File: Curve_analysis_2.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (2539 lines) | stat: -rw-r--r-- 86,233 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d/Curve_analysis_2.h $
// $Id: include/CGAL/Algebraic_kernel_d/Curve_analysis_2.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================

#ifndef CGAL_ALGEBRAIC_CURVE_KERNEL_CURVE_ANALYSIS_2_ALCIX_H
#define CGAL_ALGEBRAIC_CURVE_KERNEL_CURVE_ANALYSIS_2_ALCIX_H

#include <CGAL/disable_warnings.h>

#include <vector>
#include <set>
#include <map>
#include <type_traits>

#include <boost/mpl/has_xxx.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/logical.hpp>

#include <CGAL/basic.h>
#include <CGAL/assertions.h>
#include <CGAL/Cache.h>
#include <CGAL/function_objects.h>
#include <CGAL/Handle_with_policy.h>

#include <CGAL/Algebraic_kernel_d/Bitstream_descartes.h>
#include <CGAL/Algebraic_kernel_d/Interval_evaluate_1.h>
#include <CGAL/Algebraic_kernel_d/Bitstream_descartes_rndl_tree_traits.h>
#include <CGAL/Algebraic_kernel_d/macros.h>
#include <CGAL/Algebraic_kernel_d/exceptions.h>
#include <CGAL/Algebraic_kernel_d/enums.h>
#include <CGAL/Algebraic_kernel_d/algebraic_curve_kernel_2_tools.h>
#include <CGAL/Algebraic_kernel_d/Status_line_CA_1.h>
#include <CGAL/Algebraic_kernel_d/Event_line_builder.h>
#include <CGAL/Algebraic_kernel_d/Shear_controller.h>
#include <CGAL/Algebraic_kernel_d/Shear_transformation.h>
#include <CGAL/Algebraic_kernel_d/Bitstream_coefficient_kernel_at_alpha.h>
#include <CGAL/Algebraic_kernel_d/shear.h>

#include <CGAL/Polynomial_traits_d.h>



#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
// put includes here
#endif


namespace CGAL {

template<typename AlgebraicKernelWithAnalysis_2,
         typename Rep_>
class Curve_analysis_2;

namespace internal {

template<typename Comparable,bool has_template_typedefs>
  struct Is_derived_from_Handle_with_policy {
    typedef std::false_type Tag;
};

template<typename Comparable>
  struct Is_derived_from_Handle_with_policy<Comparable,true> {

    typedef typename
      std::is_base_of< CGAL::Handle_with_policy
                             < typename Comparable::T,
                               typename Comparable::Handle_policy,
                               typename Comparable::Allocator >,
                         Comparable
                       >::type Tag;
};


template<typename Comparable,typename Tag> struct Compare_for_vert_line_map_
    {
      bool operator() (const Comparable& a, const Comparable& b) const {
        return a<b;
      }
};

template<typename Comparable>
  struct Compare_for_vert_line_map_<Comparable,std::true_type> {

    bool operator() (const Comparable& a, const Comparable& b) const {
      return CGAL::Handle_id_less_than< Comparable >()(a,b);
    }
};

template<typename Comparable> struct Compare_for_vert_line_map
  : public CGAL::cpp98::binary_function<Comparable,Comparable,bool> {

  BOOST_MPL_HAS_XXX_TRAIT_DEF(T)
  BOOST_MPL_HAS_XXX_TRAIT_DEF(Handle_policy)
  BOOST_MPL_HAS_XXX_TRAIT_DEF(Allocator)

  typedef typename CGAL::internal::Is_derived_from_Handle_with_policy
    < Comparable,
      has_T<Comparable>::value &&
      has_Handle_policy<Comparable>::value &&
      has_Allocator<Comparable>::value>::Tag Tag;

  public:

  bool operator() (const Comparable& a, const Comparable& b) const {

    return eval(a,b);
  }

  private:

  Compare_for_vert_line_map_<Comparable,Tag> eval;


};


// \brief Representation class for algebraic curves.
template< typename AlgebraicKernelWithAnalysis_2>
class Curve_analysis_2_rep {

public:
    //! this instance's template parameter
    typedef AlgebraicKernelWithAnalysis_2 Algebraic_kernel_with_analysis_2;

    //! the class itself
    typedef Curve_analysis_2_rep Self;

    //! The handle class
    typedef CGAL::Curve_analysis_2
        <Algebraic_kernel_with_analysis_2,Self> Handle;

    //protected:
public:

    typedef int size_type;

    CGAL_ACK_SNAP_ALGEBRAIC_CURVE_KERNEL_2_TYPEDEFS(Handle);

    typedef std::map< Bound, Status_line_1 >
    Vert_line_at_rational_map;

    typedef
    std::map< Algebraic_real_1,
              Status_line_1,
              internal::Compare_for_vert_line_map<Algebraic_real_1> >
    Vert_line_map;

    //!\name Constructors
    //!@{

    //! Default constructor
    Curve_analysis_2_rep()
    {
    }

    //! Constructor with polynomial
    Curve_analysis_2_rep(Algebraic_kernel_with_analysis_2 *kernel,
                         Polynomial_2 poly,
                         CGAL::Degeneracy_strategy strategy) :
        _m_kernel(kernel), f(poly), degeneracy_strategy(strategy)
    {
    }

    //!@}

private:

    typedef internal::LRU_hashed_map<
        Bound,
        std::vector<Algebraic_real_1>,
        internal::To_double_hasher > Intermediate_cache;

    Intermediate_cache intermediate_cache;

    typedef internal::Event_line_builder<Algebraic_kernel_with_analysis_2>
        Event_line_builder;


    // Internal information struct about x-coordinates
    struct Event_coordinate_1 {
        Event_coordinate_1(){} //added to solve a compilation error of gcc-3.4 (bug?)
        Algebraic_real_1 val;
        size_type mult_of_prim_res_root;
        size_type index_of_prim_res_root;
        size_type mult_of_content_root;
        size_type index_of_content_root;
        size_type mult_of_prim_lcoeff_root;
        size_type index_of_prim_lcoeff_root;
        std::optional<Status_line_1> stack;
    };

    // Functor to get the X_coordinate of an Event_coordinate
    struct Val_functor {
        typedef Event_coordinate_1 argument_type;
        typedef Algebraic_real_1 result_type;
        result_type operator() (argument_type event) const {
            return event.val;
        }
    };


    //! The object holding the information about events, as an optional
    mutable std::optional<std::vector<Event_coordinate_1> >
        event_coordinates;

    //! The algebraic kernel to use
    Algebraic_kernel_with_analysis_2* _m_kernel;

    //! The polynomial defining the curve
    std::optional<Polynomial_2> f;

    //! How degenerate situations are handled
    CGAL::Degeneracy_strategy degeneracy_strategy;

    /*!
     * \brief The polynomial without its content (the gcd of the coeffs).
     *
     * The content is the greatest common divisor of the coefficients of \c f
     * considered as polynomial <tt>y</tt>. \c The polynomial f_primitive is
     * \c f/cont(f). The corresponding curve is equal to the curve of \c f,
     * only without vertical line components.
     */
    mutable std::optional<Polynomial_2> f_primitive;

    //! the polynomial containing all roots of the resultant of the primitive
    //! part of f and its y-derivative
    mutable std::optional<Polynomial_1>
        resultant_of_primitive_and_derivative_y;

    //! the polynomial containing all roots of the resultant of the primitive
    //! part of f and its x-derivative
    mutable std::optional<Polynomial_1>
        resultant_of_primitive_and_derivative_x;

    //! The Sturm-Habicht polynomials of f
    mutable std::optional<std::vector<Polynomial_2> >
        sturm_habicht_of_primitive;

    //! The content of f
    mutable std::optional<Polynomial_1> content;

    //! The non-working shear factors, as far as known
    mutable std::set<Integer> bad_shears;

    //! The already known shear factors
    mutable std::map<Integer,Handle> sheared_curves;

    //! Has the curve vertical line components
    mutable std::optional<bool> has_vertical_component;

    //! The intermediate values
    mutable std::optional<std::vector<std::optional<Bound> > >
    intermediate_values;

    //! stores Y_values at rational coordinate
    mutable Vert_line_at_rational_map vert_line_at_rational_map;

    //! stores vert_lines
    mutable Vert_line_map vert_line_map;

    /**! \brief Information about whether arcs at +/- infty
     *   are asymptotic to y=beta,
     *   or go to +/- infty also in y-direction
     */
    mutable std::optional<std::vector<CGAL::Object> >
    horizontal_asymptotes_left, horizontal_asymptotes_right;

    //! friends
    friend class ::CGAL::Curve_analysis_2
        <Algebraic_kernel_with_analysis_2,Self>;

}; // class Curve_analysis_2_rep
} // namespace internal


/*!
 * \brief Analysis for algebraic curves of arbitrary degree.
 *
 * This class constitutes a model for the concept
 * AlgebraicKernelWithAnalysis_d_2::CurveAnalysis_2.
 * For a square-free bivariate polynomial \c f, a topologic-geometrical
 * analysis of the algebraic curve defined by the vanishing set of \c f
 * is provided. This means, one can ask for the total number, and the position
 * of the critical x-coordinates of the curve, and for each x-coordinate,
 * geometric information about the curve can be obtained. This data
 * is capsuled into an object of type \c Curve_analysis_2::Status_line_1,
 * which is in fact a \c Status_line_CA_1 object.
 *
 * The restriction to square-free curves is a weak one, since the curves
 * can be made square-free before passed to the analysis.
 * The \c Construct_curve_2 functor of \c Algebraic_curve_kernel_2 is
 * doing so, thus it accepts arbitrary bivariate polynomials.
 *
 * The analysis is implemented in a "lazy" fashion. This means, when
 * created, the analysis delays all computations until the information
 * is queried for the first time. This means, if only parts of the curves
 * are of interest, only a partial analysis is performed.
 * We remark that nevertheless, the global \e projection \e step
 * (i.e., computing the (sub)resultants) must be done once a \c Status_line_1
 * is queried. Often, this step forms the bottleneck in the whole computation.
 *
 * For more details of the algorithm, consult the reference:
 * A.Eigenwillig, M.Kerber, N.Wolpert: Fast and Exact Geometric Analysis of
 * Real Algebraic Plane Curves. Proceedings of the International Symposium
 * on Symbolic and Algebraic Computation (ISSAC 2007), pp. 151-158
 */
template<typename AlgebraicKernelWithAnalysis_2,
  typename Rep_
   = internal::Curve_analysis_2_rep< AlgebraicKernelWithAnalysis_2>
>
class Curve_analysis_2 : public ::CGAL::Handle_with_policy< Rep_ > {

