1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
|
// Copyright (c) 2003
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1/STL_Extension/include/CGAL/iterator.h $
// $Id: include/CGAL/iterator.h b26b07a1242 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
// Lutz Kettner <kettner@mpi-sb.mpg.de>
// Sylvain Pion
#ifndef CGAL_ITERATOR_H
#define CGAL_ITERATOR_H 1
#include <CGAL/disable_warnings.h>
#include <CGAL/assertions.h>
#include <CGAL/circulator.h>
#include <CGAL/Iterator_range.h>
#include <CGAL/tuple.h>
#include <CGAL/type_traits.h>
#include <CGAL/use.h>
#include <variant>
#include <optional>
#include <boost/config.hpp>
#include <vector>
#include <map>
#include <utility>
#include <type_traits>
namespace CGAL {
template<typename I, typename Reference_type = const I&>
class Prevent_deref
: public boost::iterator_adaptor<
Prevent_deref<I, Reference_type>
, I // base
, CGAL::cpp20::remove_cvref_t<Reference_type> // value
, boost::use_default // category
, Reference_type // ref
>
{
public:
using Value_type = CGAL::cpp20::remove_cvref_t<Reference_type>;
using Base = boost::iterator_adaptor<
Prevent_deref<I, Reference_type>
, I // base
, Value_type // value
, boost::use_default // category
, Reference_type // ref
>;
typedef typename std::pair<I, I> range;
Prevent_deref() = default;
Prevent_deref(const I& i) : Base(i) {}
private:
friend class boost::iterator_core_access;
Reference_type dereference() const {
return this->base_reference();
}
};
template<typename I>
Prevent_deref<I> make_prevent_deref(const I& i)
{
return Prevent_deref<I>(i);
}
template<typename I>
Iterator_range<Prevent_deref<I> > make_prevent_deref_range(const I& begin, const I& end)
{
return Iterator_range<Prevent_deref<I> >(make_prevent_deref(begin), make_prevent_deref(end));
}
template<typename R>
auto make_prevent_deref_range(R&& range)
{
static_assert( !std::is_rvalue_reference_v<R&&>,
"make_prevent_deref_range cannot be used with"
" rvalue references to avoid dangling references");
// Note: If CGAL were allowed to use C++20, we could use `std::ranges::begin/end`.
// That would allow this to work with rvalue ranges when `std::borrowed_range<R>` is `true`.
// See https://en.cppreference.com/w/cpp/ranges/begin.html#Notes
using std::begin;
using std::end;
return make_range(make_prevent_deref(begin(range)), make_prevent_deref(end(range)));
}
namespace cpp98 {
template<typename Category, typename Tp, typename Distance = std::ptrdiff_t,
typename Pointer = Tp*, typename Reference = Tp&>
struct iterator
{
/// One of the iterator_tags tag types.
typedef Category iterator_category;
/// The type "pointed to" by the iterator.
typedef Tp value_type;
/// Distance between iterators is represented as this type.
typedef Distance difference_type;
/// This type represents a pointer-to-value_type.
typedef Pointer pointer;
/// This type represents a reference-to-value_type.
typedef Reference reference;
};
} // end namespace cpp98
// +----------------------------------------------------------------+
// | Emptyset_iterator
// +----------------------------------------------------------------+
// | sends everything to /dev/null
// +----------------------------------------------------------------+
struct Emptyset_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
template< class T >
Emptyset_iterator& operator=(const T&) { return *this; }
Emptyset_iterator& operator++() { return *this; }
Emptyset_iterator& operator++(int) { return *this; }
Emptyset_iterator& operator*() { return *this; }
};
// +---------------------------------------------------------------------+
// | Insert_iterator
// +---------------------------------------------------------------------+
// | Insert output iterator, which calls insert(value) on the container.
// | Similar to std::insert_iterator<> except it doesn't pass an iterator.
// +---------------------------------------------------------------------+
template < class Container >
class Insert_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
protected:
Container *container;
public:
typedef Container container_type;
explicit Insert_iterator(Container &c)
: container(&c) {}
Insert_iterator&
operator=(typename Container::const_reference value)
{
container->insert(value);
return *this;
}
Insert_iterator&
operator*() { return *this; }
Insert_iterator&
operator++() { return *this; }
Insert_iterator
operator++(int) { return *this; }
};
template < class Container >
inline Insert_iterator<Container>
inserter(Container &x)
{ return Insert_iterator<Container>(x); }
// +----------------------------------------------------------------+
// | Oneset_iterator
// +----------------------------------------------------------------+
// | stores a pointer to an object of type T
// | which will be affected by operator*().
