File: regularize_segments.h

package info (click to toggle)
cgal 6.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144,912 kB
  • sloc: cpp: 810,858; ansic: 208,477; sh: 493; python: 411; makefile: 286; javascript: 174
file content (678 lines) | stat: -rw-r--r-- 25,610 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/Shape_regularization/include/CGAL/Shape_regularization/regularize_segments.h $
// $Id: include/CGAL/Shape_regularization/regularize_segments.h b26b07a1242 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Dmitry Anisimov
//

#ifndef CGAL_SHAPE_REGULARIZATION_REGULARIZE_SEGMENTS_H
#define CGAL_SHAPE_REGULARIZATION_REGULARIZE_SEGMENTS_H

/// \cond SKIP_IN_MANUAL
#include <CGAL/license/Shape_regularization.h>
/// \endcond

/**
* \ingroup PkgShapeRegularizationRef
* \file CGAL/Shape_regularization/regularize_segments.h
* This header includes all classes for regularizing segments.
* It also includes the corresponding free functions.
*/

// Boost includes.
/// \cond SKIP_IN_MANUAL
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/Named_function_parameters.h>
/// \endcond

// Internal includes.
/// \cond SKIP_IN_MANUAL
#include <CGAL/Shape_regularization/internal/utils.h>
#include <CGAL/Shape_regularization/internal/Parallel_groups_2.h>
#include <CGAL/Shape_regularization/internal/Orthogonal_groups_2.h>
#include <CGAL/Shape_regularization/internal/Collinear_groups_2.h>
/// \endcond

/// \cond SKIP_IN_MANUAL
#if defined(CGAL_USE_OSQP)
#include <CGAL/OSQP_quadratic_program_traits.h>
#endif // CGAL_USE_OSQP
/// \endcond

#include <CGAL/Shape_regularization/QP_regularization.h>
#include <CGAL/Shape_regularization/Segments/Angle_regularization_2.h>
#include <CGAL/Shape_regularization/Segments/Offset_regularization_2.h>
#include <CGAL/Shape_regularization/Segments/Delaunay_neighbor_query_2.h>

namespace CGAL {
namespace Shape_regularization {
namespace Segments {

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief regularizes a set of 2D segments.

    Given a set of unordered 2D segments, this function enables to reinforce
    three types of regularities among these segments:
    - *Parallelism*: segments, which are detected as near parallel, are made exactly parallel.
    - *Orthogonality*: segments, which are detected as near orthogonal, are made exactly orthogonal.
    - *Collinearity*: parallel segments, which are detected as near collinear, are made exactly collinear.

    The user has to provide a `NeighborQuery` model to access local neighbors
    of a segment and a `RegularizationType` model to define the type of regularities
    that should be addressed. The function is based on the class `QP_regularization`.
    Please refer to that class and these concepts for more information.

    This class requires a `QPSolver` model which defaults to the \ref thirdpartyOSQP "OSQP"
    library, which must be available on the system.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \tparam NeighQuery
    a model of `NeighborQuery`

    \tparam RegType
    a model of `RegularizationType`

    \tparam QPSolver
    a model of `QuadraticProgramTraits`

    \tparam NamedParameters
    a sequence of \ref bgl_namedparameters "Named Parameters"

    \param input_range
    a const range of input segments for shape regularization

    \param neighbor_query
    an instance of `NeighQuery` that is used internally to
    access neighbors of a segment; this parameter can be omitted together
    with the `regularization_type` parameter, in this case, all types of regularities
    will be reinforced on the whole input range and the default solver will be used (see below)

    \param regularization_type
    an instance of `RegType` that is used internally to
    obtain bounds and target values required by the regularization;
    this parameter can be omitted together with the `neighbor_query` parameter,
    in this case, all types of regularities will be reinforced on the whole input range
    and the default solver will be used (see below)

    \param quadratic_program
    an instance of `QPSolver` to solve the quadratic programming problem;
    this parameter can be omitted, the default solver is `CGAL::OSQP_quadratic_program_traits`