    //! \name typedefs
    //! @{

public:
    //! this instance' first template parameter
    typedef AlgebraicKernelWithAnalysis_2 Algebraic_kernel_with_analysis_2;

    //! this instance' second template parameter
    typedef Rep_ Rep;

private:

    //! The internal type for event coordinates
    typedef typename Rep::Event_coordinate_1 Event_coordinate_1;

    // Internal class to build lines at events
    typedef typename Rep::Event_line_builder Event_line_builder;

    // Base class
    typedef ::CGAL::Handle_with_policy<Rep> Base;

    // This type
    typedef CGAL::Curve_analysis_2<Algebraic_kernel_with_analysis_2,Rep> Self;

public:

    //! Indexing type
    typedef typename Rep::size_type size_type;

    CGAL_ACK_SNAP_ALGEBRAIC_CURVE_KERNEL_2_TYPEDEFS(Self);

    //! Required by the CurveKernel_2 concept
    typedef Algebraic_real_1 Coordinate_1;

    //! Traits type for Polynomial_2
    typedef CGAL::Polynomial_traits_d<Polynomial_2> Polynomial_traits_2;

private:

    /*!
     * \brief Coercion between the coefficient type of the polynomial
     * and the bound type of the curve analysis
     *
     * Interoperability of both types is required
     */
    typedef CGAL::Coercion_traits<Bound, Coefficient> Coercion;

    /*!
     * \brief The common supertype that both the coefficient and the bound
     * type are convertible to
     */
    typedef typename Coercion::Type Coercion_type;

    //! Polynomial over the \c Coercion_type
    typedef typename CGAL::Polynomial_traits_d<Polynomial_2>
        ::template Rebind<Coercion_type,1>::Other::Type Poly_coer_1;

public:

    //! Type to represent points on curves
    typedef typename Algebraic_kernel_with_analysis_2::Algebraic_real_2
      Algebraic_real_2;

    //! Required by the CurveKernel_2 concept
    typedef Algebraic_real_2 Coordinate_2;

    //! type for horizontal asymtote values
    typedef CGAL::Object Asymptote_y;

    //! @}

private:

    //! \name Helping structs
    // @{

    struct Event_functor {
        Event_functor(const Self* curve) : curve(curve) {}
        const Self* curve;
        typedef size_type argument_type;
        typedef Status_line_1 result_type;
        result_type operator() (argument_type index) const {
            return curve->status_line_at_event(index);
        }
    };

    struct Intermediate_functor {
        Intermediate_functor(const Self* curve) : curve(curve) {}
        const Self* curve;
        typedef size_type argument_type;
        typedef Status_line_1 result_type;
        result_type operator() (argument_type index) const {
            return curve->status_line_of_interval(index);
        }
    };

    struct Stha_functor {
        Stha_functor(const Self* curve) : curve(curve) {}
        const Self* curve;
        typedef size_type argument_type;
        typedef Polynomial_1 result_type;
        result_type operator() (argument_type index) const {
            return curve->principal_sturm_habicht_of_primitive(index);
        }
    };

    //! @}

public:

    //! \name Iterators
    //! @{

    //! Iterator type for status lines at events
    typedef boost::transform_iterator<Event_functor,
                              boost::counting_iterator<size_type> >
    Event_line_iterator;

    //! Iterator type for status lines of intervals
    typedef boost::transform_iterator<Intermediate_functor,
                              boost::counting_iterator<size_type> >
    Intermediate_line_iterator;

    //! Iterator type for the principal sturm habicht coefficients of the curve
    typedef boost::transform_iterator<Stha_functor,
                              boost::counting_iterator<size_type> >
    Principal_sturm_habicht_iterator;

    //! @}

public:

    //!\name Constructors
    //!@{

    //! Default constructor, constructs an empty and invalid curve analysis
    Curve_analysis_2() :Base(Rep()) {
    }

    /*!
     * \brief Constructs the curve analysis for the given polynomial
     *
     * Analyses the curve that is defined by the vanishing set of the
     * polynomial \c f.
     * \pre \c f is square free.
     * \param strategy The default strategy
     * (\c SHEAR_ONLY_AT_IRRATIONAL_STRATEGY)
     * is to \c shear the curve
     * if a degenerate situation is detected during the analysis,
     * except at rational x-coordinates where the curve can be analyzed
     * more directly. The analysis
     * is then performed in  the sheared system, and finally translated back
     * into the original system.
     * Using \c SHEAR_STRATEGY, a shear is triggered also for degeneracies
     * at rational x-coordinate. With both strategies, it is guaranteed that
     * the analysis works successfully for any square free input curve.
     * On the other hand, the EXCEPTION_STRATEGY throws an exception of type
     * \c internal::Zero_resultant_exception<Polynomial_2>,
     * instead of performing a shear.
     *
     * \Todo Currently the default strategy has been changed to SHEAR_STRATEGY
     * because there exist a problem if vertical asymtotes are present at
     * the rational x-coordinate.
     */
    explicit Curve_analysis_2(Algebraic_kernel_with_analysis_2 *kernel,
                              const Polynomial_2& f,
                              CGAL::Degeneracy_strategy strategy
                                  = CGAL_ACK_DEFAULT_DEGENERACY_STRATEGY)
        : Base(Rep(kernel,f,strategy))
    {

    }

    //! \brief Copy constructor
#ifdef DOXYGEN_RUNNING
    Curve_analysis_2(const Self& alg_curve)
        : Base(static_cast<const Base&>(alg_curve))
    {
    }
#endif

    //!@}


    //! \name Members
    //!@{

private:

    /*
     * \brief sets all status lines at events and of intervals
     *
     * Writes the status lines of events and interval into the object.
     * The value type of both \c InputIterator1 and \c InputIterator2
     * is \c Status_line_1.
     */
    template<typename InputIterator1,typename InputIterator2>
    void set_event_lines(InputIterator1 event_begin,
                         InputIterator1 event_end,
                         InputIterator2 intermediate_begin,
                         InputIterator2 CGAL_assertion_code(intermediate_end)) const {

        if(! this->ptr()->event_coordinates) {

            std::vector<Event_coordinate_1> event_coordinate_vector;

            for(InputIterator1 it = event_begin; it != event_end; it++) {
                Event_coordinate_1 curr_event;
                curr_event.val = it->x();
                event_coordinate_vector.push_back(curr_event);
            }
            this->ptr()->event_coordinates = event_coordinate_vector;

        }

        InputIterator1 it1 = event_begin;
        for(size_type i = 0; i < number_of_status_lines_with_event() ; i++ ) {
            this->ptr()->vert_line_map[event_coordinates()[i].val] = *it1;
            event_coordinates()[i].stack = *it1;

            it1++;
        }
        CGAL_assertion(it1 == event_end);

        if(! this->ptr()->intermediate_values) {
            this->ptr()->intermediate_values
                = std::vector<std::optional<Bound> >
                    (number_of_status_lines_with_event()+1);
        }

        InputIterator2 it2 = intermediate_begin;
        for(size_type i = 0;
            i < static_cast<int>(intermediate_values().size());
            i++,it2++) {

            CGAL_assertion(it2->x().is_rational());
            Bound q = it2->x().rational();

            intermediate_values()[i] = q;
            this->ptr()->vert_line_map[it2->x()] = *it2;
            this->ptr()->vert_line_at_rational_map[q] = *it2;

        }
        CGAL_assertion(it2 == intermediate_end);

    }

public:

    /*! \brief returns whether the curve has a valid defining polynomial
     */
    bool has_defining_polynomial() const {
        return bool(this->ptr()->f);
    }

public:

    /*! \brief sets the defining polynomial.
     *
     * \pre The object has no defining polynomial yet.
     */
    void set_f(Polynomial_2 f) {
        CGAL_precondition(! has_defining_polynomial());
        if((! this->ptr()->f) || f!=this->ptr()->f.value()) {
            this->copy_on_write();
            this->ptr()->f=f;
        }
    }


public:

    /*!
     * \brief returns whether the curve is y-regular
     *
     * A curve is called y-regular if the leading coefficient of its defining
     * polynomial wrt y is a constant, i.e., contains no x
     */
    bool is_y_regular() const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_is_y_regular();
        }
#endif
        return CGAL::degree(CGAL::leading_coefficient(polynomial_2())) == 0;
    }

public:

    /*!
     * \brief returns whether the curve contains a vertical line as a component
     *
     * In algebraic terms, this methods computes whether the content
     * of its defining polynomial has a real root.
     */
    bool has_vertical_component() const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_has_vertical_components();
        }
#endif
        if(is_y_regular()) {
            this->ptr()->has_vertical_component = false;
        }
        if(! this->ptr()->has_vertical_component) {
            // This is computed as side effect
            // when the event coordinates are computed
            event_coordinates();
            CGAL_assertion(this->ptr()->has_vertical_component);
        }
        return this->ptr()->has_vertical_component.value();
    }

public:

    //! Returns the defining polynomial
    Polynomial_2 polynomial_2() const {
        CGAL_precondition(bool(this->ptr()->f));
        return this->ptr()->f.value();
    }

public:

    /*!
     * \brief returns the number of event lines of the curve
     *
     * Algebraically, the number of real roots of the discriminant of
     * the curve's defining equation is returned.
     */
    size_type number_of_status_lines_with_event() const {
        CGAL_precondition(bool(this->ptr()->f));
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_number_of_status_lines_with_event();
        }
#endif
        return static_cast<size_type>(event_coordinates().size());
    }

public:

    /*!
     * \brief returns whether the given x-coordinate is critical for the curve
     * and which event or interval index the x-coordinate belongs to.
     *
     * \param is_event is set to \c true if the curve has an event
     * at this x-coordinate, or in other words, if the discriminant of its
     * defining polynomial vanishes at \c x
     * \param i is set to the index of the event if \c x is an event. Otherwise
     * \c i is set to the index of the interval \c x is contained in.
     */
    void x_to_index(Algebraic_real_1 x,size_type& i,bool& is_event) const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_x_to_index(x,i,is_event);
        }
#endif
        CGAL_precondition(has_defining_polynomial());
        typename Rep::Val_functor xval;
        i = static_cast<size_type>(std::lower_bound(
                ::boost::make_transform_iterator(event_coordinates().begin(),
                                                 xval),
                ::boost::make_transform_iterator(event_coordinates().end(),
                                                 xval),
                x
        ) - ::boost::make_transform_iterator(event_coordinates().begin(),
                                             xval));
        is_event = (i < static_cast<size_type>(event_coordinates().size()) &&
                    (event_coordinates()[i].val == x) );
    }

public:

    //! Returns the status line at the <tt>i</tt>-th event of the curve.
    Status_line_1& status_line_at_event(size_type i) const {

        CGAL_precondition(has_defining_polynomial());
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_status_line_at_event(i);
        }
#endif
        CGAL_precondition_code(
                size_type n =
                static_cast<size_type>(event_coordinates().size());
        );
        CGAL_precondition(i>=0 && i<n);
        if(! event_coordinates()[i].stack) {
            Status_line_1 event_line = create_status_line_at_event(i);
            this->ptr()->vert_line_map[event_coordinates()[i].val]
                = event_line;
            event_coordinates()[i].stack = event_line;
        }
        CGAL_postcondition(event_coordinates()[i].stack.value().is_event());
        return event_coordinates()[i].stack.value();
    }

public:

    //! Returns a status line at the rational <tt>x</tt>-coordinate \c b
    Status_line_1& status_line_at_exact_x(Bound b) const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_status_line_at_exact_x(b);
        }
#endif
        return status_line_at_exact_x(Algebraic_real_1(b));
    }

private:

    /*
     * \brief returns a status line for an exact value \c alpha that
     * is not an event of the curve
     *
     * This function controls the internal cache that stores already created
     * status line at non-events.
     */
    Status_line_1& status_line_at_exact_non_event_x(Algebraic_real_1 alpha)
        const {

        if(alpha.is_rational()) {

            typename Rep::Vert_line_at_rational_map::iterator it =
                this->ptr()->vert_line_at_rational_map.find
                (alpha.rational());

            if (it != this->ptr()->vert_line_at_rational_map.end()) {
                CGAL_assertion(!it->second.is_event());
                return it->second;
            }
        }

        typename Rep::Vert_line_map::iterator it =
            this->ptr()->vert_line_map.find(alpha);

        if (it != this->ptr()->vert_line_map.end()) {
            CGAL_assertion(!it->second.is_event());
            return it->second;
        }


        // Not stored yet, so create it and store it
        Status_line_1 cvl
            = create_status_line_at_non_event(alpha);
        CGAL_assertion(!cvl.is_event());
        this->ptr()->vert_line_map[alpha] = cvl;

        if(alpha.is_rational()) {
            this->ptr()->vert_line_at_rational_map[alpha.rational()] = cvl;
        }
        return this->ptr()->vert_line_map[alpha];
    }

public:

    //! Returns a vert line for the <tt>x</tt>-coordinate alpha
    Status_line_1& status_line_at_exact_x(Algebraic_real_1 alpha) const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_status_line_at_exact_x(alpha);
        }
#endif
        bool is_event_value;
        size_type index;
        this->x_to_index(alpha,index,is_event_value);
        if(is_event_value) {
            return status_line_at_event(index);
        }
        else {
            return status_line_at_exact_non_event_x(alpha);
        }
    }

private:

    // Creates a status line for the curve's <tt>index</tt>th critical point
    Status_line_1 create_status_line_at_event(size_type index) const
      {

        Event_coordinate_1& event = event_coordinates()[index];

        Algebraic_real_1 x = event.val;

        try {

            Event_coordinate_1& event = event_coordinates()[index];

            Algebraic_real_1 x = event.val;

#if CGAL_ACK_SHEAR_ALL_NOT_Y_REGULAR_CURVES
            if(event.mult_of_prim_lcoeff_root > 0) {
                throw CGAL::internal::Non_generic_position_exception();
            }
#else
            if(event.mult_of_prim_lcoeff_root > 0) {
                if(event.mult_of_prim_lcoeff_root > 1 ||
                   event.mult_of_prim_res_root > 1) {
                    throw CGAL::internal::Non_generic_position_exception();
                }
            }

#endif

#if CGAL_ACK_DEBUG_FLAG
            double ev_approx = CGAL::to_double(x);
            CGAL_ACK_DEBUG_PRINT << (index+1) << "th line: "
                                 << std::setw(6) << std::setprecision(3)
                                 << ev_approx
                                 << ".."
                                 << std::flush;
#endif
            size_type left_arcs
                = status_line_for_x(x,CGAL::NEGATIVE).number_of_events();
            size_type right_arcs
                = status_line_for_x(x,CGAL::POSITIVE).number_of_events();

            bool root_of_resultant=(event.mult_of_prim_res_root>0);
            bool root_of_content=(event.mult_of_content_root>0);

            size_type mult_of_resultant  = event.mult_of_prim_res_root;

/*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "Event line for " << index << " "
                                 << root_of_resultant << " "
                                 << root_of_content << " "
                                 << mult_of_resultant << " "
                                 << left_arcs << " " << right_arcs
                                 << std::endl;
#endif
*/

            Status_line_1 ev_line
                = event_line_builder().create_event_line(index,
                                                         x,
                                                         left_arcs,
                                                         right_arcs,
                                                         root_of_resultant,
                                                         root_of_content,
                                                         mult_of_resultant);

            event.stack = ev_line;

#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif

            return ev_line;
        } catch(CGAL::internal::Non_generic_position_exception /* exc */) {
            switch(this->ptr()->degeneracy_strategy) {
            case(CGAL::EXCEPTION_STRATEGY): {
                throw CGAL::internal::Non_generic_position_exception();
                break;
            }
            // Feature does not working atm
            case(CGAL::SHEAR_ONLY_AT_IRRATIONAL_STRATEGY): {
              CGAL_error_msg("Currently not supported");
              /*
              if(x.is_rational()) {
                    return create_non_generic_event_at_rational(x,index);
                }
                // FALL INTO NEXT CASE
              */
            }
            case(CGAL::SHEAR_STRATEGY): {
                return create_non_generic_event_with_shear(index);
                break;
            }
            default:{
              CGAL_assertion(false); // !!! Never reached
            }
            }
        }
        // !!! Never reached
        return Status_line_1();
    }

private:

    /*
     * \brief Method to create a status line using shear and backshear
     *
     * Note that this methods creates <b>all</b> event lines of the object
     * at once, and stores them in the object.
     */
    Status_line_1 create_non_generic_event_with_shear(size_type index) const {

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Use sheared technique..." << std::endl;
#endif
        internal::Shear_controller<Integer> shear_controller;
        Integer s(0);
        while(true) {
            try {
                s = shear_controller.get_shear_factor();
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "Trying shear factor "
                                     << s << std::endl;
#endif
                // TODO: Move shear somewhere else
                Self D(kernel(),
                       CGAL::internal::shear
                           (primitive_polynomial_2(),Coefficient(s)),
                       CGAL::EXCEPTION_STRATEGY);
                Shear_transformation< Algebraic_kernel_with_analysis_2 >
                    shear_transformation(kernel());
                shear_transformation.report_sheared_disc_roots
                    (boost::make_transform_iterator(
                             event_coordinates().begin(),
                             typename Rep::Val_functor()),
                     boost::make_transform_iterator(
                             event_coordinates().end(),
                             typename Rep::Val_functor())
                    );

                // Store the sheared curve for later use
                this->ptr()->sheared_curves.insert(std::make_pair(s,D));
                shear_transformation(D,-s,(Self&)*this,false);
                set_vertical_line_components();

                break;
            }
            catch(CGAL::internal::Non_generic_position_exception /* err */) {

                shear_controller.report_failure(s);
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << "Bad shear factor, retrying..."
                                     << std::endl;
#endif
            }
        }

        return status_line_at_event(index);
    }

private:

    /*
     * \brief creates a status line for a rational event x-coordinate
     *
     * If an event coordinate is rational, a shear can be prevented
     * by plugging in the x-coordinate for x and explicitly computing
     * the square free part of the defining polynomial at this position.
     *
     * COMMENTED OUT

    Status_line_1 create_non_generic_event_at_rational(Algebraic_real_1 x,
                                                       size_type index) const {


#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Non-generic, rational position x = "
                             << CGAL::to_double(x)
                             << std::flush;
#endif

        CGAL_precondition(x.is_rational());
        Bound r = x.rational();

        Polynomial_1 f_at_x = kernel()->evaluate_utcf_2_object()
          (typename Polynomial_traits_2::Swap()
              (primitive_polynomial_2(),0, 1),
           r);

        f_at_x_sq_free
            = typename CGAL::Polynomial_traits_d<typename FT::Numerator_type>
                ::Make_square_free() (f_at_x);