// +----------------------------------------------------------------+
template < class T >
class Oneset_iterator
: public CGAL::cpp98::iterator< std::bidirectional_iterator_tag,
void, void, void, void >
{
T* t;
public:
// types
typedef Oneset_iterator<T> Self;
public:
Oneset_iterator(T& t) : t(&t) {}
T& operator*() { return *t; }
const T& operator*() const { return *t; }
T* operator->() { return t; }
const T* operator->() const { return t; }
Self& operator++() { return *this; }
Self& operator++(int) { return *this; }
Self& operator--() { return *this; }
Self& operator--(int) { return *this; }
};
// +----------------------------------------------------------------+
// | Const_oneset_iterator
// +----------------------------------------------------------------+
// | stores an object of type T
// | which will be affected by operator*().
// +----------------------------------------------------------------+
template < typename T >
class Const_oneset_iterator {
public:
// types
typedef std::random_access_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef Const_oneset_iterator<T> Self;
typedef difference_type Diff;
typedef value_type Val;
typedef pointer Ptr;
typedef reference Ref;
// construction
Const_oneset_iterator( const T& t = T(), Diff n = 0)
: value( t), index( n)
{ }
// access
Ref operator * ( ) { return value; }
const value_type& operator * ( ) const { return value; }
Ptr operator -> ( ) { return &value; }
const value_type* operator -> ( ) const { return &value; }
// equality operator
bool operator == ( const Self& x) const { return ( index==x.index); }
bool operator != ( const Self& x) const { return ( index!=x.index); }
// forward operations
// ------------------
Self& operator ++ ( ) { ++index; return *this; }
Self operator ++ ( int) { Self tmp = *this; ++index; return tmp; }
// bidirectional operations
// ------------------------
Self& operator -- ( ) { --index; return *this; }
Self operator -- ( int) { Self tmp = *this; --index; return tmp; }
// random access operations
// ------------------------
// access
Ref operator [] ( Diff ) { return value;}
const value_type& operator [] ( Diff ) const { return value;}
// less operator
bool operator < ( const Self& x) const { return ( index < x.index);}
// arithmetic operations
Self& operator += ( Diff n) { index += n; return *this; }
Self& operator -= ( Diff n) { index -= n; return *this; }
Self operator + ( Diff n) const { Self tmp = *this; return tmp+=n; }
Self operator - ( Diff n) const { Self tmp = *this; return tmp-=n; }
Diff operator - ( const Self& x) const { return index - x.index; }
private:
// data members
Val value;
Diff index;
};
// +----------------------------------------------------------------+
// | Counting_output_iterator
// +----------------------------------------------------------------+
// | stores a pointer to an int,
// | which will be incremented by operator=().
// +----------------------------------------------------------------+
// Undocumented, because there is some hope to merge it into Counting_iterator
class Counting_output_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
std::size_t *c;
public:
Counting_output_iterator(std::size_t *cc) : c(cc) { *c = 0; }
Counting_output_iterator& operator++() { return *this; }
Counting_output_iterator& operator++(int) { return *this; }
Counting_output_iterator& operator*() { return *this; }
template <typename T>
void operator=(const T&) { ++*c; }
std::size_t current_counter() const { return *c; }
};
template < class I,
class Val = typename std::iterator_traits<I>::value_type >
class Counting_iterator {
protected:
I nt; // The internal iterator.
std::size_t d_i; // The internal counter.
public:
typedef I Iterator;
typedef Counting_iterator<I,Val> Self;
typedef std::input_iterator_tag iterator_category;
typedef Val value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type& reference;
typedef const value_type* pointer;
// CREATION
// --------
Counting_iterator( std::size_t i = 0) : d_i(i) {}
Counting_iterator( Iterator j, std::size_t i = 0) : nt(j), d_i(i) {}
// OPERATIONS Forward Category
// ---------------------------
Iterator current_iterator() const { return nt;}
std::size_t current_counter() const { return d_i;}
bool operator==( const Self& i) const { return ( d_i == i.d_i); }
bool operator!=( const Self& i) const { return !(*this == i); }
reference operator*() const { return *nt; }
pointer operator->() const { return nt.operator->(); }
Self& operator++() {
++nt;
++d_i;
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
};
template < class I, int N,
class Ref = typename std::iterator_traits<I>::reference,
class Ptr = typename std::iterator_traits<I>::pointer,
class Val = typename std::iterator_traits<I>::value_type,
class Dist = typename std::iterator_traits<I>::difference_type,
class Ctg = typename std::iterator_traits<I>::iterator_category >
class N_step_adaptor {
protected:
I nt; // The internal iterator.
