File: BigFloat_impl.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (1287 lines) | stat: -rw-r--r-- 36,748 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
/****************************************************************************
 * Core Library Version 1.7, August 2004
 * Copyright (c) 1995-2004 Exact Computation Project
 * All rights reserved.
 *
 * This file is part of CGAL (www.cgal.org).
 *
 * File: BigFloat.cpp
 * Synopsis:
 *       BigFloat numbers with error bounds
 *
 *       EXACTNESS PROPERTY:
 *       ==================
 *       For BigFloats that are exact (i.e., error=0),
 *       addition/subtraction and multiplication return the
 *       exact result (i.e., error=0).  We also introduce the operation
 *       div2(), which simply divides a BigFloat by 2,
 *       but this again preserves exactness.  Such exactness
 *       properties are used in our Newton iteration/Sturm Sequences.
 *
 * Written by
 *       Chee Yap <yap@cs.nyu.edu>
 *       Chen Li <chenli@cs.nyu.edu>
 *       Zilin Du <zilin@cs.nyu.edu>
 *
 * WWW URL: https://cs.nyu.edu/exact/
 * Email: exact@cs.nyu.edu
 *
 * $URL: https://github.com/CGAL/cgal/blob/v6.1.1/CGAL_Core/include/CGAL/CORE/BigFloat_impl.h $
 * $Id: include/CGAL/CORE/BigFloat_impl.h 08b27d3db14 $
 * SPDX-License-Identifier: LGPL-3.0-or-later
 ***************************************************************************/

#ifdef CGAL_HEADER_ONLY
#define CGAL_INLINE_FUNCTION inline
#else
#define CGAL_INLINE_FUNCTION
#endif

#include <CGAL/disable_warnings.h>

#include <string>
#include <ctype.h>
#include <CGAL/CORE/BigFloat.h>
#include <CGAL/CORE/Expr.h>
#include <CGAL/tss.h>
#include <sstream>

namespace CORE {


////////////////////////////////////////////////////////////
// Misc Helper Functions
////////////////////////////////////////////////////////////

CGAL_INLINE_FUNCTION
BigInt FiveTo(unsigned long exp) {
  if (exp == 0)
    return BigInt(1);
  else if (exp == 1)
    return BigInt(5);
  else {
    BigInt x = FiveTo(exp / 2);

    x = x * x;

    if (exp & 1)
      x *= 5;

    return x;
  }
}

////////////////////////////////////////////////////////////
//  class BigFloat
////////////////////////////////////////////////////////////

// STATIC BIGFLOAT CONSTANTS
// ZERO
CGAL_INLINE_FUNCTION
const BigFloat& BigFloat::getZero() {
  init_CORE();
  CGAL_STATIC_THREAD_LOCAL_VARIABLE(BigFloat, Zero,0);
  return Zero;
}
// ONE
CGAL_INLINE_FUNCTION
const BigFloat& BigFloat::getOne() {
  init_CORE();
  CGAL_STATIC_THREAD_LOCAL_VARIABLE(BigFloat, One,1);
  return One;
}

// A special constructor for BigFloat from Expr
// -- this method is somewhat of an anomaly (we normally do not expect
//    BigFloats to know about Expr).
CGAL_INLINE_FUNCTION
BigFloat::BigFloat(const Expr& E, const extLong& r, const extLong& a)
  : RCBigFloat(new BigFloatRep()) {
  *this = E.approx(r, a).BigFloatValue(); // lazy implementation, any other way?
}

////////////////////////////////////////////////////////////
//  class BigFloatRep
////////////////////////////////////////////////////////////

CGAL_INLINE_FUNCTION
BigFloatRep::BigFloatRep(double d) : m(0), err(0), exp(0) {
  if (d != 0.0) {
    int isNegative = 0;

    if (d < 0.0) {
      isNegative = 1;
      d          = - d;
    }

    int    binExp;
    double f = frexp(d, &binExp);

    exp = chunkFloor(binExp);

    long s = binExp - bits(exp);

    long   stop = 0;
    double intPart;

    // convert f into a BigInt
    while (f != 0.0 && stop < DBL_MAX_CHUNK) {
      f =   ldexp(f, (int)CHUNK_BIT);
      f =   modf(f, &intPart);
      m <<= CHUNK_BIT;
      m +=  (long)intPart;
      exp--;
      stop++;
    }
#ifdef CGAL_CORE_DEBUG
    CGAL_assertion (s >= 0);
#endif

    if (s)
      m <<= s;
    if (isNegative)
      negate(m);
  }
}//BigFloatRep constructor

