1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Isosurfacing_3/dual_contouring_3.h>
#include <CGAL/Isosurfacing_3/Dual_contouring_domain_3.h>
#include <CGAL/Isosurfacing_3/marching_cubes_3.h>
#include <CGAL/Isosurfacing_3/Marching_cubes_domain_3.h>
#include <CGAL/Isosurfacing_3/Value_function_3.h>
#include <CGAL/Isosurfacing_3/Gradient_function_3.h>
#include <CGAL/Isosurfacing_3/Octree_partition.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/IO/polygon_soup_io.h>
#include <cmath>
#include <iostream>
#include <vector>
using Kernel = CGAL::Simple_cartesian<double>;
using FT = typename Kernel::FT;
using Vector = typename Kernel::Vector_3;
using Point = typename Kernel::Point_3;
using Point_range = std::vector<Point>;
using Polygon_range = std::vector<std::vector<std::size_t> >;
using Octree = CGAL::Octree<Kernel, std::vector<Point> >;
using Values = CGAL::Isosurfacing::Value_function_3<Octree>;
using Gradients = CGAL::Isosurfacing::Gradient_function_3<Octree>;
using MC_Domain = CGAL::Isosurfacing::Marching_cubes_domain_3<Octree, Values>;
using Domain = CGAL::Isosurfacing::Dual_contouring_domain_3<Octree, Values, Gradients>;
namespace IS = CGAL::Isosurfacing;
auto sphere_function = [](const Point& p) -> FT
{
return std::sqrt(p.x()*p.x() + p.y()*p.y() + p.z()*p.z());
};
auto sphere_gradient = [](const Point& p) -> Vector
{
const Vector g = p - CGAL::ORIGIN;
return g / std::sqrt(g.squared_length());
};
auto blobby_function = [](const Point& p) -> FT
{
return std::exp(-1.5 * ((p.x() - 0.2) * (p.x() - 0.2) + (p.y() - 0.2) * (p.y() - 0.2) + (p.z() - 0.2) * (p.z() - 0.2))) +
std::exp(-1.5 * ((p.x() + 0.2) * (p.x() + 0.2) + (p.y() + 0.2) * (p.y() + 0.2) + (p.z() + 0.2) * (p.z() + 0.2))) +
std::exp(-1.5 * ((p.x() - 0.4) * (p.x() - 0.4) + (p.y() + 0.4) * (p.y() + 0.4) + (p.z() - 0.4) * (p.z() - 0.4))) +
std::exp(-6 * ((p.x() - 0.1) * (p.x() - 0.1) + (p.y() - 0.1) * (p.y() - 0.1))) +
std::exp(-6 * ((p.y() + 0.1) * (p.y() + 0.1) + (p.z() + 0.1) * (p.z() + 0.1))) +
std::exp(-6 * ((p.x() + 0.1) * (p.x() + 0.1) + (p.z() - 0.1) * (p.z() - 0.1))) -
0.3;
};
auto blobby_gradient = [](const Point& p) -> Vector
{
const FT g1 = -3 * std::exp(-1.5 * ((p.x() - 0.2) * (p.x() - 0.2) + (p.y() - 0.2) * (p.y() - 0.2) + (p.z() - 0.2) * (p.z() - 0.2)));
const FT g2 = -3 * std::exp(-1.5 * ((p.x() + 0.2) * (p.x() + 0.2) + (p.y() + 0.2) * (p.y() + 0.2) + (p.z() + 0.2) * (p.z() + 0.2)));
const FT g3 = -3 * std::exp(-1.5 * ((p.x() - 0.4) * (p.x() - 0.4) + (p.y() + 0.4) * (p.y() + 0.4) + (p.z() - 0.4) * (p.z() - 0.4)));
const FT g4 = -12 * std::exp(-6 * ((p.x() - 0.1) * (p.x() - 0.1) + (p.y() - 0.1) * (p.y() - 0.1)));
const FT g5 = -12 * std::exp(-6 * ((p.y() + 0.1) * (p.y() + 0.1) + (p.z() + 0.1) * (p.z() + 0.1)));
const FT g6 = -12 * std::exp(-6 * ((p.x() + 0.1) * (p.x() + 0.1) + (p.z() - 0.1) * (p.z() - 0.1)));
return Vector(g1 * (p.x() - 0.2) + g2 * (p.x() + 0.2) + g3 * (p.x() - 0.4) + g4 * (p.x() - 0.1) + g6 * (p.x() + 0.1),
g1 * (p.y() - 0.2) + g2 * (p.y() + 0.2) + g3 * (p.y() + 0.4) + g4 * (p.y() - 0.1) + g5 * (p.y() + 0.1),
g1 * (p.z() - 0.2) + g2 * (p.z() + 0.2) + g3 * (p.z() - 0.4) + g5 * (p.z() + 0.1) + g6 * (p.z() - 0.1));
};
// This is a naive refinement that is adapted to the isosurface:
// This refines:
// - at the minimum till minimum depth
// - at the maximum till maximum depth
// - we split if the the isovalue goes through the voxel, i.e. if not all vertices of the cell
// are on the same side of the isosurface defined by a function
// It's not a great refinement technique because the surface can enter and leave a cell
// without involving the cell's vertex. In practice, that means a hole if at nearby adjacent
// cells the voxels did get refined and registered the surface.
struct Refine_around_isovalue
{
std::size_t min_depth_;
std::size_t max_depth_;
std::function<FT(const Point&)> function_;
FT isovalue_;
Refine_around_isovalue(std::size_t min_depth,
std::size_t max_depth,
std::function<FT(const Point&)> function,
FT isovalue)
: min_depth_(min_depth),
max_depth_(max_depth),
function_(function),
isovalue_(isovalue)
{}
bool operator()(const Octree::Node_index& ni, const Octree& octree) const
{
// Ensure minimum depth refinement
if (octree.depth(ni) < min_depth_)
return true;
// Stop refinement at maximum depth
if (octree.depth(ni) >= max_depth_)
return false;
// Get the bounding box of the node
auto bbox = octree.bbox(ni);
// Evaluate the function at the corners of the bounding box
std::array<FT, 8> corner_values;
int index = 0;
for (FT x : {bbox.xmin(), bbox.xmax()})
for (FT y : {bbox.ymin(), bbox.ymax()})
for (FT z : {bbox.zmin(), bbox.zmax()})
corner_values[index++] = function_(Point(x, y, z));
// Check if the function values cross the isovalue
bool has_positive = false, has_negative = false;
for (const auto& value : corner_values)
{
if (value > isovalue_)
has_positive = true;
if (value < isovalue_)
has_negative = true;
if (has_positive && has_negative)
return true; // Refine if the isosurface intersects the voxel
}
return false; // No refinement needed
}
};
// This is a refinement that is NOT adapted to the isosurface
struct Refine_one_eighth
{
std::size_t min_depth_;
std::size_t max_depth_;
std::size_t octree_dim_;
Refine_one_eighth(std::size_t min_depth,
std::size_t max_depth)
: min_depth_(min_depth),
max_depth_(max_depth)
{
octree_dim_ = std::size_t(1) << max_depth_;
}
Octree::Global_coordinates uniform_coordinates(const Octree::Node_index& node_index, const Octree& octree) const
{
auto coords = octree.global_coordinates(node_index);
const std::size_t depth_factor = std::size_t(1) << (max_depth_ - octree.depth(node_index));
for(int i=0; i < 3; ++i)
coords[i] *= uint32_t(depth_factor);
return coords;
}
bool operator()(const Octree::Node_index& ni, const Octree& octree) const
{
if(octree.depth(ni) < min_depth_)
return true;
if(octree.depth(ni) == max_depth_)
return false;
auto leaf_coords = uniform_coordinates(ni, octree);
if(leaf_coords[0] >= octree_dim_ / 2)
return false;
if(leaf_coords[1] >= octree_dim_ / 2)
return false;
if(leaf_coords[2] >= octree_dim_ / 2)
return false;
return true;
}
};
template <typename Splitter>
void run_DC_octree(const CGAL::Bbox_3 bbox,
const Splitter& split_predicate,
const std::function<FT(const Point&)> function,
const std::function<Vector(const Point&)> gradient,
const FT isovalue,
const std::string& name)
{
std::vector<Point> bbox_points { { bbox.xmin(), bbox.ymin(), bbox.zmin() },
{ bbox.xmax(), bbox.ymax(), bbox.zmax() } };