        Bitstream_coefficient_kernel coeff_kernel(kernel(),x);
        Bitstream_traits traits(coeff_kernel);

        // We need to make an artificial bivariate polynomial
        typedef typename
            CGAL::Polynomial_traits_d<typename FT::Numerator_type>
            ::template Rebind<typename FT::Numerator_type,1>::Other::Type
            Poly_coer_num_2;

        std::vector<typename FT::Numerator_type> coeffs;
        for(int i = 0; i <= CGAL::degree(f_at_x_sq_free); i++) {
            coeffs.push_back(typename FT::Numerator_type(f_at_x_sq_free[i]));
        }
        Poly_coer_num_2 f_at_x_ext(coeffs.begin(), coeffs.end());

        Bitstream_descartes isolator(CGAL::internal::Square_free_descartes_tag(),
                                     f_at_x_ext,
                                     traits);

        // Now adjacencies
        std::vector<Bound> bucket_borders;

        int n = isolator.number_of_real_roots();

        if(n==0) {
            bucket_borders.push_back(0);
        } else {
            bucket_borders.push_back(
                    CGAL::internal::bound_left_of
                        (kernel(),Algebraic_real_1(isolator.left_bound(0))));
            for(int i = 1; i < n; i++) {
                while(Algebraic_real_1(isolator.right_bound(i-1))==
                      Algebraic_real_1(isolator.left_bound(i))) {
                    isolator.refine_interval(i-1);
                    isolator.refine_interval(i);
                }
                bucket_borders.push_back(
                        kernel()->bound_between_1_object()
                        (Algebraic_real_1(isolator.right_bound(i-1)),
                         Algebraic_real_1(isolator.left_bound(i)))
                );
            }

            bucket_borders.push_back(
                    CGAL::internal::bound_right_of
                        (kernel(),
                         Algebraic_real_1(isolator.right_bound(n-1))));
        }

        Bound left = bound_value_in_interval(index);
        Bound right = bound_value_in_interval(index+1);

        typedef boost::numeric::interval<Coercion_type> Coercion_interval;

        typename Coercion::Cast cast;

        for(int i = 0; i < static_cast<int>(bucket_borders.size()); i++) {

            Poly_coer_1 curr_pol
                =  primitive_polynomial_2().evaluate(bucket_borders[i]);

            CGAL::internal::Interval_evaluate_1
              <Poly_coer_1,Bound>
              interval_evaluate_1;

            while(true) {
              std::pair<Bound,Bound> curr_interval_pair
                  = interval_evaluate_1(curr_pol,std::make_pair(left,right));
              Coercion_interval curr_interval(curr_interval_pair.first,
                                              curr_interval_pair.second);

              if(boost::numeric::in_zero(curr_interval)) {
                // "refine"
                Bound middle = (left+right)/2;
                if(middle==r) {
                  left=(left+middle)/2;
                  right = (right+middle)/2;
                } else if(middle>r) {
                  right=middle;
                } else {
                  left=middle;
                }
              } else {
                break;
              }
            }
        }

        Status_line_1 left_line
            = status_line_at_exact_non_event_x(Algebraic_real_1(left)),
            right_line
            = status_line_at_exact_non_event_x(Algebraic_real_1(right));

        int n_left = left_line.number_of_events();
        int n_right = right_line.number_of_events();

        std::vector<int> left_arcs(bucket_borders.size()+1),
            right_arcs(bucket_borders.size()+1);

        for(unsigned int i=0;i<left_arcs.size();i++) {
            left_arcs[i]=0;
        }
        for(unsigned int i=0;i<right_arcs.size();i++) {
            right_arcs[i]=0;
        }

        int curr_index=0;
        for(int i=0; i < n_left; i++) {

            while(true) {
                if(curr_index==static_cast<int>(bucket_borders.size())) {
                    left_arcs[curr_index]++;
                    break;
                } else if(left_line.lower_bound(i)>
                          bucket_borders[curr_index]) {
                    curr_index++;
                } else if(left_line.upper_bound(i)<
                          bucket_borders[curr_index]) {
                    left_arcs[curr_index]++;
                    break;
                } else {
                    left_line.refine(i);
                }
            }
        }
        curr_index=0;
        for(int i=0; i < n_right; i++) {

            while(true) {
                if(curr_index==static_cast<int>(bucket_borders.size())) {
                    right_arcs[curr_index]++;
                    break;
                } else if(right_line.lower_bound(i)>
                          bucket_borders[curr_index]) {
                    curr_index++;
                } else if(right_line.upper_bound(i)<
                          bucket_borders[curr_index]) {
                    right_arcs[curr_index]++;
                    break;
                } else {
                    right_line.refine(i);
                }
            }

        }

        typename Status_line_1::Arc_container arc_container;

        for(int i = 0; i < n; i++) {
            arc_container.push_back(std::make_pair(left_arcs[i+1],
                                                   right_arcs[i+1]));
        }

        Status_line_1 status_line(x,index,*this,n_left,n_right,arc_container);

        status_line._set_number_of_branches_approaching_infinity
            (std::make_pair(left_arcs[0],right_arcs[0]),
             std::make_pair(left_arcs[n+1],right_arcs[n+1]));

        status_line.set_isolator(isolator);

        if(event_coordinates()[index].mult_of_content_root > 0) {
            status_line._set_v_line();
        }

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif

        return status_line;
    }
    */

public:

    /*!
     * \brief returns the status line for the interval
     * preceding the <tt>i</tt>th event
     *
     * Returns a status line for a reference x-coordinate of the <tt>i</tt>th
     * interval of the curve. If called multiple times for the same <tt>i</tt>,
     * the same status line is returned.
     */
    Status_line_1 status_line_of_interval(size_type i) const
    {
        CGAL_precondition(i >= 0 && i <= number_of_status_lines_with_event());

#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_status_line_of_interval(i);
        }
#endif

        Bound b = bound_value_in_interval(i);

        Status_line_1 intermediate_line
            = status_line_at_exact_non_event_x(Algebraic_real_1(b));

        CGAL_postcondition(! intermediate_line.is_event());

        return intermediate_line;
    }


public:

    /*!
     * \brief returns a status line at position \c x
     *
     * If \c x is not an event of the curve, and lies in the <tt>i</tt>th
     * interval, the result is equal to <tt>status_line_of_interval(i)</tt>.
     * Different from <tt>status_line_at_exact_x(x)</tt>
     * the status line \c s returned does not satisft <tt>s.x()==x</tt>.
     * If \c x is an event, and \c perturb is set to \c CGAL::ZERO,
     * the status line for the event is returned. Otherwise, the status line
     * for the left or right neighboring interval is returned, depending
     * on whether \c perturb is set to \c CGAL::NEGATIVE or \c CGAL::POSITIVE.
     * If \c x is not an event, \c perturb has no effect.
     */
    Status_line_1 status_line_for_x(Algebraic_real_1 x,
                                    CGAL::Sign perturb = CGAL::ZERO) const
    {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_status_line_for_x(x,perturb);
        }
#endif

        size_type i;
        bool is_evt;
        x_to_index(x, i, is_evt);
        if(is_evt) {
            if(perturb == CGAL::ZERO)
                return status_line_at_event(i);
            if(perturb == CGAL::POSITIVE)
                i++;
        }
        return status_line_of_interval(i);
    }


private:

    /*
     * \brief creates an intermediate line at position \c ar.
     *
     * It is required that none of the following situations occurs at position
     * <tt>ar</tt>: singularity, vertical tangent line, vertical asymptote.\n
     * Otherwise, the method might run into an infinite loop.
     *
     * \param index if set to -1, the interval containing \c ar is computed
     * within the method, and the index of the status line is set accordingly.
     */
    Status_line_1
    create_status_line_at_non_event(Algebraic_real_1 ar, int index = -1)
        const {

        if(index==-1) {
            bool event;
            x_to_index(ar,index,event);
            CGAL_assertion(!event);
        }
        CGAL_assertion(index>=0);

        // TODO .. delay creation of refinement object
        // especially when ar is rational

        Bitstream_coefficient_kernel coeff_kernel(kernel(),ar);
        Bitstream_traits traits(coeff_kernel);

        Bitstream_descartes
            bitstream_descartes(CGAL::internal::Square_free_descartes_tag(),
                                primitive_polynomial_2(),
                                traits);

        size_type root_number=bitstream_descartes.number_of_real_roots();

        Status_line_1 status_line(ar, index, *this, root_number);
        status_line.set_isolator(bitstream_descartes);

        CGAL_assertion(! status_line.is_event());

        return status_line;
    }

private:

   /*
    * \brief returns an Event_line_builder instance
    *
    * Note: So far, a new instance is created each time the function is called
    */
    Event_line_builder event_line_builder() const {

        return Event_line_builder(kernel(), *this, primitive_polynomial_2());
    }

public:

    /*!
     * \brief Number of arcs over the given interval
     *
     * Shortcut for <tt>status_line_of_interval(i).number_of_events()</tt>
     */
    size_type arcs_over_interval(size_type i) const {
        CGAL_precondition(has_defining_polynomial());
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_arcs_over_interval(i);
        }
#endif
        CGAL_assertion_code(
                size_type n
                    = static_cast<size_type>(intermediate_values().size());
        );
        CGAL_precondition(i>=0 && i<=n);
        return status_line_of_interval(i).number_of_events();
    }

public:

    /*!
     * \brief Rational number in the <tt>i</tt>th interval between events
     *
     * The result of this method is taken as the reference x-coordinate
     * for the status lines of intervals.
     */
    Bound bound_value_in_interval(size_type i) const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_bound_value_in_interval(i);
        }
#endif
        CGAL_assertion(i>=0 &&
                       i < static_cast<size_type>
                           (intermediate_values().size()));
        if(! intermediate_values()[i]) {
          // Create it
            if(event_coordinates().size()==0) {
                CGAL_assertion(i==0);
                intermediate_values()[0]=Bound(0);
            } else {
                if(i==0) {
                    intermediate_values()[i]
                      = bound_left_of(kernel(),event_coordinates()[i].val);
                } else if(i == static_cast<size_type>
                              (event_coordinates().size())) {
                    intermediate_values()[i]
                        = bound_right_of
                      (kernel(),event_coordinates()[i-1].val);