//  approximation
CGAL_INLINE_FUNCTION
void BigFloatRep::trunc(const BigInt& I, const extLong& r, const extLong& a) {
  if (sign(I)) {
    long tr = chunkFloor((- r + bitLength(I)).asLong());
    long ta = chunkFloor(- a.asLong());
    long t;

    if (r.isInfty() || a.isTiny())
      t = ta;
    else if (a.isInfty())
      t = tr;
    else
      t = ta < tr ? tr : ta;

    if (t > 0) {  // BigInt remainder;
      m   = chunkShift(I, - t);
      err = 1;
      exp = t;
    } else { //  t <= 0
      m   = I;
      err = 0;
      exp = 0;
    }
  } else {//  I == 0
    m   = 0;
    err = 0;
    exp = 0;
  }
}

CGAL_INLINE_FUNCTION
void BigFloatRep :: truncM(const BigFloatRep& B, const extLong& r, const extLong& a) {
  if (sign(B.m)) {
    long tr = chunkFloor((- 1 - r + bitLength(B.m)).asLong());
    long ta = chunkFloor(- 1 - a.asLong()) - B.exp;
    long t;

    if (r.isInfty() || a.isTiny())
      t = ta;
    else if (a.isInfty())
      t = tr;
    else
      t = ta < tr ? tr : ta;

    if (t >= chunkCeil(clLg(B.err))) {
      m   = chunkShift(B.m, - t);
      err = 2;
      exp = B.exp + t;
    } else //  t < chunkCeil(clLg(B.err))
      CGAL_error_msg("BigFloat error: truncM called with stricter precision than current error.");
  } else {//  B.m == 0
    long t = chunkFloor(- a.asLong()) - B.exp;

    if (t >= chunkCeil(clLg(B.err))) {
      m   = 0;
      err = 1;
      exp = B.exp + t;
    } else //  t < chunkCeil(clLg(B.err))
      CGAL_error_msg("BigFloat error: truncM called with stricter precision than current error.");
  }
}

// This is the main approximation function
// REMARK: would be useful to have a self-modifying version
//                 of this function (e.g., for Newton).
CGAL_INLINE_FUNCTION
void BigFloatRep::approx(const BigFloatRep& B,
              const extLong& r, const extLong& a) {
  if (B.err) {
    if (static_cast<std::size_t>(1 + clLg(B.err)) <= bitLength(B.m))
      truncM(B, r + 1, a);
    else //  1 + clLg(B.err) > lg(B.m)
      truncM(B, CORE_posInfty, a);
  } else {//  B.err == 0
    trunc(B.m, r, a - bits(B.exp));
    exp += B.exp;
  }
  // Call normalization globally     -- IP 10/9/98
  normal();
}

CGAL_INLINE_FUNCTION
void BigFloatRep::div(const BigInt& N, const BigInt& D,
              const extLong& r, const extLong& a) {
  if (sign(D)) {
    if (sign(N)) {
      long tr = chunkFloor((- r + bitLength(N) - bitLength(D) - 1).asLong());
      long ta = chunkFloor(- a.asLong());

      if (r.isInfty() || a.isTiny())
        exp = ta;
      else if (a.isInfty())
        exp = tr;
      else
        exp = ta < tr ? tr : ta;

      BigInt remainder;

      // divide(chunkShift(N, - exp), D, m, remainder);
      div_rem(m, remainder, chunkShift(N, - exp), D);

      if (exp <= 0 && sign(remainder) == 0)
        err = 0;
      else
        err = 1;
    } else {//  N == 0
      m   = 0;
      err = 0;
      exp = 0;
    }
  } else //  D == 0
    CGAL_error_msg( "BigFloat error: zero divisor.");

  // Call normalization globally     -- IP 10/9/98
  normal();
}//div

//  error-normalization
CGAL_INLINE_FUNCTION
void BigFloatRep::normal() {
  long le = flrLg(err);

  if (le >= CHUNK_BIT + 2) { // so we do not carry more than 16 = CHUNK_BIT + 2
                             // bits of error
    long f = chunkFloor(--le); // f is roughly equal to floor(le/CHUNK_BIT)
    long bits_f = bits(f);   // f chunks will have bits_f many bits
#ifdef CGAL_CORE_DEBUG
    CGAL_assertion (bits_f >= 0);
#endif

    m   >>= bits_f;  // reduce mantissa by bits_f many bits
    err >>= bits_f;  // same for err
    err +=  2;       // why 2?
    exp +=  f;
  }
  if (err == 0)      // unlikely, if err += 2 above
    eliminateTrailingZeroes();
}