Octree octree(bbox_points);
octree.refine(split_predicate);
auto leaf_range = octree.traverse(CGAL::Orthtrees::Leaves_traversal<Octree>(octree));
std::size_t leaf_counter = std::distance(leaf_range.begin(), leaf_range.end());
std::cout << "octree has " << leaf_counter << " leaves" << std::endl;
// fill up values and gradients
Values values { function, octree };
Gradients gradients { gradient, octree };
Domain domain { octree, values, gradients };
// output containers
Point_range points;
Polygon_range triangles;
std::cout << "Running Dual Contouring with isovalue = " << isovalue << std::endl;
// run Dual Contouring
IS::dual_contouring<CGAL::Parallel_if_available_tag>(domain, isovalue, points, triangles,
CGAL::parameters::do_not_triangulate_faces(true)
.constrain_to_cell(false));
std::cout << "Output #vertices (DC): " << points.size() << std::endl;
std::cout << "Output #triangles (DC): " << triangles.size() << std::endl;
std::ofstream oo("octree_DC_" + name + ".polylines.txt");
oo.precision(17);
octree.dump_to_polylines(oo);
CGAL::IO::write_polygon_soup("DC_" + name + ".off", points, triangles);
}
template <typename Splitter>
void run_MC_octree(const CGAL::Bbox_3 bbox,
const Splitter& split_predicate,
const std::function<FT(const Point&)> function,
const FT isovalue,
const std::string& name)
{
std::vector<Point> bbox_points { { bbox.xmin(), bbox.ymin(), bbox.zmin() },
{ bbox.xmax(), bbox.ymax(), bbox.zmax() } };
Octree octree(bbox_points);
octree.refine(split_predicate);
Values values { function, octree };
Point_range points;
Polygon_range triangles;
MC_Domain mcdomain { octree, values };
std::cout << "Running MC" << std::endl;
CGAL::Isosurfacing::marching_cubes<CGAL::Parallel_if_available_tag>(mcdomain, isovalue, points, triangles);
std::cout << "Output #vertices (MC): " << points.size() << std::endl;
std::cout << "Output #triangles (MC): " << triangles.size() << std::endl;
std::ofstream oo("octree_MC_" + name + ".polylines.txt");
oo.precision(17);
octree.dump_to_polylines(oo);
CGAL::IO::write_polygon_soup("MC_" + name + ".off", points, triangles);
}
// Whether you are using MC, TMC, or DC, there is no guarantee for an octree:
// it should behave well if your nodes are split with a uniform size around the surface,
// but it is sure to produce cracks if you have varying depths around the isosurface.
int main(int argc, char** argv)
{
const FT isovalue = (argc > 1) ? std::stod(argv[1]) : 0.3;
const CGAL::Bbox_3 bbox { -1., -1., -1., 1., 1., 1. };
Refine_one_eighth one_eight_splitter(3, 5);
run_DC_octree(bbox, one_eight_splitter, sphere_function, sphere_gradient, isovalue, "one_eight");
// This is
Refine_around_isovalue isovalue_splitter(3, 5, sphere_function, isovalue);
run_DC_octree(bbox, isovalue_splitter, sphere_function, sphere_gradient, isovalue, "sphere_adapted");
Refine_around_isovalue isvalue_splitter_2(3, 5, blobby_function, isovalue);
run_DC_octree(bbox, isvalue_splitter_2, blobby_function, blobby_gradient, isovalue, "blobby_adapted");
// to illustrate cracks
run_MC_octree(bbox, isovalue_splitter, sphere_function, isovalue, "adapted");
run_MC_octree(bbox, one_eight_splitter, sphere_function, isovalue, "one_eight");
std::cout << "Done" << std::endl;
return EXIT_SUCCESS;
}
|