bool empty;
public:
typedef I Iterator;
typedef N_step_adaptor<I,N> Self;
typedef std::iterator_traits<I> ITI;
typedef typename ITI::reference reference;
typedef typename ITI::pointer pointer;
typedef typename ITI::value_type value_type;
typedef typename ITI::difference_type difference_type;
typedef typename ITI::iterator_category iterator_category;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
// CREATION
// --------
N_step_adaptor(): empty(true) {}
N_step_adaptor( Iterator j) : nt(j), empty(false) {}
template <class II>
N_step_adaptor( const N_step_adaptor<II,N>& j)
: nt( j.current_iterator()), empty(j.empty) {}
// OPERATIONS Forward Category
// ---------------------------
// Circulator stuff.
typedef I Circulator;
Circulator current_circulator() const { return nt;}
Iterator current_iterator() const { return nt;}
bool operator==( std::nullptr_t p) const {
CGAL_USE(p);
CGAL_assertion( p == 0);
return empty;
}
bool operator!=( std::nullptr_t p) const { return !(*this == p); }
bool operator==( const Self& i) const { return (empty && i.empty) ||( nt == i.nt); }
bool operator!=( const Self& i) const { return !(*this == i); }
reference operator*() const { return *nt; }
pointer operator->() const { return nt.operator->(); }
Self& operator++() {
std::advance( nt, N);
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
// OPERATIONS Bidirectional Category
// ---------------------------------
Self& operator--() {
std::advance( nt, -N);
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
// OPERATIONS Random Access Category
// ---------------------------------
Self min_circulator() const { return Self( nt.min_circulator()); }
Self& operator+=( difference_type n) {
nt += difference_type(N * n);
return *this;
}
Self operator+( difference_type n) const {
Self tmp = *this;
tmp.nt += difference_type(N * n);
return tmp;
}
Self& operator-=( difference_type n) {
return operator+=( -n);
}
Self operator-( difference_type n) const {
Self tmp = *this;
return tmp += -n;
}
difference_type operator-( const Self& i) const { return (nt-i.nt)/N;}
reference operator[]( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp.operator*();
}
bool operator<( const Self& i) const { return ( nt < i.nt); }
bool operator>( const Self& i) const { return i < *this; }
bool operator<=( const Self& i) const { return !(i < *this); }
bool operator>=( const Self& i) const { return !(*this < i); }
};
// Microsoft 1300 cannot handle the default template parameters. Hence, ...
template < class I, int N, class Ref, class Ptr,
class Val, class Dist, class Ctg >
inline
N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg>
operator+(typename N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg>::difference_type n,
N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg> i)
{ return i += n; }
template < class I, int N>
class N_step_adaptor_derived : public I {
public:
typedef I Iterator;
typedef I Circulator;
typedef N_step_adaptor_derived<I,N> Self;
typedef typename I::iterator_category iterator_category;
typedef typename I::value_type value_type;
typedef typename I::difference_type difference_type;
typedef typename I::reference reference;
typedef typename I::pointer pointer;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
// CREATION
// --------
N_step_adaptor_derived() {}
N_step_adaptor_derived( Iterator j) : I(j) {}
template <class II>
N_step_adaptor_derived( const N_step_adaptor_derived<II,N>& j)
: I( j.current_iterator()) {}
// OPERATIONS Forward Category
// ---------------------------
Circulator current_circulator() const { return *this;}
Iterator current_iterator() const { return *this;}
Self& operator++() {
std::advance( (I&)*this, N);
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
// OPERATIONS Bidirectional Category
// ---------------------------------
Self& operator--() {
std::advance( (I&)*this, -N);
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
// OPERATIONS Random Access Category
// ---------------------------------
Self min_circulator() const { return Self( I::min_circulator()); }
Self& operator+=( difference_type n) {
I::operator+=( difference_type(N * n));
return *this;
}
Self operator+( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp;
}
Self& operator-=( difference_type n) {
return operator+=( -n);
}
Self operator-( difference_type n) const {
Self tmp = *this;
return tmp += -n;
}
difference_type operator-( const Self& i) const {
return (I::operator-(i)) / N;
}
reference operator[]( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp.operator*();
}
};
template < class I, int N >
inline
N_step_adaptor_derived<I,N>
operator+( typename N_step_adaptor_derived<I,N>::difference_type n,
N_step_adaptor_derived<I,N> i)
{ return i += n; }
template < class I, class P > struct Filter_iterator;
template < class I, class P >
bool operator==(const Filter_iterator<I,P>&, const Filter_iterator<I,P>&);
template < class I, class P >
bool operator<(const Filter_iterator<I,P>&, const Filter_iterator<I,P>&);
template < class I, class P >
struct Filter_iterator {
typedef I Iterator;
typedef P Predicate;
typedef Filter_iterator<I,P> Self;
typedef std::iterator_traits<I> ITI;
typedef typename ITI::reference reference;
typedef typename ITI::pointer pointer;
typedef typename ITI::value_type value_type;
typedef typename ITI::difference_type difference_type;
typedef typename ITI::iterator_category iterator_category;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
protected:
Iterator e_; // past-the-end position.