// bigNormal(err)
//     convert a bigInt error value (=err) into an error that fits into
//     a long number.  This is done by
//     by increasing the exponent, and corresponding decrease
//     in the bit lengths of the mantissa and error.
//
CGAL_INLINE_FUNCTION
void BigFloatRep::bigNormal(BigInt& bigErr) {
  long le = bitLength(bigErr);

  if (le < CHUNK_BIT + 2) {
    err = ulongValue(bigErr);
  } else {
    long f = chunkFloor(--le);
    long bits_f = bits(f);
#ifdef CGAL_CORE_DEBUG
    CGAL_assertion(bits_f >= 0);
#endif

    m      >>= bits_f;
    bigErr >>= bits_f;
    err    = ulongValue(bigErr) + 2; // you need to add "2" because "1" comes
                    // from truncation error in the mantissa, and another
                // "1" comes from the truncation error in the bigErr.
                // (But there is danger of overflow...)
    exp    += f;
  }

  if (err == 0)
    eliminateTrailingZeroes();
}

// ARITHMETIC:
//  Addition
CGAL_INLINE_FUNCTION
void BigFloatRep::add(const BigFloatRep& x, const BigFloatRep& y) {
  long expDiff = x.exp - y.exp;

  if (expDiff > 0) {//  x.exp > y.exp
    if (!x.err) {
      m   = chunkShift(x.m, expDiff) + y.m;
      err = y.err;
      exp = y.exp;
    } else {//  x.err > 0
      m   = x.m + chunkShift(y.m, - expDiff); // negative shift!
      err = x.err + 5; // To account for y.err (but why 5?)
      exp = x.exp;     //
      // normal();
    }
  } else if (!expDiff) {//  x.exp == y.exp
    m   = x.m + y.m;
    err = x.err + y.err;
    exp = x.exp;
    // normal();
  } else {//  x.exp < y.exp
    if (!y.err) {
      m   = x.m + chunkShift(y.m, - expDiff);
      err = x.err;
      exp = x.exp;
    } else {//  y.err > 0
      m   = chunkShift(x.m, expDiff) + y.m;
      err = y.err + 5;
      exp = y.exp;
      // normal();
    }
  }
  // Call normalization globally     -- IP 10/9/98
  normal();
}

//  Subtraction
CGAL_INLINE_FUNCTION
void BigFloatRep::sub(const BigFloatRep& x, const BigFloatRep& y) {
  long expDiff = x.exp - y.exp;

  if (expDiff > 0) {//  x.exp > y.exp
    if (!x.err) {
      m   = chunkShift(x.m, expDiff) - y.m;
      err = y.err;
      exp = y.exp;
    } else {//  x.err > 0
      m   = x.m - chunkShift(y.m, - expDiff);
      err = x.err + 5;
      exp = x.exp;
      // normal();
    }
  } else if (!expDiff) {
    m   = x.m - y.m;
    err = x.err + y.err;
    exp = x.exp;
    // normal();
  } else { //  x.exp < y.exp
    if (!y.err) {
      m   = x.m - chunkShift(y.m, - expDiff);
      err = x.err;
      exp = x.exp;
    } else {//  y.err > 0
      m   = chunkShift(x.m, expDiff) - y.m;
      err = y.err + 5;
      exp = y.exp;
      // normal();
    }
  }
  // Call normalization globally     -- IP 10/9/98
  normal();
}

CGAL_INLINE_FUNCTION
void BigFloatRep::mul(const BigFloatRep& x, const BigFloatRep& y) {
  m = x.m * y.m;
  exp = x.exp + y.exp;
  // compute error (new code, much faster. Zilin Du, Nov 2003)
  if (x.err == 0 && y.err == 0) {
    err = 0;
    eliminateTrailingZeroes();
  } else {
    BigInt bigErr(0);
    if (y.err != 0)
      bigErr += abs(x.m)*y.err;
    if (x.err != 0)
      bigErr += abs(y.m)*x.err;
    if (x.err !=0 && y.err != 0)
      bigErr += x.err*y.err;
    bigNormal(bigErr);
  }
}
// BigFloat div2 will half the value of x, exactly with NO error
//         REMARK: should generalize this to dividing by any power of 2
//         We need this in our use of BigFloats to maintain isolation
//         intervals (e.g., in Sturm sequences)        --Chee/Vikram 4/2003
//
CGAL_INLINE_FUNCTION
void BigFloatRep :: div2(const BigFloatRep& x) {
  if (isEven(x.m)) {
    m = (x.m >> 1);
    exp = x.exp ;
  } else {
    m = (x.m << static_cast<unsigned long>(CHUNK_BIT-1));
    exp = x.exp -1;
  }
}

