1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Shape_regularization/include/CGAL/Shape_regularization/internal/Contour_base_2.h $
// $Id: include/CGAL/Shape_regularization/internal/Contour_base_2.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Dmitry Anisimov, Simon Giraudot
//
#ifndef CGAL_SHAPE_REGULARIZATION_CONTOUR_BASE_2_H
#define CGAL_SHAPE_REGULARIZATION_CONTOUR_BASE_2_H
#include <CGAL/license/Shape_regularization.h>
// Internal includes.
#include <CGAL/Shape_regularization/internal/utils.h>
#include <CGAL/Shape_regularization/internal/Segment_wrapper_2.h>
#include <CGAL/Shape_regularization/internal/Unique_segments_2.h>
namespace CGAL {
namespace Shape_regularization {
namespace internal {
template<typename GeomTraits>
class Contour_base_2 {
public:
using Traits = GeomTraits;
using FT = typename Traits::FT;
using Point_2 = typename Traits::Point_2;
using Point_3 = typename Traits::Point_3;
using Vector_2 = typename Traits::Vector_2;
using Segment_2 = typename Traits::Segment_2;
using Direction_2 = typename Traits::Direction_2;
using Line_2 = typename Traits::Line_2;
using Intersect_2 = typename Traits::Intersect_2;
using FT_pair = std::pair<FT, FT>;
using Segment_wrapper_2 = internal::Segment_wrapper_2<Traits>;
using Segment_wrappers_2 = std::vector<Segment_wrapper_2>;
using Polyline = std::vector<Point_3>;
Contour_base_2() :
m_verbose(false),
m_angle_threshold_2(FT(5))
{ }
/////////////////////
// Debug and Save. //
/////////////////////
void export_polylines(
const std::vector<Segment_wrapper_2>& wraps,
const std::string path) const {
std::vector<Segment_2> segments;
segments.reserve(wraps.size());
for (const auto& wrap : wraps)
segments.push_back(wrap.segment);
export_polylines(segments, path);
}
void export_polylines(
const std::vector<Segment_2>& segments,
const std::string path) const {
std::vector<Polyline> polylines(segments.size());
for (std::size_t i = 0; i < segments.size(); ++i) {
const auto& s = segments[i].source();
const auto& t = segments[i].target();
polylines[i].push_back(Point_3(s.x(), s.y(), FT(0)));
polylines[i].push_back(Point_3(t.x(), t.y(), FT(0)));
}
export_polylines(polylines, path);
}
void export_polylines(
const std::vector<Polyline>& polylines,
const std::string path) const {
if (polylines.size() == 0) return;
std::stringstream out;
out.precision(20);
for (std::size_t i = 0; i < polylines.size(); ++i) {
const auto& polyline = polylines[i];
out << polyline.size() << " ";
for (std::size_t j = 0; j < polyline.size(); ++j) {
out << polyline[j] << " ";
}
out << std::endl;
}
save(out, path + ".polylines");
}
void save(
const std::stringstream& out,
const std::string path) const {
std::ofstream file(path.c_str(), std::ios_base::out);
CGAL::IO::set_ascii_mode(file);
if (!file) {
std::cout <<
"Error: cannot save the file: " << path << std::endl;
return;
}
file << out.str() << std::endl; file.close();
std::cout <<
"* segments are saved in " << path << std::endl;
}
////////////////////////
// General Utilities. //
////////////////////////
bool verbose() const {
return m_verbose;
}
const FT get_angle_threshold_2() const {
return m_angle_threshold_2;
}
void sort_segments_by_length(
const std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& sorted) const {
sorted.clear();
sorted.reserve(wraps.size());
for (std::size_t i = 0; i < wraps.size(); ++i) {
sorted.push_back(i);
}
std::sort(sorted.begin(), sorted.end(),
[&wraps](const std::size_t i, const std::size_t j) -> bool {
const FT length_1 = wraps[i].segment.squared_length();
const FT length_2 = wraps[j].segment.squared_length();
return length_1 > length_2;
});
}
/////////////////////
// Initialization. //
/////////////////////
template<