    \param np
    an optional sequence of \ref bgl_namedparameters "Named Parameters"
    among the ones listed below; this parameter can be omitted,
    the default values are then used

    \cgalNamedParamsBegin
      \cgalParamNBegin{geom_traits}
        \cgalParamDescription{an instance of geometric traits class}
        \cgalParamType{a model of `Kernel`}
        \cgalParamDefault{a CGAL `Kernel` deduced from the point type,
        using `CGAL::Kernel_traits`}
      \cgalParamNEnd
    \cgalNamedParamsEnd

    \pre input_range.size() >= 2

    \sa `regularize_angles()`
    \sa `regularize_offsets()`
  */
  template<
  typename InputRange,
  typename NeighQuery,
  typename RegType,
  typename QPSolver,
  typename NamedParameters = parameters::Default_named_parameters>
  void regularize_segments(
    InputRange& input_range,
    NeighQuery& neighbor_query,
    RegType& regularization_type,
    QPSolver& quadratic_program,
    const NamedParameters& np = parameters::default_values()) {

    using SegmentMap = typename internal::GetSegmentMap<InputRange, NamedParameters>::type;
    using Segment_2 = typename SegmentMap::value_type;
    using GeomTraits = typename CGAL::Kernel_traits<Segment_2>::Kernel;

    CGAL_precondition(input_range.size() >= 2);
    using Regularizer = QP_regularization<
      GeomTraits, InputRange, NeighQuery, RegType, QPSolver>;

    Regularizer regularizer(
      input_range, neighbor_query, regularization_type, quadratic_program, np);
    regularizer.regularize();
  }

  #if defined(CGAL_USE_OSQP) || defined(DOXYGEN_RUNNING)

  /// \cond SKIP_IN_MANUAL
  template<
  typename InputRange,
  typename NeighQuery,
  typename RegType>
  void regularize_segments(
    InputRange& input_range,
    NeighQuery& neighbor_query,
    RegType& regularization_type) {

    CGAL_precondition(input_range.size() >= 2);
    using Iterator_type = typename InputRange::const_iterator;
    using Segment_2 = typename std::iterator_traits<Iterator_type>::value_type;
    using GeomTraits = typename Kernel_traits<Segment_2>::Kernel;
    GeomTraits traits;

    using FT = typename GeomTraits::FT;
    using QP = CGAL::OSQP_quadratic_program_traits<FT>;
    QP quadratic_program;

    regularize_segments(
      input_range, neighbor_query, regularization_type, quadratic_program,
      CGAL::parameters::geom_traits(traits));
  }

  template<typename InputRange>
  void regularize_segments(
    InputRange& input_range) {

    CGAL_precondition(input_range.size() >= 2);
    using Iterator_type = typename InputRange::const_iterator;
    using Segment_2 = typename std::iterator_traits<Iterator_type>::value_type;
    using GeomTraits = typename Kernel_traits<Segment_2>::Kernel;

    using Indices = std::vector<std::size_t>;
    using Neighbor_query = Delaunay_neighbor_query_2<GeomTraits, InputRange>;
    using Angle_regularization = Angle_regularization_2<GeomTraits, InputRange>;
    using Offset_regularization = Offset_regularization_2<GeomTraits, InputRange>;

    // Regularize angles.
    Neighbor_query neighbor_query(input_range);
    Angle_regularization angle_regularization(input_range);
    regularize_segments(
      input_range, neighbor_query, angle_regularization);

    std::vector<Indices> parallel_groups;
    angle_regularization.parallel_groups(
      std::back_inserter(parallel_groups));

    // Regularize offsets.
    Offset_regularization offset_regularization(input_range);
    neighbor_query.clear();
    for (const auto& parallel_group : parallel_groups) {
      neighbor_query.add_group(parallel_group);
      offset_regularization.add_group(parallel_group);
    }
    regularize_segments(
      input_range, neighbor_query, offset_regularization);
  }
  /// \endcond

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief regularizes angles in a set of 2D segments.