// Converts a BigFloat interval into one BigFloat with almost same error bound
// This routine ignores the errors in inputs a and b.
// But you cannot really ignore them since, they are taken into account
// when you compute "r.sub(a,b)"...
CGAL_INLINE_FUNCTION
void BigFloatRep::centerize(const BigFloatRep& a, const BigFloatRep& b) {
  if ((a.m == b.m) && (a.err == b.err) && (a.exp == b.exp)) {
    m = a.m;
    err = a.err;
    exp = a.exp;
    return;
  }

  BigFloatRep r;
  r.sub(a, b);
  r.div2(r);

  //setup mantissa and exponent, but not error bits
  // But this already sets the error bits? Chee
  add(a,b);
  div2(*this);
  // error bits = ceil ( B^{-exp}*|a-b|/2 )

  // bug fixed: possible overflow on converting
  // Zilin & Vikram, 08/24/04
  // err = 1 + longValue(chunkShift(r.m, r.exp - exp));
  BigInt E = chunkShift(r.m, r.exp - exp);
  E = abs(E);
  bigNormal(E);
}

// BigFloat Division, computing x/y:
//      Unlike +,-,*, this one takes a relative precision bound R
//        Note that R is only used when x and y are error-free!
//        (This remark means that we may be less efficient than we could be)
//
//          Assert( R>0  && R< CORE_Infty )
//
CGAL_INLINE_FUNCTION
void BigFloatRep :: div(const BigFloatRep& x, const BigFloatRep& y,
                        const extLong& R) {
  if (!y.isZeroIn()) { //  y.m > y.err, so we are not dividing by 0
    if (!x.err && !y.err) {
      if (R < 0 || R.isInfty()) //Oct 9, 2002: fixed major bug! [Zilin/Chee]
        div(x.m, y.m, get_static_defBFdivRelPrec(), CORE_posInfty);
      else
        div(x.m, y.m, R, CORE_posInfty);
      exp += x.exp - y.exp; // chen: adjust exp.
    } else {//  x.err > 0 or y.err > 0
      BigInt bigErr, errRemainder;

      if (x.isZeroIn()) { //  x.m <= x.err
        m   = 0;
        exp = x.exp - y.exp;

        div_rem(bigErr, errRemainder, abs(x.m) + static_cast<long>(x.err),
                abs(y.m) - static_cast<long>(y.err));
      } else { //  x.m > x.err
        long lx = bitLength(x.m);
        long ly = bitLength(y.m);
        long r;

        if (!x.err) //  x.err == 0 and y.err > 0
          r = ly + 2;
        else if(!y.err)  //  x.err > 0 and y.err == 0
          r = lx + 2;
        else  //  x.err > 0 and y.err > 0
          r = lx < ly ? lx + 2: ly + 2;

        long   t = chunkFloor(- r + lx - ly - 1);
        BigInt remainder;

        div_rem(m, remainder, chunkShift(x.m, - t), y.m);
        exp = t + x.exp - y.exp;

        long delta = ((t > 0) ? 2 : 0);

        // Chen Li: 9/9/99
        // here again, it use ">>" operator with a negative
        // right operand. So the result is not well defined.
        // Erroneous code:
        //   divide(abs(remainder) + (static_cast<long>(x.err) >> bits(t))
        //                     + delta + static_cast<long>(y.err) * abs(m),
        //                     abs(y.m) - static_cast<long>(y.err),
        //                     bigErr,
        //                     errRemainder);
        // New code:
        BigInt errx_over_Bexp = x.err;
        long bits_Bexp = bits(t);
        if (bits_Bexp >= 0) {
          errx_over_Bexp >>= bits_Bexp;
        } else {
          errx_over_Bexp <<= (-bits_Bexp);
        }

        // divide(abs(remainder) + errx_over_Bexp
        //        + delta + static_cast<long>(y.err) * abs(m),
        //        abs(y.m) - static_cast<long>(y.err),
        //        bigErr,
        //        errRemainder);
        div_rem(bigErr, errRemainder,
                abs(remainder) + errx_over_Bexp + delta + static_cast<long>(y.err) * abs(m),
                abs(y.m) - static_cast<long>(y.err));
      }

      if (sign(errRemainder))
        ++bigErr;

      bigNormal(bigErr);
    }
  } else {//  y.m <= y.err
    CGAL_error_msg("BigFloat error: possible zero divisor.");
  }

