File: bound_between_1.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (259 lines) | stat: -rw-r--r-- 8,859 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Algebraic_kernel_d/include/CGAL/Algebraic_kernel_d/bound_between_1.h $
// $Id: include/CGAL/Algebraic_kernel_d/bound_between_1.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
//
// Author(s)     : Michael Kerber <mkerber@mpi-inf.mpg.de>
//
// ============================================================================


#ifndef CGAL_BOUND_BETWEEN_1_H
#define CGAL_BOUND_BETWEEN_1_H 1

#include <iterator>

#include <CGAL/basic.h>
#include <CGAL/Algebraic_kernel_d/enums.h>
#include <CGAL/Arithmetic_kernel.h>
#include <CGAL/Algebraic_kernel_d/Float_traits.h>
#include <CGAL/convert_to_bfi.h>
#include <CGAL/Algebraic_kernel_d/Real_embeddable_extension.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Algebraic_kernel_d/Bitstream_coefficient_kernel.h>
#include <CGAL/Bigfloat_interval_traits.h>
#include <boost/numeric/interval.hpp>

#include <CGAL/Coercion_traits.h>

namespace CGAL {

namespace internal {

/*! \brief tries to find a SIMPLE rational q with a<q<b.
 *
 * In this context, simple means that the denominator of <tt>q</tt>
 * is a power of two, and is not too big. There is no guarantee to find
 * the rational value between <tt>a</tt> and <tt>b</tt> of minimal
 * bit size.
 */
template<typename Algebraic_real>
typename Algebraic_real::Rational
simple_bound_between(const Algebraic_real& a,
                        const Algebraic_real&b) {

    //srb.start();
    typedef typename Algebraic_real::Rational Rational;
    typename CGAL::Fraction_traits<Rational>::Compose compose;
    typedef typename
        CGAL::Get_arithmetic_kernel<Rational>::Arithmetic_kernel AK;
    typedef typename AK::Bigfloat_interval Bigfloat_interval;
    typedef typename CGAL::Bigfloat_interval_traits<Bigfloat_interval>
        ::Bound Bigfloat;
    typedef typename AK::Integer Integer;

    long old_prec = CGAL::get_precision(Bigfloat_interval());

    CGAL_assertion(a!=b);
    if(a>b) {
      return simple_bound_between(b,a);
    }

    //std::cout << "Intermediate1: " << CGAL::to_double(a) << " " << CGAL::to_double(b) << std::endl;
    /*
     * First, refine a and b until their isolating intervals are disjoint
     * Therefore, the bigger interval is refined in each substep
     */
    //srb_a.start();
    if(a.high() >= b.low()) {
        Rational size_a=a.high()-a.low(),
            size_b=b.high() - b.low();
        while(a.high() >= b.low()) {
            if(size_a < size_b) {
                b.refine();
                size_b=b.high() - b.low();
            } else {
                a.refine();
                size_a=a.high()-a.low();
            }
        }
    }
    //srb_a.stop();

    //srb_b.start();
    Bigfloat x=CGAL::upper(CGAL::convert_to_bfi(a.high()));
    Bigfloat y=CGAL::lower(CGAL::convert_to_bfi(b.low()));

    if(x>=y) {
        Rational size_a=a.high() - a.low(),
            size_b=b.high() - b.low(),
            size_max = size_a>size_b ? size_a : size_b,
            size_int = b.low()-a.high();
        while(x>=y) {
            //std::cout << "x and y: " <<  x << " and " << y << std::endl;
            //std::cout << "sizes: " << CGAL::to_double(size_int) << " " << CGAL::to_double(size_max) << std::endl;
            if(size_int>size_max) {
                CGAL::set_precision(Bigfloat_interval(),
                                   2*CGAL::get_precision(Bigfloat_interval()));
                x=CGAL::upper(CGAL::convert_to_bfi(a.high()));
                y=CGAL::lower(CGAL::convert_to_bfi(b.low()));
            } else {
                if(size_a < size_b) {
                    b.refine();
                    size_b=b.high() - b.low();
                    y=CGAL::lower(CGAL::convert_to_bfi(b.low()));
                } else {
                    a.refine();
                    size_a=a.high()-a.low();
                    x=CGAL::upper(CGAL::convert_to_bfi(a.high()));
                }
                size_max = size_a>size_b ? size_a : size_b;
                size_int = b.low()-a.high();
            }
        }
    }
    CGAL_assertion(x<y);

    //srb_b.stop();
    //std::cout << "Intermediate2: " << x << " " << y << std::endl;
    typename CGAL::internal::Float_traits<Bigfloat>::Get_mantissa mantissa;
    typename CGAL::internal::Float_traits<Bigfloat>::Get_exponent exponent;

    // std::cout << CGAL::to_double(x) << " < " << CGAL::to_double(y) << std::endl;