    Given a set of unordered 2D segments, this function enables to reinforce
    two types of regularities among these segments:
    - *Parallelism*: segments, which are detected as near parallel, are made exactly parallel.
    - *Orthogonality*: segments, which are detected as near orthogonal, are made exactly orthogonal.

    This is an utility function based on `regularize_segments()` that is using default parameters.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \param input_range
    a const range of input segments for angle regularization

    \pre input_range.size() >= 2

    \sa `regularize_segments()`
    \sa `regularize_offsets()`
  */
  template<typename InputRange>
  void regularize_angles(
    InputRange& input_range) {

    CGAL_precondition(input_range.size() >= 2);
    using Iterator_type = typename InputRange::const_iterator;
    using Segment_2 = typename std::iterator_traits<Iterator_type>::value_type;
    using GeomTraits = typename Kernel_traits<Segment_2>::Kernel;

    using Neighbor_query = Delaunay_neighbor_query_2<GeomTraits, InputRange>;
    using Angle_regularization = Angle_regularization_2<GeomTraits, InputRange>;

    Neighbor_query neighbor_query(input_range);
    Angle_regularization angle_regularization(input_range);
    regularize_segments(
      input_range, neighbor_query, angle_regularization);
  }

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief regularizes offsets in a set of 2D segments.

    Given a set of parallel 2D segments, this function enables to reinforce
    the collinearity property among these segments that is all parallel segments,
    which are detected as near collinear, are made exactly collinear.

    This is an utility function based on `regularize_segments()` that is using default parameters.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \param input_range
    a const range of input segments for offset regularization

    \pre input_range.size() >= 2

    \sa `regularize_segments()`
    \sa `regularize_angles()`
  */
  template<typename InputRange>
  void regularize_offsets(
    InputRange& input_range) {

    CGAL_precondition(input_range.size() >= 2);
    using Iterator_type = typename InputRange::const_iterator;
    using Segment_2 = typename std::iterator_traits<Iterator_type>::value_type;
    using GeomTraits = typename Kernel_traits<Segment_2>::Kernel;

    using Neighbor_query = Delaunay_neighbor_query_2<GeomTraits, InputRange>;
    using Offset_regularization = Offset_regularization_2<GeomTraits, InputRange>;

    Neighbor_query neighbor_query(input_range);
    Offset_regularization offset_regularization(input_range);
    regularize_segments(
      input_range, neighbor_query, offset_regularization);
  }

  #endif // CGAL_USE_OSQP or DOXYGEN_RUNNING

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief finds groups of parallel segments in a set of 2D segments.

    This function enables to find groups of near parallel segments
    in a set of 2D segments. The groups are returned as vectors of indices.
    Note that two segments may be included at the same group even if they are
    far away from each other. This algorithm concerns only the angle relationship
    among segments, but not the distance.

    This function does not regularize input segments, but only groups them.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \tparam OutIterator
    a model of `OutputIterator` that accepts elements of type `std::vector<std::size_t>`

    \tparam NamedParameters
    a sequence of \ref bgl_namedparameters "Named Parameters"

    \param input_range
    a const range of input segments

    \param groups
    an output iterator with groups of segment indices

    \param np
    an optional sequence of \ref bgl_namedparameters "Named Parameters"
    among the ones listed below; this parameter can be omitted,
    the default values are then used