  // Call normalization globally     -- IP 10/9/98
  // normal(); -- Chen: after calling bigNormal, this call is redundant.
}// BigFloatRep::div

//  squareroot for BigInt argument, without initial approximation
//  sqrt(x,a) computes sqrt of x to absolute precision a.
//      -- this is where Newton is applied
//      -- this is called by BigFloatRep::sqrt(BigFloat, extLong)
CGAL_INLINE_FUNCTION
void BigFloatRep::sqrt(const BigInt& x, const extLong& a) {
  sqrt(x, a, BigFloat(x, 0, 0));
} // sqrt(BigInt x, extLong a) , without initial approx

//  sqrt(x,a,A) where
//      x = bigInt whose sqrt is to be computed
//      a = absolute precision bound
//      A = initial approximation in BigFloat
//  -- this is where Newton is applied
//  -- it is called by BigFloatRep::sqrt(BigFloatRep, extLong, BigFloat)
CGAL_INLINE_FUNCTION
void BigFloatRep::sqrt(const BigInt& x, const extLong& a, const BigFloat& A) {
  if (sign(x) == 0) {
    m = 0;
    err = 0;
    exp = 0;
  } else if (x == 1) {
    m = 1;
    err = 0;
    exp = 0;
  } else  {// main case
    // here is where we use the initial approximation
    m = A.m();
    err = 0;
    exp = A.exp();

    BigFloatRep q, z;
    extLong     aa;
    // need this to make sure that in case the
    // initial approximation A is less than sqrt(x)
    // then Newton iteration will still proceed at
    // least one step.
    bool firstTime = true;
    for (;;) {
      aa    = a - bits(exp);
      q.div(x, m, CORE_posInfty, aa);
      q.err = 0;
      q.exp -= exp;

      z.sub(*this, q);  // this=current approximation, so z = this - q
      /*if (sign(z.m) <= 0 || z.MSB() < - a)  // justification: see Koji's
          break;                              // thesis (p. 28) which states
                                              // that we can exit when
                                              // " (*this) <= q + 2**(-a)"
      */
      // The preceding code is replaced by what follows:
      if (z.MSB() < -a)
        break;
      if (sign(z.m) <= 0) {
        if (firstTime)
          firstTime = false;
        else
          break;
      }

      z.add(*this, q);
      // Chen Li: a bug fixed here.
      //      m   = z.m >> 1;
      //      err = 0;
      //      exp = z.exp;
      if ((z.m > 1) && isEven(z.m)) {
        m = z.m >> 1;               // exact division by 2
        err = 0;
        exp = z.exp;
      } else {                      // need to shift left before division by 2
        m = chunkShift(z.m, 1) >> 1;
        err = 0;
        exp = z.exp - 1;
      }//else
    }//for
  }//else
} // sqrt of BigInt, with initial approx

// MAIN ENTRY INTO SQRT FUNCTION (BIGFLOAT ARGUMENT, WITHOUT INITIAL APPROX)
CGAL_INLINE_FUNCTION
void BigFloatRep::sqrt(const BigFloatRep& x, const extLong& a) {
  sqrt(x, a, BigFloat(x.m, 0, x.exp));
} //sqrt(BigFloat, extLong a)

// MAIN ENTRY INTO SQRT FUNCTION (BIGFLOAT ARGUMENT WITH INITIAL APPROXIMATION)
CGAL_INLINE_FUNCTION
void BigFloatRep::sqrt(const BigFloatRep& x, const extLong& a, const BigFloat& A) {
  // This computes the sqrt of x to absolute precision a, starting with
  // the initial approximation A
  if (sign(x.m) >= 0) {          //  x.m >= 0
    int delta = x.exp & 1;    // delta=0 if x.exp is even, otherwise delta=1

    if (x.isZeroIn()) {         //  x.m <= x.err
      m = 0;
      if (!x.err)
        err = 0;
      else {                  //  x.err > 0
        err = (long)(std::sqrt((double)x.err));
        err++;
        err <<= 1;
        if (delta)
          err <<= HALF_CHUNK_BIT;
      }
      exp = x.exp >> 1;
      normal();
    } else {
      long aExp = A.exp() - (x.exp >> 1);
      BigFloat AA( chunkShift(A.m(), delta), 0, aExp);

      if (!x.err) {             //  x.m > x.err = 0 (ERROR FREE CASE)
        BigFloatRep z;
        extLong ppp;
        if (a.isInfty())        //Oct 9, 2002: fixed major bug! [Zilin/Chee]
          ppp = get_static_defBFsqrtAbsPrec();
        else
          ppp = a + EXTLONG_ONE;
        extLong absp  = ppp + bits(x.exp >> 1);

        z.sqrt(chunkShift(x.m, delta), absp, AA); // call sqrt(BigInt, a, AA)

        long p = (absp + bits(z.exp)).asLong();