typename Input_range,
typename Point_map>
void initialize_closed(
const Input_range& input_range,
const Point_map point_map,
std::vector<Segment_wrapper_2>& wraps) const {
CGAL_precondition(input_range.size() >= 3);
const std::size_t n = input_range.size();
wraps.clear();
wraps.reserve(n);
Segment_wrapper_2 wrap;
for (std::size_t i = 0; i < n; ++i) {
const std::size_t ip = (i + 1) % n;
const auto& source = get(point_map, *(input_range.begin() + i));
const auto& target = get(point_map, *(input_range.begin() + ip));
wrap.index = i;
wrap.segment = Segment_2(source, target);
wrap.set_direction(wrap.segment);
wraps.push_back(wrap);
}
CGAL_assertion(wraps.size() == n);
}
template<
typename Input_range,
typename Point_map>
void initialize_open(
const Input_range& input_range,
const Point_map point_map,
std::vector<Segment_wrapper_2>& wraps) const {
CGAL_precondition(input_range.size() >= 2);
const std::size_t n = input_range.size();
wraps.clear();
wraps.reserve(n);
Segment_wrapper_2 wrap;
for (std::size_t i = 0; i < n - 1; ++i) {
const std::size_t ip = i + 1;
const auto& source = get(point_map, *(input_range.begin() + i));
const auto& target = get(point_map, *(input_range.begin() + ip));
wrap.index = i;
wrap.segment = Segment_2(source, target);
wrap.set_direction(wrap.segment);
wraps.push_back(wrap);
}
CGAL_assertion(wraps.size() == n - 1);
}
/////////////////
// Directions. //
/////////////////
void unify_along_contours_closed(
std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& assigned) const {
const std::size_t n = wraps.size();
CGAL_assertion(assigned.size() == n);
for (std::size_t i = 0; i < n; ++i) {
auto& wrap = wraps[i];
if (wrap.is_used) continue;
std::size_t im = (i + n - 1) % n;
std::size_t ip = (i + 1) % n;
bool stop = false;
std::size_t max_count = 0;
do {
if (wraps[im].is_used) {
assigned[i] = assigned[im];
wrap.is_used = true;
break;
}
if (wraps[ip].is_used) {
assigned[i] = assigned[ip];
wrap.is_used = true;
break;
}
im = (im + n - 1) % n;
ip = (ip + 1) % n;
if (im == i || ip == i) {
stop = true;
}
++max_count;
} while (!stop && max_count < n);
if (stop || max_count >= n) {
std::cerr <<
"Warning: revert back to the first direction!" << std::endl;
assigned[i] = 0;
}
}
}
void correct_directions_closed(
const std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& assigned) const {
const std::size_t n = wraps.size();
std::vector<std::size_t> clean;
clean.reserve(n);
CGAL_assertion(assigned.size() == n);
for (std::size_t i = 0; i < n; ++i) {
const std::size_t im = (i + n - 1) % n;
const std::size_t ip = (i + 1) % n;
const std::size_t dm = assigned[im];
const std::size_t di = assigned[i];
const std::size_t dp = assigned[ip];
if (dm != std::size_t(-1) && dm == dp && di != dm) {
clean.push_back(dm);
} else {
clean.push_back(di);
}
}
assigned = clean;
}
void unify_along_contours_open(
std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& assigned) const {
CGAL_assertion(assigned.size() == wraps.size());
const int n = static_cast<int>(wraps.size());
for (int i = 0; i < n; ++i) {
auto& wrap = wraps[i];
if (wrap.is_used) continue;
int im = -1;
if (i > 0) im = i - 1;
int ip = -1;
if (i < n - 1) ip = i + 1;
bool stop = false;
int max_count = 0;
do {
if (im != -1 && wraps[im].is_used) {
CGAL_assertion(i >= 0 && i < n);
CGAL_assertion(im >= 0 && im < n);
assigned[i] = assigned[im];
wrap.is_used = true;
break;
}
if (ip != -1 && wraps[ip].is_used) {
CGAL_assertion(i >= 0 && i < n);
CGAL_assertion(ip >= 0 && ip < n);
assigned[i] = assigned[ip];
wrap.is_used = true;
break;
}
if (stop) break;
if (im != -1 && im > 0) {
im = im - 1;
}
if (ip != -1 && ip < n - 1) {
ip = ip + 1;
}
if (im == 0 || ip == n - 1) {
stop = true;