                } else {
                    intermediate_values()[i]
                      = kernel()->bound_between_1_object()
                      (event_coordinates()[i-1].val,
                       event_coordinates()[i].val);
                }
            }
        }
        return intermediate_values()[i].value();
    }


public:

    /*!
     * Returns the content of the defining polynomial
     *
     * The content is the gcd of its coefficients (the polynomial is considered
     * as polynomial in \c y)
     */
    Polynomial_1 content() const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_content();
        }
#endif
        if(! this->ptr()->content) {
            compute_content_and_primitive_part();
        }
        return this->ptr()->content.value();
    }

public:

    /*!
     * Returns the primitive part of the defining polynomial
     *
     * The primitive part of \c f is the \c f divided by its content.
     */
    Polynomial_2 primitive_polynomial_2() const {
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_primitive_polynomial_2();
        }
#endif
        if(! this->ptr()->f_primitive) {
            compute_content_and_primitive_part();
        }
        return this->ptr()->f_primitive.value();
    }

    Algebraic_kernel_with_analysis_2* kernel() const {
        return this->ptr()->_m_kernel;
    }

private:


    // computes and sets the content and the primitive part for the curve
    void compute_content_and_primitive_part() const {

        CGAL_assertion(has_defining_polynomial());
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Computing the content..." << std::flush;
#endif
        this->ptr()->content
            = typename CGAL::Polynomial_traits_d< Polynomial_2 >::
                Univariate_content_up_to_constant_factor()( polynomial_2() );
        if(CGAL::degree(content())==0) {
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "no vertical lines as components"
                                 << std::endl;
#endif
            this->ptr()->f_primitive=polynomial_2();
        }
        else {
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "non-trivial content found" << std::endl;
#endif
            // Content must be square free, because the curve is square free
            CGAL_assertion( typename CGAL::Polynomial_traits_d< Polynomial_1 >
                            ::Is_square_free()(content()));
            this->ptr()->f_primitive=polynomial_2() / content();

        }

    }

private:

    //! Returns the Sturm-Habicht sequence of the primitive part of f
    std::vector<Polynomial_2>& sturm_habicht_of_primitive() const
      {
        if(! this->ptr()->sturm_habicht_of_primitive) {
            compute_sturm_habicht_of_primitive();
        }
        return this->ptr()->sturm_habicht_of_primitive.value();
    }

public:

    /*!
     * \brief returns the <tt>i</tt>th Sturm-Habicht polynomial
     * of the primitive part of the defining polynomial
     */
    Polynomial_2 sturm_habicht_of_primitive(size_type i) const
      {
        CGAL_assertion(i>=0 &&
                    i < static_cast<size_type>
                       (sturm_habicht_of_primitive().size()));
        return sturm_habicht_of_primitive()[i];
    }

public:

    /*!
     * \brief returns the <tt>i</tt>th principal Sturm-Habicht coefficient
     * of the primitive part of the defining polynomial
     */
    Polynomial_1 principal_sturm_habicht_of_primitive(size_type i) const
      {
        CGAL_assertion(i>=0 &&
                    i < static_cast<size_type>
                       (sturm_habicht_of_primitive().size()));

        CGAL_assertion(CGAL::degree(sturm_habicht_of_primitive()[i])<=i);
        if(CGAL::degree(sturm_habicht_of_primitive()[i]) < i) {
            return Polynomial_1(0);
        } // else:
        return sturm_habicht_of_primitive()[i][i];
    }

public:

    /*!
     * \brief returns the <tt>i</tt>th coprincipal Sturm-Habicht coefficient
     * of the primitive part of the defining polynomial
     *
     * The coprincipal Sturm-Habicht coefficient is the coefficient
     * of <tt>y^{i-1}</tt> of the <tt>i</tt>th Sturm-Habicht polynomial
     */
    Polynomial_1 coprincipal_sturm_habicht_of_primitive(size_type i) const
      {
        CGAL_assertion(i>=1 &&
                    i < static_cast<size_type>
                       (sturm_habicht_of_primitive().size()));
        CGAL_assertion(CGAL::degree(sturm_habicht_of_primitive()[i])<=i);
        if(CGAL::degree(sturm_habicht_of_primitive()[i]) < i-1) {
            return Polynomial_1(0);
        } // else:
        return sturm_habicht_of_primitive()[i][i-1];
    }

public:

    /*!
     * \brief returns an iterator to the principal Sturm-Habicht coefficients,
     * starting with the <tt>0</tt>th one (the resultant)
     */
    Principal_sturm_habicht_iterator principal_sturm_habicht_begin() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>(0),
             Stha_functor(this));
    }

    //! Returns an iterator to the end of principal Sturm-Habicht coefficients
    Principal_sturm_habicht_iterator principal_sturm_habicht_end() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>
             (static_cast<int>(sturm_habicht_of_primitive().size())),
             Stha_functor(this));
    }

private:

    // Internal method to compute the Sturm-Habicht sequence
    void compute_sturm_habicht_of_primitive() const
      {

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Compute Sturm-Habicht.." << std::flush;
#endif
        std::vector<Polynomial_2> stha;

        // Fix a problem for constant primitive part.
        // In this case, the St.-Ha. sequence is never needed
        if(CGAL::degree(primitive_polynomial_2()) == 0) {
            // Set the resultant
            stha.push_back(primitive_polynomial_2());
        } else {

#if CGAL_ACK_USE_BEZOUT_MATRIX_FOR_SUBRESULTANTS
#warning USES BEZOUT MATRIX FOR SUBRESULTANTS
            CGAL::internal::bezout_polynomial_subresultants<Polynomial_traits_2>
                (primitive_polynomial_2(),
                 CGAL::differentiate(primitive_polynomial_2()),
                 std::back_inserter(stha));
            stha.push_back(primitive_polynomial_2());
            size_type p = CGAL::degree(primitive_polynomial_2());
            CGAL_assertion(static_cast<size_type>(stha.size()) == p+1);
            for(size_type i=0;i<p; i++) {
                if((p-i)%4==0 || (p-i)%4==1) {
                    stha[i] = stha[i];
                } else {
                    stha[i] = -stha[i];
                }
            }

#else
            typename Polynomial_traits_2::Sturm_habicht_sequence()
                (primitive_polynomial_2(),std::back_inserter(stha));
#endif
        }
        // Also set the resultant, if not yet set
        if(! this->ptr()->resultant_of_primitive_and_derivative_y) {
            this->ptr()->resultant_of_primitive_and_derivative_y = stha[0][0];
            if(this->ptr()->resultant_of_primitive_and_derivative_y.
                   value().is_zero()) {
                throw internal::Zero_resultant_exception<Polynomial_2>
                    (polynomial_2());
            }
        }

        this->ptr()->sturm_habicht_of_primitive = stha;
        CGAL_assertion(CGAL::canonicalize
                       (resultant_of_primitive_and_derivative_y()) ==
                       CGAL::canonicalize
                       (principal_sturm_habicht_of_primitive(0)));
#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif
    }

private:

    //! Returns the resultant of the primitive part of f and its y-derivative
    Polynomial_1 resultant_of_primitive_and_derivative_y() const
      {
        if(! this->ptr()->resultant_of_primitive_and_derivative_y) {
            compute_resultant_of_primitive_and_derivative_y();
        }
        return this->ptr()->resultant_of_primitive_and_derivative_y.value();
    }

private:

    //! Returns the resultant of the primitive part of f with its x-derivative
    Polynomial_1 resultant_of_primitive_and_derivative_x() const
      {
        if(! this->ptr()->resultant_of_primitive_and_derivative_x) {
            compute_resultant_of_primitive_and_derivative_x();
        }
        return this->ptr()->resultant_of_primitive_and_derivative_x.value();
    }

private:
    // Computes <tt>res_y(f,f_y)</tt>, where \c f is the defining polynomial
    void compute_resultant_of_primitive_and_derivative_y() const
      {

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Compute resultant.." << std::flush;
#endif

        CGAL_assertion(has_defining_polynomial());

#if CGAL_ACK_RESULTANT_FIRST_STRATEGY
#ifndef CGAL_ACK_RESULTANT_FIRST_STRATEGY_DEGREE_THRESHOLD
        bool speed_up = true;
#else
        bool speed_up=CGAL::degree(polynomial_2()) >=
            CGAL_ACK_RESULTANT_FIRST_STRATEGY_DEGREE_THRESHOLD;
#endif
#else
        bool speed_up=false;
#endif

        if(CGAL::degree(polynomial_2()) == 0) {
            this->ptr()->resultant_of_primitive_and_derivative_y
                = Polynomial_1(1);
        } else {

            if(! speed_up) {

                // Compute resultant using the Sturm-Habicht sequence
                this->ptr()->resultant_of_primitive_and_derivative_y
                    = principal_sturm_habicht_of_primitive(0);

            } else {
                typename Polynomial_traits_2::Differentiate diff;
                this->ptr()->resultant_of_primitive_and_derivative_y
                    = CGAL::resultant
                        (primitive_polynomial_2(),
                         diff(primitive_polynomial_2(),1));
            }

        }

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif

        if(resultant_of_primitive_and_derivative_y().is_zero()) {
            throw internal::Zero_resultant_exception<Polynomial_2>
                (polynomial_2());
        }
    }

    // Computes <tt>res_y(f,f_x)</tt>, where \c f is the defining polynomial
    void compute_resultant_of_primitive_and_derivative_x() const
      {