        // Next, normalize the error:
        if (p <= 0) {
          m = z.m;
          // Chen Li: a bug fixed
          //    BigInt bigErr = 1 << (-p);
          BigInt bigErr(1);
          bigErr = bigErr << static_cast<unsigned long>(-p);
          exp = z.exp + (x.exp >> 1);
          bigNormal(bigErr);
        } else {                  //  p > 0
          m = chunkShift(z.m, chunkCeil(p));
          long r = CHUNK_BIT - 1 - (p + CHUNK_BIT - 1) % CHUNK_BIT;
#ifdef CGAL_CORE_DEBUG
          CGAL_assertion(r >= 0);
#endif

          err = 1 >> r;
          exp = - chunkCeil(ppp.asLong());
          normal();
        }
      } else {                      //  x.m > x.err > 0 (mantissa has error)
        BigFloatRep z;
        extLong absp=-flrLg(x.err)+bitLength(x.m)-(bits(delta) >> 1)+EXTLONG_FOUR;

        z.sqrt(chunkShift(x.m, delta), absp, AA);

        long qqq = - 1 + (bitLength(x.m) >> 1) - delta * HALF_CHUNK_BIT;
        long qq  = qqq - clLg(x.err);
        long q   = qq + bits(z.exp);

        if (q <= 0) {
          m = z.m;
          long   qqqq   = - qqq - bits(z.exp);
          // Chen Li (09/08/99), a bug fixed here:
          //        BigInt bigErr = x.err << - qqqq;
          // when (-qqqq) is negative, the result is not correct.
          // how "<<" and ">>" process negative second operand is
          // not well defined. Seems it just take it as a unsigned
          // integer and extract the last few bits.
          // x.err is a long number which easily overflows.
          // From page 22 of Koji's paper, I think the exponent is
          // wrong here. So I rewrote it as:
          BigInt bigErr = x.err;
          if (qqqq >= 0) {
            bigErr <<= qqqq;
          } else {
            bigErr >>= (-qqqq);
            ++bigErr; // we need to keep its ceiling.
          }

          exp = z.exp + (x.exp >> 1);
          bigNormal(bigErr);
        } else {         //  q > 0
          m = chunkShift(z.m, chunkCeil(q));
          long r = CHUNK_BIT - 1 - (q + CHUNK_BIT - 1) % CHUNK_BIT;
#ifdef CGAL_CORE_DEBUG
          CGAL_assertion(r >= 0);
#endif

          err = 1 >> r;
          exp = (x.exp >> 1) - chunkCeil(qq);
          normal();
        }
      }  // end of case with error in mantissa
    }//else
  } else
    CGAL_error_msg("BigFloat error: squareroot called with negative operand.");
} //sqrt with initial approximation

//  compareMExp(x)
//    returns  1 if *this > x
//             0 if *this = x,
//            -1 if *this < x,
//
//      Main comparison method for BigFloat
//      This is called by BigFloat::compare()
//      BE CAREFUL:  The error bits are ignored!
//      Need another version if we want to take care of error bits

CGAL_INLINE_FUNCTION
int BigFloatRep :: compareMExp(const BigFloatRep& x) const {
  int st = sign(m);
  int sx = sign(x.m);

  if (st > sx)
    return 1;
  else if (st == 0 && sx == 0)
    return 0;
  else if (st < sx)
    return - 1;
  else { //  need to compare m && exp
    long expDiff = exp - x.exp;

    if (expDiff > 0) //  exp > x.exp
      return cmp(chunkShift(m, expDiff), x.m);
    else if (!expDiff)
      return cmp(m, x.m);
    else  //  exp < x.exp
      return cmp(m, chunkShift(x.m, - expDiff));
  }
}

// 3/6/2000:
// This is a private function used by BigFloatRep::operator<<
// to get the exact value
// of floor(log10(M * 2^ e)) where E is an initial guess.
// We will return the correct E which satisfies
//              10^E <= M * 2^e < 10^{E+1}
// But we convert this into
//              mm <= M < 10.mm