}
++max_count;
} while (max_count < n);
if (stop || max_count >= n) {
std::cerr <<
"Warning: revert back to the first direction!" << std::endl;
assigned[i] = 0;
}
}
}
void correct_directions_open(
std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& assigned) const {
CGAL_assertion(assigned.size() == wraps.size());
const int n = static_cast<int>(wraps.size());
std::vector<std::size_t> clean;
clean.reserve(n);
for (int i = 0; i < n; ++i) {
if (i == 0) {
const int ip = 1;
CGAL_assertion(ip >= 0 && ip < n);
const std::size_t di = assigned[i];
const std::size_t dp = assigned[ip];
if (di != dp) {
clean.push_back(dp);
} else {
clean.push_back(di);
}
continue;
}
if (i == n - 1) {
const int im = n - 2;
CGAL_assertion(im >= 0 && im < n);
const std::size_t dm = assigned[im];
const std::size_t di = assigned[i];
if (di != dm) {
clean.push_back(dm);
} else {
clean.push_back(di);
}
continue;
}
const int im = i - 1;
const int ip = i + 1;
CGAL_assertion(im >= 0 && im < n);
const std::size_t dm = assigned[im];
CGAL_assertion(i >= 0 && i < n);
const std::size_t di = assigned[i];
CGAL_assertion(ip >= 0 && ip < n);
const std::size_t dp = assigned[ip];
if (dm != std::size_t(-1) && dm == dp && di != dm) {
clean.push_back(dm);
} else {
clean.push_back(di);
}
}
assigned = clean;
}
void readjust_directions(
const std::vector<Segment_wrapper_2>& wraps,
const std::vector<std::size_t>& assigned,
std::vector<Direction_2>& directions) const {
std::vector<FT> angles, counts;
create_average_angles(wraps, assigned, directions,
angles, counts);
CGAL_assertion(angles.size() == counts.size());
CGAL_assertion(angles.size() == directions.size());
for (std::size_t k = 0; k < angles.size(); ++k) {
if (counts[k] == FT(0)) continue;
angles[k] /= counts[k];
const FT angle_deg = angles[k];
internal::rotate_direction_2(angle_deg, directions[k]);
}
}
void create_average_angles(
const std::vector<Segment_wrapper_2>& wraps,
const std::vector<std::size_t>& assigned,
const std::vector<Direction_2>& directions,
std::vector<FT>& angles,
std::vector<FT>& counts) const {
CGAL_assertion(directions.size() > 0);
angles.clear();
angles.resize(directions.size(), FT(0));
counts.clear();
counts.resize(directions.size(), FT(0));
for (std::size_t i = 0; i < wraps.size(); ++i) {
const auto& wrap = wraps[i];
if (!wrap.is_valid_direction) continue;
const std::size_t direction_index = assigned[i];
CGAL_assertion(direction_index != std::size_t(-1));
// Experimental code.
// const auto& di = directions[direction_index];
// const auto& dj = wrap.direction;
const auto& di = wrap.direction;
const auto& dj = directions[direction_index];
const FT angle = internal::mod90_angle_2(di, dj);
angles[direction_index] += angle;
counts[direction_index] += FT(1);
}
}
void apply_rotation_to_segment(
const std::vector<FT_pair>& bounds,
const std::vector<Direction_2>& directions,
const std::vector<std::size_t>& assigned,
const std::size_t query_index,
Segment_2& segment) const {
CGAL_assertion(assigned.size() > 0);
CGAL_assertion(bounds.size() == directions.size());
CGAL_assertion(query_index < assigned.size());
const std::size_t direction_index = assigned[query_index];
if (direction_index == std::size_t(-1)) {
return;
}
CGAL_assertion(direction_index < directions.size());
const auto& ref_direction = directions[direction_index];
const auto& ref_bounds = bounds[direction_index];
auto v = segment.to_vector();
const Direction_2 seg_direction =
internal::direction_2(v);
rotate_segment(
ref_bounds, ref_direction, seg_direction, segment);
}
void rotate_segment(
const FT_pair& /* bounds */,
const Direction_2& ref_direction,
const Direction_2& seg_direction,
Segment_2& segment) const {
// Experimental code.