Iterator c_; // current position.
Predicate p_; // Leave out x <==> p_(x).
public:
Filter_iterator() {}
Filter_iterator(Iterator e, const Predicate& p)
: e_(e), c_(e), p_(p) {}
Filter_iterator(Iterator e, const Predicate& p, Iterator c)
: e_(e), c_(c), p_(p)
{
while (c_ != e_ && p_(c_))
++c_;
}
// for non-const -> const conversion for example
template <class Iterator2>
Filter_iterator(const Filter_iterator<Iterator2, Predicate>& fi,
std::enable_if_t<std::is_convertible_v<Iterator2, Iterator>>* = nullptr)
: e_(fi.end()), c_(fi.base()), p_(fi.predicate())
{}
Self& operator++() {
do { ++c_; } while (c_ != e_ && p_(c_));
return *this;
}
Self& operator--() {
do {
--c_;
} while (p_(c_));
return *this;
}
Self operator++(int) {
Self tmp(*this);
++(*this);
return tmp;
}
Self operator--(int) {
Self tmp(*this);
--(*this);
return tmp;
}
reference operator*() const { return *c_; }
pointer operator->() const { return &*c_; }
const Predicate& predicate() const { return p_; }
const Iterator& base() const { return c_; }
Iterator end() const { return e_; }
bool is_end() const { return (c_ == e_); }
friend bool operator== <>(const Self&, const Self&);
friend bool operator< <>(const Self&, const Self&);
};
template < class I, class P >
inline Filter_iterator< I, P >
filter_iterator(I e, const P& p)
{ return Filter_iterator< I, P >(e, p); }
template < class I, class P >
inline Filter_iterator< I, P >
filter_iterator(I e, const P& p, I c)
{ return Filter_iterator< I, P >(e, p, c); }
template < class I, class P >
inline
bool operator==(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{
CGAL_precondition(it1.e_ == it2.e_);
return it1.base() == it2.base();
}
template < class I, class P >
inline
bool operator<(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{
return it1.base() < it2.base();
}
template < class I, class P >
inline
bool operator!=(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{ return !(it1 == it2); }
// extra operators for test between const and non-const version for example
template < class I1, class I2, class P >
inline
std::enable_if_t<std::is_convertible_v<I1, I2> || std::is_convertible_v<I2, I1>, bool >
operator!=(const Filter_iterator<I1,P>& it1,
const Filter_iterator<I2,P>& it2)
{ return it1.base() != it2.base(); }
template < class I1, class I2, class P >
inline
std::enable_if_t<std::is_convertible_v<I1, I2> || std::is_convertible_v<I2, I1>, bool >
operator==(const Filter_iterator<I1,P>& it1,
const Filter_iterator<I2,P>& it2)
{ return it1.base() == it2.base(); }template < class I1, class I2, class P >
inline
std::enable_if_t<std::is_convertible_v<I1, I2> || std::is_convertible_v<I2, I1>, bool >
operator<(const Filter_iterator<I1,P>& it1,
const Filter_iterator<I2,P>& it2)
{ return it1.base() < it2.base(); }
template <class I1,class Op>
class Join_input_iterator_1
{
typedef Join_input_iterator_1<I1,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
typedef std::decay_t<decltype(std::declval<Op>()(std::declval<arg_type>()))>
value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
typedef value_type const* pointer;
typedef value_type const& reference;
protected:
I1 i1;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
public:
Join_input_iterator_1() {}
Join_input_iterator_1(const Join_input_iterator_1& it)
: i1(it.i1), op(it.op) {}
Join_input_iterator_1(I1 i,const Op& o=Op())
: i1(i), op(o) {}
I1 current_iterator1() const { return i1; }
bool operator==(const Self& i) const {
return i1 == i.i1;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1;
}
Join_input_iterator_1& operator=(const Join_input_iterator_1& it)
{
i1 = it.i1;
op = it.op;
return *this;
}
const value_type& operator*() const {
val = op(*i1);
return val;
}
Self& operator++( ) {
++i1;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
const value_type& operator[](difference_type i) const {
val = op(i1[i]);
return val;
}
Self& operator+=(difference_type n) {
i1 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template <class I1,class I2,class Op>
class Join_input_iterator_2
{