CGAL_INLINE_FUNCTION
long BigFloatRep :: adjustE( long E, BigInt M, long ee) const {
  if (M<0)
    M=-M;
  BigInt mm(1);
  if (ee > 0)
    M = (M<<static_cast<unsigned long>(ee));
  else
    mm = (mm << static_cast<unsigned long>(-ee));
  if (E > 0)
    mm *= (FiveTo(E)<< static_cast<unsigned long>(E));
  else
    M *= (FiveTo(-E) << static_cast<unsigned long>(-E));

  if (M < mm) {
    do {
      E--;
      M *= 10;
    } while (M < mm);
  } else if (M >= 10*mm) {
    mm *= 10;
    do {
      E++;
      mm *= 10;
    } while (M >= mm);
  }
  return E;
}

CGAL_INLINE_FUNCTION
BigFloatRep::DecimalOutput
BigFloatRep::toDecimal(unsigned int width, bool Scientific) const {
  BigFloatRep::DecimalOutput decOut;                // to be returned
  if (err > 0) {
    decOut.isExact = false;
  } else { // err == 0
    decOut.isExact = true;
  }

  if (err > 0 && err >= abs(m)) {
    // if err is larger than mantissa, sign and significant values
    // can not be determined.
    CGAL_CORE_warning_msg(true, "BigFloat error: Error is too big!");
    decOut.rep = "0.0e0";          // error is too big
    decOut.isScientific = false;
    decOut.noSignificant = 0;
    decOut.errorCode = 1;          // sign of this number is unknown
    return decOut;
  }

  decOut.sign = sign(m);
  decOut.errorCode = 0;

  BigInt M(m);                  // temporary mantissa
  long lm = bitLength(M);       // binary length of mantissa
  long e2 = bits(exp);          // binary shift length represented by exponent
  long le = clLg(err);          // binary length of err
  if (le == -1)
    le = 0;

  long L10 = 0;
  if (M != 0) {
    L10 = (long)std::floor((lm + e2) / lgTenM);
    L10 = adjustE(L10, m, e2);     // L10: floor[log10(M 2^(e2))], M != 0
  } else {
    L10 = 0;
  }
  // Convention: in the positional format, when the output is
  // the following string of 8 characters:
  //             (d0, d1, d2, d3, ".", d4, d5, d6, d7)
  // then the decimal point is said to be in the 4th position.
  // E.g., (d0, ".", d1, d2) has the decimal point in the 1st position.
  // The value of L10 says that the decimal point of output should be at
  // the (L10 + 1)st position. This is
  // true regardingless of whether M = 0 or not. For zero, we output
  // {0.0*} so L10=0.  In general, the |value| is less than 10
  // if and only if L10 is 0 and the
  // decimal point is in the 1st place.  Note that L10 is defined even if
  // the output is an integer (in which case it does not physically appear
  // but conceptually terminates the sequence of digits).

  // First, get the decimal representation of (m * B^(exp)).
  if (e2 < 0) {
    M *= FiveTo(-e2); // M = x * 10^(-e2)
  } else if (e2 > 0) {
    M <<= e2;         // M = x * 2^(e2)
  }

  std::string decRep = M.convert_to<std::string>();
  // Determine the "significant part" of this string, i.e. the part which
  // is guaranteed to be correct in the presence of error,
  // except that the last digit which might be subject to +/- 1.

  if (err != 0) {     // valid = number of significant digits
    unsigned long valid = floorlg10(m) - (long)std::floor(std::log10(float(err)));
    if (decRep.length() > valid) {
      decRep.erase(valid);
    }
  }

  // All the digits in decM are correct, except the last one might
  // subject to an error +/- 1.

  if ((decRep[0] == '+') || (decRep[0] == '-')) {
    decRep.erase(0, 1);
  }

  // Second, make choice between positional representation
  // and scientific notation.  Use scientific notation when:
  // 0) if scientific notation flag is on
  // 1) err * B^exp >= 1, the error contribute to the integral part.
  // 2) (1 + L10) >= width, there is not have enough places to hold the
  //    positional representation, not including decimal point.
  // 3) The distance between the first significant digit and decimal
  //    point is too large for the width limit. This is equivalent to
  //            Either ((L10 >= 0 and (L10 + 1) > width))
  //            Or  ((L10 < 0) and (-L10 + 1) > width).