// const FT angle_deg = internal::compute_angle_2(
// ref_direction, seg_direction);
// const FT converted = CGAL::abs(convert_angle_2(angle_deg));
// if (converted <= bounds.first)
// internal::rotate_segment_2(
// angle_deg, FT(180), segment); // parallel case
// if (converted >= bounds.second)
// internal::rotate_segment_2(
// angle_deg, FT(90), segment); // orthogonal case
const FT angle_deg = internal::mod90_angle_2(
seg_direction, ref_direction);
internal::rotate_segment_2(
angle_deg, FT(0), segment);
}
///////////////
// Contours. //
///////////////
void remove_zero_length_segments(
std::vector<Segment_wrapper_2>& wraps) const {
std::vector<Segment_wrapper_2> clean;
for (const auto& wrap : wraps) {
if (wrap.segment.squared_length() > internal::tolerance<FT>()) {
clean.push_back(wrap);
}
}
wraps = clean;
}
void create_unique_segments(
const FT max_offset_2,
const std::vector<Segment_wrapper_2>& wraps,
std::vector<Segment_2>& segments) const {
using SegmentRange = std::vector<Segment_wrapper_2>;
using SegmentMap = Wrap_segment_map<Traits>;
using Unique_segments_2 = internal::Unique_segments_2<
Traits, SegmentRange, SegmentMap>;
const SegmentMap segment_map;
const Unique_segments_2 unique(
wraps, CGAL::parameters::
maximum_angle(get_angle_threshold_2()).
maximum_offset(max_offset_2).
preserve_order(true),
segment_map, Traits());
segments.clear();
unique.segments(
std::back_inserter(segments));
}
std::pair<bool, bool> is_parallel_segment(
const Segment_2& sm,
const Segment_2& si,
const Segment_2& sp) const {
const FT angle_mi_2 = internal::angle_2(sm, si);
const FT angle_pi_2 = internal::angle_2(si, sp);
const bool source_cond = ( angle_mi_2 <= m_angle_threshold_2 );
const bool target_cond = ( angle_pi_2 <= m_angle_threshold_2 );
return std::make_pair(source_cond, target_cond);
}
bool is_parallel_segment(
const Segment_2& si, const Segment_2& sp) const {
const FT angle_pi_2 = internal::angle_2(si, sp);
const bool target_cond = ( angle_pi_2 <= m_angle_threshold_2 );
return target_cond;
}
void parallel_segments_to_segment(
const std::vector<Segment_wrapper_2>& wraps,
Segment_2& result) const {
Segment_2 ref_segment = find_weighted_segment(wraps);
const Line_2 line = Line_2(
ref_segment.source(), ref_segment.target());
std::vector<Point_2> points;
for (const auto& wrap : wraps) {
const Point_2 source = line.projection(wrap.segment.source());
const Point_2 target = line.projection(wrap.segment.target());
points.push_back(source);
points.push_back(target);
}
update_segment(points, ref_segment);
result = ref_segment;
}
Segment_2 find_weighted_segment(
const std::vector<Segment_wrapper_2>& wraps) const {
std::vector<FT> weights;
compute_distance_weights(wraps, weights);
const Segment_2 ref_segment =
find_longest_segment(wraps);
const Segment_2 weighted =
compute_weighted_segment(wraps, weights, ref_segment);
if (weighted.source() == weighted.target()) {
return ref_segment;
}
return weighted;
}
void compute_distance_weights(
const std::vector<Segment_wrapper_2>& wraps,
std::vector<FT>& weights) const {
CGAL_assertion(wraps.size() > 0);
weights.clear();
weights.reserve(wraps.size());
FT sum_distance = FT(0);
for (const auto& wrap : wraps) {
const FT sq_distance = wrap.segment.squared_length();
sum_distance += sq_distance;
weights.push_back(sq_distance);
}
CGAL_assertion(sum_distance > FT(0));
for (auto& weight : weights) {
weight /= sum_distance;
}
CGAL_assertion(weights.size() == wraps.size());
}
Segment_2 find_longest_segment(
const std::vector<Segment_wrapper_2>& wraps) const {
FT max_length = -FT(1);
std::size_t longest = std::size_t(-1);
for (std::size_t i = 0; i < wraps.size(); ++i) {
const auto& wrap = wraps[i];
const FT length = wrap.segment.squared_length();
if (length > max_length) {
longest = i; max_length = length;
}
}
CGAL_assertion(longest != std::size_t(-1));