typedef Join_input_iterator_2<I1,I2,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type_1;
typedef typename std::iterator_traits<I2>::value_type arg_type_2;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
typedef decltype(std::declval<Op>()(std::declval<arg_type_1>(), std::declval<arg_type_2>()))
value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
typedef value_type* pointer;
typedef value_type& reference;
protected:
I1 i1;
I2 i2;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
public:
Join_input_iterator_2() {}
Join_input_iterator_2(const Join_input_iterator_2& it)
: i1(it.i1), i2(it.i2), op(it.op) {}
Join_input_iterator_2(I1 i1,I2 i2,const Op& op=Op())
: i1(i1), i2(i2), op(op) {}
I1 current_iterator1() const { return i1; }
I2 current_iterator2() const { return i2; }
bool operator==(const Self& i) const {
return i1 == i.i1 && i2 == i.i2;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1 && i2 < i.i2;
}
Join_input_iterator_2& operator=(const Join_input_iterator_2& it)
{
i1 = it.i1;
i2 = it.i2;
op = it.op;
return *this;
}
const value_type& operator*() const {
val = op(*i1,*i2);
return val;
}
Self& operator++( ) {
++i1;
++i2;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
--i2;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
const value_type& operator[](difference_type i) const {
val = op(i1[i],i2[i]);
return val;
}
Self& operator+=(difference_type n) {
i1 += n;
i2 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
i2 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template <class I1,class I2,class I3,class Op>
class Join_input_iterator_3
{
typedef Join_input_iterator_3<I1,I2,I3,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type_1;
typedef typename std::iterator_traits<I2>::value_type arg_type_2;
typedef typename std::iterator_traits<I3>::value_type arg_type_3;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
typedef decltype(std::declval<Op>()(std::declval<arg_type_1>(), std::declval<arg_type_2>(), std::declval<arg_type_3>()))
value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
typedef value_type* pointer;
typedef value_type& reference;
protected:
I1 i1;
I2 i2;
I3 i3;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
public:
Join_input_iterator_3() {}
Join_input_iterator_3(const Join_input_iterator_3& it)
: i1(it.i1), i2(it.i2), i3(it.i3), op(it.op) {}
Join_input_iterator_3(I1 i1,I2 i2,I3 i3,const Op& op=Op())
: i1(i1), i2(i2), i3(i3), op(op) {}
I1 current_iterator1() const { return i1; }
I2 current_iterator2() const { return i2; }
I2 current_iterator3() const { return i3; }
bool operator==(const Self& i) const {
return i1 == i.i1 && i2 == i.i2 && i3 == i.i3;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1 && i2 < i.i2 && i3 < i.i3;
}
Join_input_iterator_3& operator=(const Join_input_iterator_3& it)
{
i1 = it.i1;
i2 = it.i2;
i3 = it.i3;
op = it.op;
return *this;
}
const value_type& operator*() const {
val = op(*i1,*i2,*i3);
return val;
}
Self& operator++( ) {
++i1;
++i2;
++i3;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
--i2;
--i3;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
const value_type& operator[](difference_type i) const {
val = op(i1[i],i2[i],i3[i]);
return val;
}
Self& operator+=(difference_type n) {
i1 += n;
i2 += n;
i3 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
i2 -= n;
i3 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template < class IC>
class Inverse_index {
// DEFINITION
//
// The class Inverse_index<IC,T> constructs an inverse index for a
// given range [i,j) of two iterators or circulators of type `IC' with the
// value type `T'. The first element I in the
// range [i,j) has the index 0. Consecutive elements are numbered
// incrementally. The inverse index provides a query for a given iterator
// or circulator k to retrieve its index number. For random access
// iterators or circulators, it is done in constant time by subtracting i.
// For other iterator categories, an STL `map' is used, which results in a
// log j-i query time. A comparison operator `operator<' is needed for
// `T*'.