    \cgalNamedParamsBegin
      \cgalParamNBegin{maximum_angle}
        \cgalParamDescription{maximum allowed angle deviation in degrees between two segments
          such that they are considered to be parallel}
        \cgalParamType{`GeomTraits::FT`}
        \cgalParamDefault{5 degrees}
      \cgalParamNEnd
      \cgalParamNBegin{preserve_order}
        \cgalParamDescription{indicates whether the order of input segments should be
          preserved or not}
        \cgalParamType{boolean}
        \cgalParamDefault{false}
      \cgalParamNEnd
      \cgalParamNBegin{segment_map}
        \cgalParamDescription{a property map that maps an item from `input_range`
        to `GeomTraits::Segment_2`}
        \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the input
        range and value type is `GeomTraits::Segment_2`}
        \cgalParamDefault{`CGAL::Identity_property_map`}
      \cgalParamNEnd
      \cgalParamNBegin{geom_traits}
        \cgalParamDescription{an instance of geometric traits class}
        \cgalParamType{a model of `Kernel`}
        \cgalParamDefault{a CGAL `Kernel` deduced from the point type,
        using `CGAL::Kernel_traits`}
      \cgalParamNEnd
    \cgalNamedParamsEnd

    \return an output iterator to the element in the destination range,
    one past the last group stored

    \pre input_range.size() >= 1
    \pre maximum_angle >= 0 && maximum_angle <= 90
  */
  template<
  typename InputRange,
  typename OutIterator,
  typename NamedParameters = parameters::Default_named_parameters>
  OutIterator parallel_groups(
    const InputRange& input_range,
    OutIterator groups,
    const NamedParameters& np = parameters::default_values()) {

    using SegmentMap = typename internal::GetSegmentMap<InputRange, NamedParameters>::type;
    using Segment_2 = typename SegmentMap::value_type;
    using GeomTraits = typename CGAL::Kernel_traits<Segment_2>::Kernel;

    const SegmentMap segment_map = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::segment_map), SegmentMap());
    const GeomTraits traits = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::geom_traits), GeomTraits());

    CGAL_precondition(input_range.size() >= 1);
    using Parallel_groups_2 = internal::Parallel_groups_2<
      GeomTraits, InputRange, SegmentMap>;

    Parallel_groups_2 grouping(
      input_range, np, segment_map, traits);
    return grouping.groups(groups);
  }

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief finds groups of collinear segments in a set of 2D segments.

    This function enables to find groups of near collinear segments
    in a set of 2D segments. The groups are returned as vectors of indices.
    This algorithm first finds the groups of parallel segments using the function
    `Segments::parallel_groups()` and then splits these groups into groups of collinear segments.

    This function does not regularize input segments, but only groups them.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \tparam OutIterator
    a model of `OutputIterator` that accepts elements of type `std::vector<std::size_t>`

    \tparam NamedParameters
    a sequence of \ref bgl_namedparameters "Named Parameters"

    \param input_range
    a const range of input segments

    \param groups
    an output iterator with groups of segment indices

    \param np
    an optional sequence of \ref bgl_namedparameters "Named Parameters"
    among the ones listed below; this parameter can be omitted,
    the default values are then used

    \cgalNamedParamsBegin
      \cgalParamNBegin{maximum_offset}
        \cgalParamDescription{maximum allowed orthogonal distance between two parallel segments
          such that they are considered to be collinear}
        \cgalParamType{`GeomTraits::FT`}
        \cgalParamDefault{0.2 unit length}
      \cgalParamNEnd
      \cgalParamNBegin{preserve_order}
        \cgalParamDescription{indicates whether the order of input segments should be
          preserved or not}
        \cgalParamType{boolean}
        \cgalParamDefault{false}
      \cgalParamNEnd
      \cgalParamNBegin{segment_map}
        \cgalParamDescription{a property map that maps an item from `input_range`
        to `GeomTraits::Segment_2`}
        \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the input
        range and value type is `GeomTraits::Segment_2`}
        \cgalParamDefault{`CGAL::Identity_property_map`}
      \cgalParamNEnd
      \cgalParamNBegin{geom_traits}
        \cgalParamDescription{an instance of geometric traits class}
        \cgalParamType{a model of `Kernel`}
        \cgalParamDefault{a CGAL `Kernel` deduced from the point type,
        using `CGAL::Kernel_traits`}
      \cgalParamNEnd
    \cgalNamedParamsEnd

