i = 0; i < n; ++i) {
qp.set_A(s + i, i, FT(1));
}
// const std::size_t A_nnz = m_targets.size() * 6 + n;
// CGAL_assertion(qp.A_size() == A_nnz);
}
void set_constraint_bounds(
const std::size_t m,
const std::size_t k,
const std::size_t e,
Quadratic_program& qp) const {
auto tit = m_targets.begin();
for (std::size_t i = 0; i < m; ++i) {
if (i < 2 * e) { // first 2 * e constraints
const FT value = tit->second;
if (i % 2 == 0) {
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.val_neg * value);
} else {
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.val_pos * value); ++tit;
}
} else if (i < 2 * e + k) { // next k constraints
qp.set_l(i, -FT(1) * m_max_bound);
qp.set_u(i, +FT(1) * m_max_bound);
} else { // last e constraints
qp.set_l(i, m_parameters.neg_inf);
qp.set_u(i, m_parameters.pos_inf);
}
}
// CGAL_assertion(qp.l_size() == m); // all together m constraints
// CGAL_assertion(qp.u_size() == m);
}
void solve_quadratic_program(
Quadratic_program& qp,
std::vector<FT>& solution) {
const std::size_t n =
m_input_range.size() + m_targets.size();
solution.clear();
solution.reserve(n);
const auto success = qp.solve(
std::back_inserter(solution));
if (!success) {
std::cerr << "WARNING: The solver has not converged!" << std::endl;
}
CGAL_assertion(solution.size() == n);
}
};
} // namespace Shape_regularization
} // namespace CGAL
#endif // CGAL_SHAPE_REGULARIZATION_QP_REGULARIZATION_H
|