return wraps[longest].segment;
}
Segment_2 compute_weighted_segment(
const std::vector<Segment_wrapper_2>& wraps,
const std::vector<FT>& weights,
const Segment_2& ref_segment) const {
const auto& sref = ref_segment.source();
const auto& tref = ref_segment.target();
const auto center = CGAL::midpoint(sref, tref);
CGAL_assertion(weights.size() == wraps.size());
Vector_2 dir = Vector_2(FT(0), FT(0));
for (std::size_t i = 0; i < weights.size(); ++i) {
const FT weight = weights[i];
const auto& wrap = wraps[i];
const Line_2 line = Line_2(
wrap.segment.source(), wrap.segment.target());
const Point_2 proj = line.projection(center);
const Vector_2 v = Vector_2(center, proj);
dir += v * weight;
}
const Point_2 source = sref + dir;
const Point_2 target = tref + dir;
return Segment_2(source, target);
}
void update_segment(
const std::vector<Point_2>& points,
Segment_2& segment) const {
FT min_proj_value = +internal::max_value<FT>();
FT max_proj_value = -internal::max_value<FT>();
const Vector_2 ref_vector = segment.to_vector();
const Point_2 ref_point = internal::barycenter_2(points);
Point_2 source, target;
for (const auto& point : points) {
const Vector_2 curr_vector(ref_point, point);
const FT value = CGAL::scalar_product(curr_vector, ref_vector);
if (value < min_proj_value) {
min_proj_value = value;
source = point;
}
if (value > max_proj_value) {
max_proj_value = value;
target = point;
}
}
segment = Segment_2(source, target);
}
void intersect_segment(
const Segment_2& sm,
Segment_2& si) const {
Point_2 source = si.source();
Point_2 target = si.target();
const Line_2 line_1 = Line_2(sm.source(), sm.target());
const Line_2 line_2 = Line_2(si.source(), si.target());
const bool success = intersect_2(line_1, line_2, source);
if (!success) source = si.source();
si = Segment_2(source, target);
}
void intersect_segment(
const Segment_2& sm,
Segment_2& si,
const Segment_2& sp) const {
Point_2 source = si.source();
Point_2 target = si.target();
const Line_2 line_1 = Line_2(sm.source(), sm.target());
const Line_2 line_2 = Line_2(si.source(), si.target());
const Line_2 line_3 = Line_2(sp.source(), sp.target());
const bool success1 = intersect_2(line_1, line_2, source);
const bool success2 = intersect_2(line_2, line_3, target);
if (!success1) source = si.source();
if (!success2) target = si.target();
si = Segment_2(source, target);
}
void intersect_segment(
Segment_2& si,
const Segment_2& sp) const {
Point_2 source = si.source();
Point_2 target = si.target();
const Line_2 line_1 = Line_2(si.source(), si.target());
const Line_2 line_2 = Line_2(sp.source(), sp.target());
const bool success = intersect_2(line_1, line_2, target);
if (!success) target = si.target();
si = Segment_2(source, target);
}
bool intersect_2(
const Line_2& line_1,
const Line_2& line_2,
Point_2& in_point) const {
typename CGAL::cpp11::result_of<Intersect_2(Line_2, Line_2)>::type result
= CGAL::intersection(line_1, line_2);
if (result) {
if (const Line_2* line = std::get_if<Line_2>(&*result)) {
return false;
} else {
const Point_2* point = std::get_if<Point_2>(&*result);
in_point = *point; return true;
}
}
return false;
}
void create_average_orth(
const Segment_2& segmenti,
const Segment_2& segmentj,
Segment_2& orth) const {
const Line_2 linei = Line_2(
segmenti.source(), segmenti.target());
const auto p = linei.projection(segmentj.source());
const auto source = CGAL::midpoint(p, segmenti.target());
const Line_2 linej = Line_2(
segmentj.source(), segmentj.target());
const auto q = linej.projection(segmenti.target());
const auto target = CGAL::midpoint(q, segmentj.source());
orth = Segment_2(source, target);
}
private:
const bool m_verbose;
const FT m_angle_threshold_2;
};
} // internal
} // namespace Shape_regularization
} // namespace CGAL
#endif // CGAL_SHAPE_REGULARIZATION_CONTOUR_BASE_2_H
|