    \return an output iterator to the element in the destination range,
    one past the last group stored

    \pre input_range.size() >= 1
    \pre maximum_offset >= 0
  */
  template<
  typename InputRange,
  typename OutIterator,
  typename NamedParameters = parameters::Default_named_parameters>
  OutIterator collinear_groups(
    const InputRange& input_range,
    OutIterator groups,
    const NamedParameters& np = parameters::default_values()) {

    using SegmentMap = typename internal::GetSegmentMap<InputRange, NamedParameters>::type;
    using Segment_2 = typename SegmentMap::value_type;
    using GeomTraits = typename CGAL::Kernel_traits<Segment_2>::Kernel;

    const SegmentMap segment_map = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::segment_map), SegmentMap());
    const GeomTraits traits = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::geom_traits), GeomTraits());

    CGAL_precondition(input_range.size() >= 1);
    using Collinear_groups_2 = internal::Collinear_groups_2<
      GeomTraits, InputRange, SegmentMap>;

    Collinear_groups_2 grouping(
      input_range, np, segment_map, traits);
    return grouping.groups(groups);
  }

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief finds groups of orthogonal segments in a set of 2D segments.

    This function enables to find groups of near orthogonal segments
    in a set of 2D segments. The groups are returned as vectors of indices.
    This algorithm first finds the groups of parallel segments using the function
    `Segments::parallel_groups()` and then merges these groups into groups of orthogonal segments.

    This function does not regularize input segments, but only groups them.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \tparam OutIterator
    a model of `OutputIterator` that accepts elements of type `std::vector<std::size_t>`

    \tparam NamedParameters
    a sequence of \ref bgl_namedparameters "Named Parameters"

    \param input_range
    a const range of input segments

    \param groups
    an output iterator with groups of segment indices

    \param np
    an optional sequence of \ref bgl_namedparameters "Named Parameters"
    among the ones listed below; this parameter can be omitted,
    the default values are then used

    \cgalNamedParamsBegin
      \cgalParamNBegin{maximum_angle}
        \cgalParamDescription{maximum allowed angle deviation in degrees between two segments
          such that they are considered to be parallel or orthogonal}
        \cgalParamType{`GeomTraits::FT`}
        \cgalParamDefault{5 degrees}
      \cgalParamNEnd
      \cgalParamNBegin{preserve_order}
        \cgalParamDescription{indicates whether the order of input segments should be
          preserved or not}
        \cgalParamType{boolean}
        \cgalParamDefault{false}
      \cgalParamNEnd
      \cgalParamNBegin{segment_map}
        \cgalParamDescription{a property map that maps an item from `input_range`
        to `GeomTraits::Segment_2`}
        \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the input
        range and value type is `GeomTraits::Segment_2`}
        \cgalParamDefault{`CGAL::Identity_property_map`}
      \cgalParamNEnd
      \cgalParamNBegin{geom_traits}
        \cgalParamDescription{an instance of geometric traits class}
        \cgalParamType{a model of `Kernel`}
        \cgalParamDefault{a CGAL `Kernel` deduced from the point type,
        using `CGAL::Kernel_traits`}
      \cgalParamNEnd
    \cgalNamedParamsEnd

    \return an output iterator to the element in the destination range,
    one past the last group stored

    \pre input_range.size() >= 1
    \pre maximum_angle >= 0 && maximum_angle <= 90
  */
  template<
  typename InputRange,
  typename OutIterator,
  typename NamedParameters = parameters::Default_named_parameters>
  OutIterator orthogonal_groups(
    const InputRange& input_range,
    OutIterator groups,
    const NamedParameters& np = parameters::default_values()) {

    using SegmentMap = typename internal::GetSegmentMap<InputRange, NamedParameters>::type;
    using Segment_2 = typename SegmentMap::value_type;
    using GeomTraits = typename CGAL::Kernel_traits<Segment_2>::Kernel;

    const SegmentMap segment_map = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::segment_map), SegmentMap());
    const GeomTraits traits = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::geom_traits), GeomTraits());

    CGAL_precondition(input_range.size() >= 1);
    using Orthogonal_groups_2 = internal::Orthogonal_groups_2<
      GeomTraits, InputRange, SegmentMap>;

    Orthogonal_groups_2 grouping(
      input_range, np, segment_map, traits);
    return grouping.groups(groups);
  }

  /*!
    \ingroup PkgShapeRegularizationRefSegments

    \brief substitutes groups of 2D collinear segments by average segments.