//
// CREATION
protected:
typedef std::map< const void*, std::size_t > Index;
Index idx;
IC start;
typedef typename Index::iterator Index_iterator;
typedef typename Index::const_iterator Index_const_iterator;
typedef typename Index::value_type Item;
protected:
void ini_idx( IC i, const IC& j, std::input_iterator_tag);
void ini_idx( const IC& i, const IC& j, std::forward_iterator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx(const IC& i,const IC& j, std::bidirectional_iterator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC& i, const IC& j, Forward_circulator_tag) {
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC& i, const IC& j, Bidirectional_circulator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC&, const IC&, std::random_access_iterator_tag){}
void ini_idx( const IC&, const IC&, Random_access_circulator_tag){}
public:
void init_index( const IC& i, const IC& j) {
typedef typename std::iterator_traits<IC>::iterator_category ICC;
ini_idx( i, j, ICC());
}
protected:
void push_back( const IC& k, std::input_iterator_tag) {
std::size_t d = idx.size();
idx[ &*k] = d;
}
void push_back( const IC& k, std::forward_iterator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, std::bidirectional_iterator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, Forward_circulator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, Bidirectional_circulator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC&, std::random_access_iterator_tag){}
void push_back( const IC&, Random_access_circulator_tag){}
public:
void push_back( const IC& k) {
// adds k at the end of the indices.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
push_back( k, ICC());
}
std::size_t find( const IC& k, std::random_access_iterator_tag) const {
return std::size_t(k - start);
}
std::size_t find( const IC& k, Random_access_circulator_tag) const {
return std::size_t(k - start);
}
std::size_t find( const IC& k, std::input_iterator_tag) const {
// returns inverse index of k.
Index_const_iterator i = idx.find( &*k);
CGAL_assertion( i != idx.end());
return (*i).second;
}
std::size_t find( const IC& k, std::forward_iterator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, std::bidirectional_iterator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, Forward_circulator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, Bidirectional_circulator_tag) const {
return find( k, std::input_iterator_tag());
}
typedef IC iterator;
typedef IC Circulator;
typedef std::size_t size_type;
Inverse_index() : start(IC()) {}
// invalid index.
Inverse_index( const IC& i) : start(i) {};
// empty inverse index initialized to start at i.
Inverse_index( const IC& i, const IC& j) : start(i) {
// inverse index initialized with range [i,j).
init_index( i, j);
}
// OPERATIONS
std::size_t operator[]( const IC& k) const {
// returns inverse index of k.
typedef typename std::iterator_traits<IC>::iterator_category
category;
return find( k, category());
}
};
template < class IC>
void
Inverse_index< IC>::ini_idx( IC i, const IC& j, std::input_iterator_tag) {
std::size_t n = 0;
Index_iterator hint = idx.begin();
if ( ! is_empty_range( i, j)) {
do {
hint = idx.insert( hint, Item( &*i, n));
n++;
} while ((++i) != (j));
}
}
template < class IC>
class Random_access_adaptor {
// DEFINITION
//
// The class Random_access_adaptor<IC> provides a random access
// for data structures. Either the data structure supports random access
// iterators or circulators where this class maps function calls to the
// iterator or circulator, or a STL `vector' is used to provide the random
// access. The iterator or circulator of the data structure are of type
// `IC'.
//
// CREATION
protected:
typedef std::vector< IC> Index;
Index index;
IC start;
public:
typedef typename Index::size_type size_type;
void init_index( IC i, const IC& j, std::forward_iterator_tag);
void init_index( const IC& i, const IC& j,
std::bidirectional_iterator_tag){
init_index( i, j, std::forward_iterator_tag());
}
void init_index( const IC& i, const IC&,
std::random_access_iterator_tag){
start = i;
}
void init_index( const IC& i, const IC& j) {
typedef typename std::iterator_traits<IC>::iterator_category ICC;
init_index( i, j, ICC());
}
void reserve( size_type r, std::forward_iterator_tag) {
index.reserve( r);
}
void reserve( size_type r, std::bidirectional_iterator_tag){
reserve( r, std::forward_iterator_tag());
}
void reserve( size_type, std::random_access_iterator_tag){}
void push_back( const IC& k, std::forward_iterator_tag) {
index.push_back(k);
}
void push_back( const IC& k, std::bidirectional_iterator_tag){
push_back( k, std::forward_iterator_tag());
}
void push_back( const IC&, std::random_access_iterator_tag){}
const IC& find( size_type n, std::forward_iterator_tag) const {
// returns inverse index of k.
CGAL_assertion( n < index.size());
return index[n];
}
const IC& find( size_type n, std::bidirectional_iterator_tag) const {
return find( n, std::forward_iterator_tag());
}
IC find( size_type n, std::random_access_iterator_tag) const {
return start + n;
}
typedef IC iterator;
typedef IC Circulator;
Random_access_adaptor() : start(IC()) {}
// invalid index.