    Integer x_m = mantissa(x), y_m=mantissa(y);
    long x_e = exponent(x), y_e = exponent(y);
    //std::cout << "Floats1: " << x_m << " " << x_e << " and " << y_m << " " << y_e << std::endl;


    if (((x_m > 0) && (y_m < 0)) || ((x_m < 0) && (y_m > 0))) {
        //srb.stop();
        return Rational(0);
    }
    bool negative=false;
    if(x_m<=0 && y_m <=0) {
        x_m=-x_m;
        y_m=-y_m;
        std::swap(x_m,y_m);
        std::swap(x_e,y_e);
        negative=true;
    }
    // Now, we have that (x_m,x_e) represents a number smaller than (y_m,y_e)
    //srb_c.start();
    //std::cout << "Floats2: " << x_m << " " << x_e << " and " << y_m << " " << y_e << std::endl;

    // As long as the mantissa is even, simplify
    while(x_m != 0 && (x_m & 1)==0 ) {
        x_m=x_m >> 1;
        x_e++;
    }
    while(y_m != 0 && (y_m & 1)==0 ) {
        y_m=y_m >> 1;
        y_e++;
    }
    //srb_c.stop();
    //std::cout << "Floats3: " << x_m << " " << x_e << " and " << y_m << " " << y_e << std::endl;

    // Bring both numbers to a common exponent
    //srb_d.start();
    long min_e = x_e < y_e ? x_e : y_e;
    while(x_e > min_e) {
        x_m=x_m << 1;
        x_e--;
    }
    while(y_e > min_e) {
        y_m=y_m << 1;
        y_e--;
    }
    //srb_d.stop();
    CGAL_assertion(y_e==x_e && x_e==min_e);
    CGAL_assertion(x_m < y_m);
    //std::cout << "Floats4: " << x_m << " " << x_e << " and " << y_m << " " << y_e << std::endl;

    // Avoid mantissas to have difference one
    if(y_m-x_m==Integer(1)) {
        x_m=x_m << 1;
        y_m=y_m << 1;
        x_e--;
        y_e--;
        min_e--;
    }
    //std::cout << "Floats5: " << x_m << " " << x_e << " and " << y_m << " " << y_e << std::endl;
    Integer final_mantissa(0);
    //srb_e.start();
    long x_log = x_m==Integer(0) ? -1 : CGAL::internal::floor_log2_abs(x_m),
        y_log = y_m==Integer(0) ? -1 : CGAL::internal::floor_log2_abs(y_m),
        old_log = y_log;
    //std::cout << x_log << " < " << y_log << std::endl;
    while(x_log==y_log) {
        //std::cout << "here" << std::endl;
        while(old_log > y_log) {
            final_mantissa = final_mantissa << 1;
            old_log--;
        }
        CGAL_assertion((x_m & ((Integer(1) << x_log) - 1)) == x_m - CGAL::ipower(Integer(2),x_log));
        x_m = x_m & ((Integer(1) << x_log) - 1); // x_m - CGAL::ipower(Integer(2),x_log);
        y_m = y_m & ((Integer(1) << y_log) - 1); // y_m - CGAL::ipower(Integer(2),y_log);

        final_mantissa++;
        old_log=y_log;
        x_log = x_m==0 ? -1 : CGAL::internal::floor_log2_abs(x_m);
        y_log = y_m==0 ? -1 : CGAL::internal::floor_log2_abs(y_m);
    }
    //srb_e.stop();
    // Now, x_log != y_log, in fact, y_log is greater
    CGAL_assertion(x_log<y_log);
    //srb_f.start();
    while(old_log > y_log) {
        final_mantissa = final_mantissa << 1;
        old_log--;
    }
    if((y_m & ((Integer(1) << y_log) - 1 ))==0) { // y_m - CGAL::ipower(Integer(2),y_log)==0) {
        // Now, the constructed value would be equal to
        while(y_log!=0 && x_log==y_log-1) {
            final_mantissa = final_mantissa << 1;
            final_mantissa++;
            y_log--;
            x_m = x_m==0 ? 0 : Integer(x_m & ((Integer(1) << x_log) - 1)); //x_m - CGAL::ipower(Integer(2),x_log);
            x_log = x_m==0 ? -1 : CGAL::internal::floor_log2_abs(x_m);
        }
        final_mantissa = final_mantissa << 1;
        final_mantissa++;
        y_log--;
    } else {
        final_mantissa++;
    }
    //srb_f.stop();
    min_e += y_log;
    Rational rat_between;
    //std::cout << "Min_e: " << min_e << std::endl;
    if(min_e > 0) {
        rat_between = compose(final_mantissa << min_e,
                              Integer(1));
    } else {
        rat_between = compose(final_mantissa, Integer(1) << -min_e);
    }
    if(negative) {
        rat_between = -rat_between;
    }
    //std::cout << "Result: " << a.high() << " " << rat_between << " " << b.low() << std::endl;
    CGAL_assertion(a.high() < rat_between);
    CGAL_assertion(b.low() > rat_between);
    CGAL::set_precision(Bigfloat_interval(),old_prec);
    //srb.stop();
    return rat_between;
}


} // namespace internal


} //namespace CGAL

#endif // CGAL_BOUND_BETWEEN_1_H