    This function first calls `Segments::collinear_groups()`
    and then substitutes each group of collinear segments by an average segment.
    The number of returned segments is the number of detected collinear groups.

    This function does not regularize input segments, but only groups and then simplifies them.

    \tparam InputRange
    a model of `ConstRange` whose iterator type is `RandomAccessIterator`

    \tparam OutIterator
    a model of `OutputIterator` that accepts segments of type `GeomTraits::Segment_2`

    \tparam NamedParameters
    a sequence of \ref bgl_namedparameters "Named Parameters"

    \param input_range
    a const range of input segments

    \param segments
    an output iterator with the simplified segments

    \param np
    an optional sequence of \ref bgl_namedparameters "Named Parameters"
    among the ones listed below; this parameter can be omitted,
    the default values are then used

    \cgalNamedParamsBegin
      \cgalParamNBegin{maximum_offset}
        \cgalParamDescription{maximum allowed orthogonal distance between two parallel segments
          such that they are considered to be collinear}
        \cgalParamType{`GeomTraits::FT`}
        \cgalParamDefault{0.2 unit length}
      \cgalParamNEnd
      \cgalParamNBegin{preserve_order}
        \cgalParamDescription{indicates whether the order of input segments should be
          preserved or not}
        \cgalParamType{boolean}
        \cgalParamDefault{false}
      \cgalParamNEnd
      \cgalParamNBegin{segment_map}
        \cgalParamDescription{a property map that maps an item from `input_range`
        to `GeomTraits::Segment_2`}
        \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the input
        range and value type is `GeomTraits::Segment_2`}
        \cgalParamDefault{`CGAL::Identity_property_map`}
      \cgalParamNEnd
      \cgalParamNBegin{geom_traits}
        \cgalParamDescription{an instance of geometric traits class}
        \cgalParamType{a model of `Kernel`}
        \cgalParamDefault{a CGAL `Kernel` deduced from the point type,
        using `CGAL::Kernel_traits`}
      \cgalParamNEnd
    \cgalNamedParamsEnd

    \return an output iterator to the element in the destination range,
    one past the last segment stored

    \pre input_range.size() >= 1
    \pre maximum_offset >= 0
  */
  template<
  typename InputRange,
  typename OutIterator,
  typename NamedParameters = parameters::Default_named_parameters>
  OutIterator unique_segments(
    const InputRange& input_range,
    OutIterator segments,
    const NamedParameters& np = parameters::default_values()) {

    using SegmentMap = typename internal::GetSegmentMap<InputRange, NamedParameters>::type;
    using Segment_2 = typename SegmentMap::value_type;
    using GeomTraits = typename CGAL::Kernel_traits<Segment_2>::Kernel;

    const SegmentMap segment_map = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::segment_map), SegmentMap());
    const GeomTraits traits = parameters::choose_parameter(
      parameters::get_parameter(np, internal_np::geom_traits), GeomTraits());

    CGAL_precondition(input_range.size() >= 1);
    using Unique_segments_2 = internal::Unique_segments_2<
      GeomTraits, InputRange, SegmentMap>;

    const Unique_segments_2 unique(
      input_range, np, segment_map, traits);
    return unique.segments(segments);
  }

} // namespace Segments
} // namespace Shape_regularization
} // namespace CGAL

#endif // CGAL_SHAPE_REGULARIZATION_REGULARIZE_SEGMENTS_H