Random_access_adaptor( const IC& i) : start(i) {}
// empty random access index initialized to start at i.
Random_access_adaptor( const IC& i, const IC& j) : start(i) {
// random access index initialized with range [i,j).
init_index( i, j);
}
void reserve( size_type r) {
// reserve r entries, if a `vector' is used internally.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
reserve( r, ICC());
}
// OPERATIONS
IC find( size_type n) const {
// returns inverse index of k.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
return find( n, ICC());
}
IC operator[]( size_type n) const { return find(n); }
void push_back( const IC& k) {
// adds k at the end of the indices.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
push_back( k, ICC());
}
};
template < class IC>
void
Random_access_adaptor< IC>::init_index( IC i, const IC& j,
std::forward_iterator_tag) {
if ( ! is_empty_range( i, j)) {
do {
index.push_back( i);
} while ((++i) != (j));
}
}
template < class IC, class T >
class Random_access_value_adaptor : public Random_access_adaptor<IC> {
public:
typedef typename Random_access_adaptor<IC>::size_type size_type;
Random_access_value_adaptor() {}
// invalid index.
Random_access_value_adaptor( const IC& i)
: Random_access_adaptor<IC>(i) {}
// empty random access index initialized to start at i.
Random_access_value_adaptor( const IC& i, const IC& j)
: Random_access_adaptor<IC>(i,j) {}
// random access index initialized with range [i,j).
// OPERATIONS
T& operator[]( size_type n) const {
// returns inverse index of k.
return *(Random_access_adaptor<IC>::operator[](n));
}
};
template<typename _Iterator, typename Predicate>
class Filter_output_iterator
: public CGAL::cpp98::iterator<std::output_iterator_tag, void, void, void, void>
{
protected:
_Iterator iterator;
Predicate predicate;
public:
typedef _Iterator iterator_type;
explicit Filter_output_iterator(_Iterator& __x, const Predicate& pred)
: iterator(__x), predicate(pred)
{}
template <typename T>
Filter_output_iterator&
operator=(const T& t)
{
if(! predicate(t))
*iterator = t;
return *this;
}
Filter_output_iterator&
operator*()
{ return *this; }
Filter_output_iterator&
operator++()
{
++iterator;
return *this;
}
Filter_output_iterator
operator++(int)
{
Filter_output_iterator res(*this);
++iterator;
return res;
}
};
template < class I, class P >
inline Filter_output_iterator< I, P >
filter_output_iterator(I e, const P& p)
{ return Filter_output_iterator< I, P >(e, p); }
namespace internal {
template<typename OutputIterator>
struct Output_visitor {
Output_visitor(OutputIterator* it) : out(it) {}
OutputIterator* out;
template<typename T>
OutputIterator& operator()(const T& t) {
*(*out)++ = t;
return *out;
}
};
} // internal
namespace internal {
template < typename D, bool with_drop, typename V = std::tuple<>, typename O = std::tuple<> >
struct Derivator
{
typedef Derivator<D, with_drop, V, O> Self;
Derivator() = default;
Derivator(const Self&) = default;
Self& operator=(const Self&) = delete;
template <class Tuple>
void tuple_dispatch(const Tuple&)
{}
};
template < typename D>
struct Derivator<D, true, std::tuple<>, std::tuple<>>
{
typedef Derivator<D, true, std::tuple<>, std::tuple<>> Self;
Derivator() = default;
Derivator(const Self&) = default;
Self& operator=(const Self&) = delete;
template <class Tuple>
void tuple_dispatch(const Tuple&){}
template <class T>
Self& operator=(const T&) { return *this; } // dropping value
};
template < typename D, bool with_drop, typename V1, typename O1, typename... V, typename... O>
struct Derivator<D, with_drop, std::tuple<V1, V...>, std::tuple<O1, O...> >
: public Derivator<D, with_drop, std::tuple<V...>, std::tuple<O...> >
{
typedef Derivator<D, with_drop, std::tuple<V1, V...>, std::tuple<O1, O...> > Self;
typedef Derivator<D, with_drop, std::tuple<V...>, std::tuple<O...> > Base;
Derivator() = default;
Derivator(const Self&) = default;
Self& operator=(const Self&) = delete;
using Base::operator=;
D& operator=(const V1& v)
{
* std::get< D::size - sizeof...(V) - 1 >(static_cast<typename D::Iterator_tuple&>(static_cast<D&>(*this))) ++ = v;
return static_cast<D&>(*this);
}
template <class Tuple>
void tuple_dispatch(const Tuple& t)
{
* std::get< D::size - sizeof...(V) - 1 >(static_cast<typename D::Iterator_tuple&>(static_cast<D&>(*this))) ++ =
std::get< D::size - sizeof...(V) - 1 >(t);
static_cast<Base&>(*this).tuple_dispatch(t);
}
};
} // internal
namespace tuple_internal {
template <typename ...Args, std::size_t ...Is>
auto to_tuple(std::tuple<Args...> &t, std::index_sequence<Is...>)
{
return std::tuple<Args&...>(std::get<Is>(t)...);
}
}//end namespace tuple_internal
// OutputIterator which accepts several types in *o++= and dispatches,
// wraps several other output iterators, and dispatches accordingly.