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "Compute x-resultant.." << std::flush;
#endif

        CGAL_assertion(has_defining_polynomial());

        // Transpose the polynomial
        Polynomial_2 f_yx = typename Polynomial_traits_2::Swap()
            (polynomial_2(),0,1);

        if( CGAL::degree(f_yx) == 0 ) {
            // Polynomial only consists of horizontal lines
            // primitive resultant is set to 1
            this->ptr()->resultant_of_primitive_and_derivative_x
                = Polynomial_1(1);
        } else {

            Polynomial_2 f_yx_primitive;

            Polynomial_1 content_yx
                = typename CGAL::Polynomial_traits_d< Polynomial_2 >::
                    Univariate_content_up_to_constant_factor()( f_yx );
            if(CGAL::degree(content_yx)==0) {
                f_yx_primitive=f_yx;
            }
            else {
                CGAL_assertion
                    (typename CGAL::Polynomial_traits_d< Polynomial_1 >::
                         Is_square_free()(content_yx));
                f_yx_primitive=f_yx / content_yx;

            }

            this->ptr()->resultant_of_primitive_and_derivative_x
                = CGAL::resultant
                (typename Polynomial_traits_2::Swap() (f_yx_primitive,0,1),
                 typename Polynomial_traits_2::Swap()
                    (CGAL::differentiate(f_yx_primitive),0,1) );
        }

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif

        if(resultant_of_primitive_and_derivative_x().is_zero()) {
            throw internal::Zero_resultant_exception<Polynomial_2>
                (polynomial_2());
        }
    }




private:

    // Returns the critical event coordinates
    std::vector<Event_coordinate_1>& event_coordinates() const
      {
        if(! this->ptr()->event_coordinates) {
            compute_event_coordinates();
        }
        return this->ptr()->event_coordinates.value();
    }

private:

    // Returns the intermediate values for intervals between events
    std::vector<std::optional<Bound> >& intermediate_values() const
      {
        if(! this->ptr()->intermediate_values) {
            // This is created during event_coordiantes()
            event_coordinates();
            CGAL_assertion(bool(this->ptr()->intermediate_values));
        }
        return this->ptr()->intermediate_values.value();
    }


private:

    /*
     * \brief Computes the event coordinates of the curve.
     *
     * This function computes the content of the defining polynomial,
     * and the roots of its discriminant. These two sets form the critical
     * x-coordinates of the curve.
     */
    void compute_event_coordinates() const
      {

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "compute events..." << std::flush;
#endif

        Solve_1 solve_1;

        std::vector<std::pair<Algebraic_real_1,size_type> > content_pairs;
        std::vector<Algebraic_real_1> content_roots;
        std::vector<size_type> content_mults;
        solve_1(content(),
                std::back_inserter(content_pairs));

        for(int i=0; i < static_cast<int>(content_pairs.size()); i++ ) {
            content_roots.push_back(content_pairs[i].first);
            content_mults.push_back(content_pairs[i].second);
        }

        // Set the vertical_line_components flag as side effect
        this->ptr()->has_vertical_component = (content_roots.size() > 0);

        std::vector<std::pair<Algebraic_real_1,size_type> > res_pairs;
        std::vector<Algebraic_real_1> res_roots;
        std::vector<size_type> res_mults;
        Polynomial_1 R = resultant_of_primitive_and_derivative_y();
        solve_1(R,std::back_inserter(res_pairs));

        for(int i=0; i < static_cast<int>(res_pairs.size()); i++ ) {
            res_roots.push_back(res_pairs[i].first);
            res_mults.push_back(res_pairs[i].second);
        }

        std::vector<std::pair<Algebraic_real_1,size_type> > lcoeff_pairs;
        std::vector<Algebraic_real_1> lcoeff_roots;
        std::vector<size_type> lcoeff_mults;
        solve_1(CGAL::leading_coefficient(primitive_polynomial_2()),
                std::back_inserter(lcoeff_pairs));

        for(int i=0; i < static_cast<int>(lcoeff_pairs.size()); i++ ) {
            lcoeff_roots.push_back(lcoeff_pairs[i].first);
            lcoeff_mults.push_back(lcoeff_pairs[i].second);
        }


        //Now, merge the vertical line positions with the resultant roots
        typename
            CGAL::Real_embeddable_traits<Algebraic_real_1>::Compare compare;

        std::vector<Algebraic_real_1> event_values;
        std::vector<CGAL::internal::Three_valued> event_values_info;

        CGAL::internal::set_union_with_source
            (res_roots.begin(),
             res_roots.end(),
             content_roots.begin(),
             content_roots.end(),
             std::back_inserter(event_values),
             std::back_inserter(event_values_info),
             compare);

        // Now, build the Event_coordinate_1 entries
        // for each element of event_values
        size_type curr_res_index = 0, curr_content_index = 0,
            curr_lcoeff_index = 0;
        std::vector<Event_coordinate_1> event_coordinate_vector;

        for(size_type i = 0;
            i < static_cast<size_type>(event_values.size());
            i++ ) {

            Event_coordinate_1 curr_event;
            curr_event.val = event_values[i];
            switch(event_values_info[i]) {

            case(CGAL::internal::ROOT_OF_FIRST_SET): {
                curr_event.index_of_prim_res_root = curr_res_index;
                CGAL_expensive_assertion(res_roots[curr_res_index] ==
                                         event_values[i]);
                curr_event.mult_of_prim_res_root
                    = res_mults[curr_res_index];
                curr_res_index++;
                if(curr_lcoeff_index <
                   static_cast<size_type>(lcoeff_roots.size()) &&
                   event_values[i]==lcoeff_roots[curr_lcoeff_index]) {
                    // We have a root of the leading coefficient
                    // of the primitive polynomial
                    curr_event.index_of_prim_lcoeff_root = curr_lcoeff_index;
                    curr_event.mult_of_prim_lcoeff_root
                        = lcoeff_mults[curr_lcoeff_index];
                    curr_lcoeff_index++;
                } else {
                    curr_event.index_of_prim_lcoeff_root = -1;
                    curr_event.mult_of_prim_lcoeff_root = 0;
                }

                curr_event.index_of_content_root = -1;
                curr_event.mult_of_content_root = 0;
                break;
            }
            case(CGAL::internal::ROOT_OF_SECOND_SET): {
                curr_event.index_of_content_root = curr_content_index;
                CGAL_expensive_assertion(content_roots[curr_content_index] ==
                                         event_values[i]);
                curr_event.mult_of_content_root
                    = content_mults[curr_content_index];
                curr_content_index++;
                curr_event.index_of_prim_res_root = -1;
                curr_event.mult_of_prim_res_root = 0;
                CGAL_expensive_assertion(event_values[i]!=
                                         lcoeff_roots[curr_lcoeff_index]);
                curr_event.index_of_prim_lcoeff_root = -1;
                curr_event.mult_of_prim_lcoeff_root = 0;
                break;
            }
            case(CGAL::internal::ROOT_OF_BOTH_SETS): {
                curr_event.index_of_prim_res_root = curr_res_index;
                CGAL_expensive_assertion(res_roots[curr_res_index] ==
                                         event_values[i]);
                curr_event.mult_of_prim_res_root
                    = res_mults[curr_res_index];
                curr_res_index++;
                if(curr_lcoeff_index <
                   static_cast<size_type>(lcoeff_roots.size()) &&
                   event_values[i]==lcoeff_roots[curr_lcoeff_index]) {
                    // We have a root of the leading coefficient
                    // of the primitive polynomial
                    curr_event.index_of_prim_lcoeff_root = curr_lcoeff_index;
                    curr_event.mult_of_prim_lcoeff_root
                        = lcoeff_mults[curr_lcoeff_index];
                    curr_lcoeff_index++;
                } else {
                    curr_event.index_of_prim_lcoeff_root = -1;
                    curr_event.mult_of_prim_lcoeff_root = 0;
                }
                curr_event.index_of_content_root = curr_content_index;
                CGAL_expensive_assertion(content_roots[curr_content_index] ==
                                         event_values[i]);
                curr_event.mult_of_content_root
                    = content_mults[curr_content_index];
                curr_content_index++;
                break;
            }
            } // of switch
            /*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << "Constructed event_coordinate: "
                                 << CGAL::to_double(curr_event.val) << " "
                                 << "\nmult_of_prim_res_root : "
                                 << curr_event.mult_of_prim_res_root
                                 << "\nindex_of_prim_res_root : "
                                 << curr_event.index_of_prim_res_root
                                 << "\nmult_of_content_root : "
                                 << curr_event.mult_of_content_root
                                 << "\nindex_of_content_root : "
                                 << curr_event.index_of_content_root
                                 << "\nmult_of_lcoeff_root : "
                                 << curr_event.mult_of_prim_lcoeff_root
                                 << "\nindex_of_lcoeff_root : "
                                 << curr_event.index_of_prim_lcoeff_root
                                 << std::endl;
#endif
            */
            event_coordinate_vector.push_back(curr_event);
        }


        CGAL_assertion(curr_lcoeff_index ==
                       static_cast<size_type>(lcoeff_roots.size()));
        CGAL_assertion(curr_res_index ==
                       static_cast<size_type>(res_roots.size()));
        CGAL_assertion(curr_content_index ==
                       static_cast<size_type>(content_roots.size()));

        this->ptr()->intermediate_values
            = std::vector<std::optional<Bound> >
            (event_coordinate_vector.size()+1);
        this->ptr()->event_coordinates = event_coordinate_vector;

#if CGAL_ACK_DEBUG_FLAG
        CGAL_ACK_DEBUG_PRINT << "done" << std::endl;
#endif

    }

public:

    /*!
     * \brief returns a \c Curve_analysis_2 object for a sheared curve.
     *
     * The shear factor is given by the integer \c s.
     * This functions only shears the primitive part of the defining equation.
     * Internal caching is used to avoid repeated shears.
     *
     * \todo The sheared curves are not inserted into the curve_cache
     * of the Algebraic_curve_kernel_2 yet.
     */
    Self& shear_primitive_part(Integer s) const
    {
        CGAL_assertion(s!=0);
#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_shear_primitive_part();
        }
#endif
        if(this->ptr()->bad_shears.find(s) !=
           this->ptr()->bad_shears.end()) {
            throw CGAL::internal::Non_generic_position_exception();
        }
        typedef typename std::map<Integer,Self>::iterator
            Map_iterator;
        Map_iterator it = this->ptr()->sheared_curves.find(s);
        if(it != this->ptr()->sheared_curves.end()) {
            return it->second;
        }
        try {
            Shear_transformation<Algebraic_kernel_with_analysis_2>
                shear_transformation(kernel());
            Self D=shear_transformation((Self&)*this, s);
            std::pair<Map_iterator,bool> insertion =
                this->ptr()->sheared_curves.insert(std::make_pair(s,D));
            CGAL_assertion(insertion.second);
            return insertion.first->second;
        }
        catch(CGAL::internal::Non_generic_position_exception /* err */) {
            this->ptr()->bad_shears.insert(s);
            throw CGAL::internal::Non_generic_position_exception();
        }
    }

public:

    //! Iterator for sheared curves
    typename std::map<Coefficient,Self>::const_iterator shear_begin() {
        return this->ptr()->sheared_curves.begin();
    }

    //! Iterator for sheared curves
    typename std::map<Coefficient,Self>::const_iterator shear_end() {
        return this->ptr()->sheared_curves.end();
    }

private:

    // Sets the flag for vertical lines in all status lines that need it
    void set_vertical_line_components() const {
        for(size_type i = 0;
            i < static_cast<size_type>(event_coordinates().size());
            i++ ) {

            if(event_coordinates()[i].mult_of_content_root > 0) {
                status_line_at_event(i)._set_v_line();
            }
        }

    }


public:

    /*!
     * \brief Increases the precision of all status lines
     *
     * For each status line at an event and each status line that represents
     * an interval, all y-coordinates are approximated such that their
     * isolating interval has absolute size smaller than \c precision.
     */
    void refine_all(Bound precision) {

#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_refine_all(precision);
        }
#endif

        for(size_type i=0;
            i<static_cast<size_type>(event_coordinates().size());
            i++) {
        /*
#if CGAL_ACK_DEBUG_FLAG
            CGAL_ACK_DEBUG_PRINT << i << ": " << std::flush;
#endif
        */
            Status_line_1& el = status_line_at_event(i);

            for(size_type j=0;j<el.number_of_events();j++) {
/*
#if CGAL_ACK_DEBUG_FLAG
                CGAL_ACK_DEBUG_PRINT << j << " " << std::flush;
#endif
*/
                el.refine_to(j,precision);
            }
        }
        for(size_type i=0;
            i<static_cast<size_type>(intermediate_values().size());
            i++) {
            Status_line_1 il = status_line_of_interval(i);
            for(size_type j=0;j<il.number_of_events();j++) {
                il.refine_to(j,precision);
            }
        }
    }

public:

    //! \brief Iterator for the status lines at events
    Event_line_iterator event_begin() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>(0),
             Event_functor(this));
    }

    //! \brief Iterator for the status lines at events
    Event_line_iterator event_end() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>
             (number_of_status_lines_with_event()),
             Event_functor(this));
    }

public:

    //! \brief Iterator for the status lines for intervals
    Intermediate_line_iterator intermediate_begin() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>(0),
             Intermediate_functor(this));
    }

    //! \brief Iterator for the status lines for intervals
    Intermediate_line_iterator intermediate_end() const {
        return boost::make_transform_iterator
            (boost::counting_iterator<size_type>(intermediate_values().size()),
             Intermediate_functor(this));
    }

public:

    /*!
     * \brief returns the limit an infinite arc converges to
     *
     * \pre <tt>loc==CGAL::LEFT_BOUNDARY ||
     *          loc==CGAL::RIGHT_BOUNDARY</tt>
     *
     * This method returns for the <tt>arcno</tt>th arc that goes to -infinity
     * or +infinity (depending on \c loc) the y-coordinate it converges to.
     * Possible values are either a \c Algebraic_real_1 object, or one of the
     * values \c CGAL::TOP_BOUNDARY, \c CGAL::BOTTOM_BOUNDARY
     * that denote that the arc is unbounded in y-direction.
     * The result is wrapped into a \c CGAL::Object object.
     */
    Asymptote_y asymptotic_value_of_arc(CGAL::Box_parameter_space_2 loc,
                                        size_type arcno) const {

        CGAL_precondition(loc == CGAL::LEFT_BOUNDARY ||
                          loc == CGAL::RIGHT_BOUNDARY);

#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX
        if(CGAL::degree(polynomial_2(),1)==2) {
            return this->conic_asymptotic_value_of_arc(loc,arcno);
        }
#endif

        if(loc == CGAL::LEFT_BOUNDARY) {

            if(! this->ptr()->horizontal_asymptotes_left) {
                compute_horizontal_asymptotes();
            }
            std::vector<Asymptote_y>& asym_info
                = this->ptr()->horizontal_asymptotes_left.value();
            CGAL_precondition(arcno>=0 &&
                              arcno<static_cast<size_type>(asym_info.size()));
            return asym_info[arcno];
        } // else loc == CGAL::RIGHT_BOUNDARY

        if(! this->ptr()->horizontal_asymptotes_right) {
            compute_horizontal_asymptotes();
        }
        std::vector<Asymptote_y>& asym_info
            = this->ptr()->horizontal_asymptotes_right.value();
        CGAL_precondition(arcno>=0 &&
                          arcno<static_cast<size_type>(asym_info.size()));
        return asym_info[arcno];

    }


private:

    // Internal method to compute horizontal asymptotes
    void compute_horizontal_asymptotes() const {

        // TODO: Filter out curves with no arc to +/- infty

        Solve_1 solve_1 = kernel()->solve_1_object();

        Polynomial_1 leading_coefficient_in_x
            = CGAL::leading_coefficient(typename Polynomial_traits_2::Swap()
                                        (polynomial_2(),0,1));
        std::vector<Algebraic_real_1> roots_of_lcoeff;

        solve_1(leading_coefficient_in_x,
                std::back_inserter(roots_of_lcoeff),
                false);


        std::vector<Bound> stripe_bounds;
        find_intermediate_values(kernel(),
                                 roots_of_lcoeff.begin(),
                                 roots_of_lcoeff.end(),
                                 std::back_inserter(stripe_bounds));
        Bound leftmost_bound = bound_value_in_interval(0),
            rightmost_bound = bound_value_in_interval
                (this->number_of_status_lines_with_event());
        for(size_type i=0;i<static_cast<size_type>(stripe_bounds.size());i++) {
            Bound& beta = stripe_bounds[i];
            Polynomial_1 poly_at_beta
              = kernel()->evaluate_utcf_2_object()(this->polynomial_2(),beta);
            std::vector<Algebraic_real_1> x_coordinates_at_beta;
            solve_1(poly_at_beta,std::back_inserter(x_coordinates_at_beta),
                    false);
            size_type number_of_roots
                = static_cast<size_type>(x_coordinates_at_beta.size());
            if(number_of_roots>0) {
                if(leftmost_bound > x_coordinates_at_beta[0].low()) {
                    leftmost_bound = x_coordinates_at_beta[0].low();
                }
                if(rightmost_bound
                   < x_coordinates_at_beta[number_of_roots-1].high()) {
                    rightmost_bound
                        = x_coordinates_at_beta[number_of_roots-1].high();
                }
            }
        }

        // Just to be sure...
        leftmost_bound = leftmost_bound - 1;
        rightmost_bound = rightmost_bound + 1;

        Polynomial_1 curve_at_left_end
        = kernel()->evaluate_utcf_2_object()
          (typename Polynomial_traits_2::Swap() (this->polynomial_2(),0,1),
           leftmost_bound);
        std::vector<Algebraic_real_1> roots_at_left_end;
        solve_1(curve_at_left_end,std::back_inserter(roots_at_left_end),false);
        size_type number_of_roots_at_left_end
            = static_cast<size_type>(roots_at_left_end.size());
        std::vector<Asymptote_y> asym_left_info;
        size_type current_stripe=0,i=0;
        while(i<number_of_roots_at_left_end) {
            if(current_stripe==static_cast<size_type>(stripe_bounds.size())) {
                asym_left_info.push_back( CGAL::make_object
                                              (CGAL::TOP_BOUNDARY) );
                i++;
                continue;
            }
            if(roots_at_left_end[i].low() > stripe_bounds[current_stripe]) {
                current_stripe++;
                continue;
            }
            if(roots_at_left_end[i].high() < stripe_bounds[current_stripe]) {
                if(current_stripe==0) {
                    asym_left_info.push_back(CGAL::make_object
                                                 (CGAL::BOTTOM_BOUNDARY));
                    i++;
                    continue;
                } else {
                    asym_left_info.push_back(CGAL::make_object
                                 (roots_of_lcoeff[current_stripe-1]));
                    i++;
                    continue;
                }
            }
            roots_at_left_end[i].refine();
        }
        this->ptr()->horizontal_asymptotes_left = asym_left_info;