template < typename V, typename O, bool drop_unknown_value_types>
class Dispatch_output_iterator_impl;
template < typename... V, typename... O, bool drop_unknown_value_types>
class Dispatch_output_iterator_impl < std::tuple<V...>, std::tuple<O...>, drop_unknown_value_types>
: private internal::Derivator<Dispatch_output_iterator_impl< std::tuple<V...>, std::tuple<O...>, drop_unknown_value_types >, drop_unknown_value_types, std::tuple<V...>, std::tuple<O...> >
, public std::tuple<O...>
{
static_assert(sizeof...(V) == sizeof...(O),
"The number of explicit template parameters has to match the number of arguments");
static const int size = sizeof...(V);
template <typename D, bool with_drop, typename V_, typename O_>
friend struct internal::Derivator;
public:
typedef std::tuple<O...> Iterator_tuple;
typedef std::tuple<V...> Value_type_tuple;
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
private:
typedef Dispatch_output_iterator_impl Self;
typedef internal::Derivator<Self, drop_unknown_value_types, Value_type_tuple, Iterator_tuple > Base;
public:
using Base::operator=;
using Base::tuple_dispatch;
Dispatch_output_iterator_impl(O... o) : std::tuple<O...>(o...) {}
Dispatch_output_iterator_impl(const Dispatch_output_iterator_impl&)=default;
Self& operator=(const Self& s)
{
static_cast<Iterator_tuple&>(*this) = static_cast<const Iterator_tuple&>(s);
return *this;
}
template<typename ... T>
Self& operator=(const std::variant< T ... >& t) {
internal::Output_visitor<Self> visitor(this);
std::visit(visitor, t);
return *this;
}
template<typename ... T>
Self& operator=(const std::optional< std::variant< T ... > >& t) {
internal::Output_visitor<Self> visitor(this);
if(t) std::visit(visitor, *t);
return *this;
}
Self& operator++() { return *this; }
Self& operator++(int) { return *this; }
Self& operator*() { return *this; }
const Iterator_tuple& get_iterator_tuple() const { return *this; }
Self& operator=(const std::tuple<V...>& t)
{
tuple_dispatch(t);
return *this;
}
operator std::tuple<O&...>()
{
return tuple_internal::to_tuple(*this, std::index_sequence_for<O...>{});
}
operator std::tuple<const O&...>()const
{
return tuple_internal::to_tuple(*this, std::index_sequence_for<O...>{});
}
};
template<class V, class O>
using Dispatch_output_iterator = Dispatch_output_iterator_impl<V,O,false>;
template < typename... V, typename... O>
Dispatch_output_iterator<std::tuple<V...>, std::tuple<O...> >
dispatch_output(O... o)
{
return Dispatch_output_iterator<std::tuple<V...>, std::tuple<O...> > (o...);
}
// Same as Dispatch_output_iterator, but has a dummy *o++= for all other types
// that drops the data (same as Emptyset_iterator).
template<class V, class O>
using Dispatch_or_drop_output_iterator = Dispatch_output_iterator_impl<V,O,true>;
template < typename... V, typename... O>
inline
Dispatch_or_drop_output_iterator<std::tuple<V...>, std::tuple<O...> >
dispatch_or_drop_output(O... o)
{
return Dispatch_or_drop_output_iterator<std::tuple<V...>, std::tuple<O...> >(o...);
}
// Trick to select iterator or const_iterator depending on the range constness
template <typename RangeRef>
struct Range_iterator_type;
template <typename RangeRef>
struct Range_iterator_type<RangeRef&> { typedef typename RangeRef::iterator type; };
template <typename RangeRef>
struct Range_iterator_type<const RangeRef&> { typedef typename RangeRef::const_iterator type; };
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_ITERATOR_H
|