        Polynomial_1 curve_at_right_end
        = kernel()->evaluate_utcf_2_object()
              (typename Polynomial_traits_2::Swap() (this->polynomial_2(),0,1),
             rightmost_bound);
        std::vector<Algebraic_real_1> roots_at_right_end;
        solve_1(curve_at_right_end,std::back_inserter(roots_at_right_end),false);
        size_type number_of_roots_at_right_end
            = static_cast<size_type>(roots_at_right_end.size());
        std::vector<Asymptote_y> asym_right_info;
        current_stripe=0;
        i=0;
        while(i<number_of_roots_at_right_end) {
            if(current_stripe==static_cast<size_type>(stripe_bounds.size())) {
                asym_right_info.push_back(CGAL::make_object
                                              (CGAL::TOP_BOUNDARY) );
                i++;
                continue;
            }
            if(roots_at_right_end[i].low() > stripe_bounds[current_stripe]) {
                current_stripe++;
                continue;
            }
            if(roots_at_right_end[i].high() < stripe_bounds[current_stripe]) {
                if(current_stripe==0) {
                    asym_right_info.push_back(CGAL::make_object
                                                  (CGAL::BOTTOM_BOUNDARY));
                    i++;
                    continue;
                } else {
                    asym_right_info.push_back
                        (CGAL::make_object(roots_of_lcoeff[current_stripe-1]));
                    i++;
                    continue;
                }
            }
            roots_at_right_end[i].refine();
        }
        this->ptr()->horizontal_asymptotes_right = asym_right_info;

    }

    //! @}

public:

    template<typename OutputIterator> void get_roots_at_rational
    (Bound r, OutputIterator it) const {

        typename Rep::Intermediate_cache::Find_result find_result
            = this->ptr()->intermediate_cache.find(r);

        std::vector<Algebraic_real_1> p_roots;

        if(find_result.second) {
            p_roots = find_result.first->second;
        } else {
            Polynomial_2 swapped = typename Polynomial_traits_2::Swap()
                                          (this->polynomial_2(), 0, 1);
            Polynomial_1 p = kernel()->evaluate_utcf_2_object()(swapped,r);
            kernel()->solve_1_object()(p,std::back_inserter(p_roots),false);

            this->ptr()->intermediate_cache.insert(std::make_pair(r,p_roots));

        }
        std::copy(p_roots.begin(),p_roots.end(),it);
    }


    // \name Internal functions for Conic optimization
    //! @{

#if CGAL_ACK_USE_SPECIAL_TREATMENT_FOR_CONIX

private:

    bool conic_is_y_regular() const {
        CGAL_error_msg("Implement me");
        return false;
    }

    bool conic_has_vertical_component() const {
        CGAL_error_msg("Implement me");
        return false;
    }

    size_type conic_number_of_status_lines_with_event() const {
        CGAL_error_msg("Implement me");
        return 0;
    }

    void conic_x_to_index(Algebraic_real_1 x,size_type& i,bool& is_event) const
    {
        CGAL_error_msg("Implement me");
    }

    Status_line_1& conic_status_line_at_event(size_type i) const {
        CGAL_error_msg("Implement me");
        // Just a random status line to make compiler happy
        return this->ptr()->vert_line_at_rational_map[Bound(0)];
    }

    Status_line_1& conic_status_line_at_exact_x(Bound b) const {
        CGAL_error_msg("Implement me");
        return this->ptr()->vert_line_at_rational_map[Bound(0)];
    }

    Status_line_1& conic_status_line_at_exact_x(Algebraic_real_1 alpha) const {
        CGAL_error_msg("Implement me");
        return this->ptr()->vert_line_at_rational_map[Bound(0)];
    }

    Status_line_1 conic_status_line_of_interval(size_type i) const {
        CGAL_error_msg("Implement me");
        return this->ptr()->vert_line_at_rational_map[Bound(0)];
    }

    Status_line_1 conic_status_line_for_x
        (Algebraic_real_1 x,
         CGAL::Sign perturb = CGAL::ZERO) const {
        CGAL_error_msg("Implement me");
        return this->ptr()->vert_line_at_rational_map[Bound(0)];
    }

    size_type conic_arcs_over_interval(size_type i) const {
        CGAL_error_msg("Implement me");
        return -1;
    }

    Bound conic_bound_value_in_interval(size_type i) const {
        CGAL_error_msg("Implement me");
        return Bound(0);
    }

    Polynomial_1 conic_content() const {
        CGAL_error_msg("Implement me");
        return Polynomial_1();
    }

    Polynomial_2 conic_primitive_polynomial_2() const {
        CGAL_error_msg("Implement me");
        return Polynomial_2();
    }

    Self& conic_shear_primitive_part(Integer s) const {
        CGAL_error_msg("Implement me");
        return Self();
    }

    void conic_refine_all(Bound precision) {
        CGAL_error_msg("Implement me");
    }

    Asymptote_y conic_asymptotic_value_of_arc(CGAL::Box_parameter_space_2 loc,
                                              size_type arcno) const {
        CGAL_error_msg("Implement me");
        return Asymptote_y();
    }

#endif


    //! @}

    //! \name friends
    //! @{

    // friend function for id-based hashing
    friend std::size_t hash_value(const Self& x) {
        return static_cast<std::size_t>(x.id());
    }

    // another friend
    friend class Shear_transformation<Algebraic_kernel_with_analysis_2>;

    //! @}

}; // class Algebraic_curve_2_2


//! \brief prints the objects.
template<typename AlgebraicKernelWithAnalysis_2,
         typename Rep_>
std::ostream& operator<< (
        std::ostream& out,
        const Curve_analysis_2< AlgebraicKernelWithAnalysis_2,
        Rep_ >& curve) {

  typedef AlgebraicKernelWithAnalysis_2 Algebraic_kernel_with_analysis_2;

  typedef Rep_ Rep;

  typedef Curve_analysis_2< Algebraic_kernel_with_analysis_2, Rep > Curve;

  typedef typename Curve::size_type size_type;
  typedef typename Curve::Asymptote_y Asymptote_y;


    switch (::CGAL::IO::get_mode(out)) {
    case ::CGAL::IO::PRETTY: {

      out << "--------------- Analysis results ---------------" << std::endl;
      out << "Number of constructed event lines: "
          << curve.number_of_status_lines_with_event()
          << std::endl;
      out << "(Horizontal) asymptotes at -infty: " << std::flush;
      for (size_type i = 0; i < curve.arcs_over_interval(0); i++) {

        const Asymptote_y& curr_asym_info_obj
          = curve.asymptotic_value_of_arc(CGAL::LEFT_BOUNDARY,i);
        typename Curve::Algebraic_real_1 curr_asym_info;
        bool is_finite = CGAL::assign(curr_asym_info,curr_asym_info_obj);
        if (!is_finite) {
          // Assignment to prevent compiler warning
          CGAL::Box_parameter_space_2 loc = CGAL::LEFT_BOUNDARY;
          CGAL_assertion_code(bool is_valid = )
            CGAL::assign(loc, curr_asym_info_obj);
          CGAL_assertion(is_valid);
          if (loc == CGAL::TOP_BOUNDARY) {
            out << "+infty " << std::flush;
          } else {
            CGAL_assertion(loc == CGAL::BOTTOM_BOUNDARY);
            out << "-infty " << std::flush;
          }
        } else { // is_finite
          out << CGAL::to_double(curr_asym_info)
              << " " << std::flush;
        }
      }

      out << std::endl;

      out << "Intermediate line at "
          << CGAL::to_double(curve.bound_value_in_interval(0))
          << ": " << curve.arcs_over_interval(0) << " passing arcs"
          << std::endl
          << std::endl;
      for (size_type i = 0; i < curve.number_of_status_lines_with_event();
           i++) {
        out << curve.status_line_at_event(i) << std::endl;
        out << "Intermediate line at "
            << CGAL::to_double(curve.bound_value_in_interval(i+1))
            << ": " << curve.arcs_over_interval(i+1)
            << " passing arcs" << std::endl
            << std::endl;
      }
      out << "(Horizontal) asymptotes at +infty: " << std::flush;
      size_type no_events = curve.number_of_status_lines_with_event();
      for (size_type i = 0; i < curve.arcs_over_interval(no_events); i++) {

        const Asymptote_y& curr_asym_info_obj
          = curve.asymptotic_value_of_arc(CGAL::RIGHT_BOUNDARY,i);
        typename Curve::Algebraic_real_1 curr_asym_info;
        bool is_finite = CGAL::assign(curr_asym_info,curr_asym_info_obj);
        if(! is_finite) {
          // Assignment to prevent compiler warning
          CGAL::Box_parameter_space_2 loc = CGAL::LEFT_BOUNDARY;
          CGAL_assertion_code(bool is_valid = )
            CGAL::assign(loc, curr_asym_info_obj);
          CGAL_assertion(is_valid);
          if(loc == CGAL::TOP_BOUNDARY) {
            out << "+infty " << std::flush;
          } else {
            CGAL_assertion(loc == CGAL::BOTTOM_BOUNDARY);
            out << "-infty " << std::flush;
          }
        } else { // is_finite
          out << CGAL::to_double(curr_asym_info)
              << " " << std::flush;
        }
      }

      out << std::endl;

      out << "------------------------------------------------" << std::endl;
      break;
    }
    case ::CGAL::IO::BINARY:
      std::cerr << "BINARY format not yet implemented" << std::endl;
      break;
    default:
      // ASCII
      out << curve.polynomial_2();
    }

    return out;
}

//! \brief reads the objects from stream
template<typename AlgebraicKernelWithAnalysis_2,
         typename Rep_>
std::istream& operator>> (
    std::istream& is,
    Curve_analysis_2< AlgebraicKernelWithAnalysis_2, Rep_ >& curve) {

  CGAL_precondition(CGAL::IO::is_ascii(is));

  typedef AlgebraicKernelWithAnalysis_2 Algebraic_kernel_with_analysis_2;

  typedef Rep_ Rep;

  typename Curve_analysis_2< Algebraic_kernel_with_analysis_2, Rep >::
    Polynomial_2 f;

  is >> f;

  // TODO is get_static_instance the right way?
  curve = Algebraic_kernel_with_analysis_2::get_static_instance().
    construct_curve_2_object()(f);

  return is;
}


} //namespace CGAL


#include <CGAL/enable_warnings.h>

#endif // ALGEBRAIC_CURVE_2_H