  if (Scientific ||
      ((err > 0) && (le + e2) >= 0) ||          // if err*B^exp >= 1
      ((L10 >= 0) && (L10 + 1 >= (long)width )) ||
      ((L10 < 0) && (-L10 + 1 > (long)width ))) {
    // use scientific notation
    decRep = round(decRep, L10, width);
    decOut.noSignificant = width;
    decRep.insert(1, ".");
    if (L10 != 0) {
      decRep += 'e';
      if (L10 > 0) {
        decRep += '+';
      } else { // L10 < 0
        decRep += '-';
      }
      std::ostringstream oss;
      oss << labs(L10);
      decRep += oss.str();
      decOut.isScientific = true;
    }
  } else {
    // use conventional positional notation.
    if (L10 >= 0) { // x >= 1 or x == 0 and L10 + 1 <= width
      // round when necessary
      if (decRep.length() > width ) {
        decRep = round(decRep, L10, width );
        if (decRep.length() > width ) {
          // overflow happens! use scientific notation
          return toDecimal(width, true);
        }
      }
      decOut.noSignificant = static_cast<int>(decRep.length());
      if (L10 + 1 < (long)width ) {
        decRep.insert(L10 + 1, ".");
      } else { // L10 + 1 == width
        // do nothing
      }
    } else { // L10 < 0, 0 < x < 1
      // (-L10) leading zeroes, including one to the left of decimal dot
      // need to be added in beginning.
      decRep = std::string(-L10, '0') + decRep;
      // then round when necessary
      if (decRep.length() > width ) {
        decRep = round(decRep, L10, width );
        // cannot overflow since there are L10 leading zeroes.
      }
      decOut.noSignificant = static_cast<int>(decRep.length() - (-L10));
      decRep.insert(1, ".");
    }
    decOut.isScientific = false;
  }
#ifdef CGAL_CORE_DEBUG
  CGAL_assertion(decOut.noSignificant >= 0);
#endif

  decOut.rep = decRep;
  return decOut;
}//toDecimal

CGAL_INLINE_FUNCTION
std::string BigFloatRep::round(std::string inRep, long& L10, unsigned int width) const {
  // round inRep so that the length would not exceed width.
  if (inRep.length() <= width)
    return inRep;

  int i = width; // < length
  bool carry = false;

  if ((inRep[i] >= '5') && (inRep[i] <= '9')) {
    carry = true;
    i--;
    while ((i >= 0) && carry) {
      if (carry) {
        inRep[i] ++;
        if (inRep[i] > '9') {
          inRep[i] = '0';
          carry = true;
        } else {
          carry = false;
        }
      }
      i-- ;
    }

    if ((i < 0) && carry) { // overflow
      inRep.insert(inRep.begin(), '1');
      L10 ++;
      width ++;
    }
  }

  return inRep.substr(0, width);
}//round(string,width)


// This function fromString(str, prec) is similar to the
//      constructor Real(char * str, extLong prec)
// See the file Real.cc for the differences

CGAL_INLINE_FUNCTION
void BigFloatRep :: fromString(const char *str, extLong prec ) {
  // NOTE: prec defaults to get_static_defBigFloatInputDigits() (see BigFloat.h)
  // check that prec is not INFTY
  if (prec.isInfty())
    CGAL_error_msg("BigFloat error: infinite precision not allowed");

  const char *e = strchr(str, 'e');
  int dot = 0;
  long e10 = 0;
  if (e != nullptr)
    e10 = atol(e+1);    // e10 is decimal precision of the input string
  // i.e., input is A/10^{e10}.
  else {
    e = str + strlen(str);
#ifdef CGAL_CORE_DEBUG
    CGAL_assertion(*e == '\0');
#endif

  }

  const char *p = str;
  if (*p == '-' || *p == '+')
    p++;
  m = 0;
  exp = 0;

  for (; p < e; p++) {
    if (*p == '.') {
      dot = 1;
      continue;
    }
    m = m * 10 + (*p - '0');
    if (dot)
      e10--;
  }

  BigInt one = 1;
  long t = (e10 < 0) ? -e10 : e10;
  BigInt ten = FiveTo(t) * (one << static_cast<unsigned long>(t));

  // HERE IS WHERE WE USE THE SYSTEM CONSTANT
  //           defBigFloatInputDigits
  // Note: this constant is rather similar to defInputDigits which
  //     is used by Real and Expr for controlling
  //     input accuracy.  The difference is that defInputDigits can
  //     be CORE_INFTY, but defBigFloatInputDigits must be finite.

  if (e10 < 0)
    div(m, ten, CORE_posInfty, 4 * prec);
  else
    m *= ten;
  if (*str == '-')
    m = -m;
}//BigFloatRep::fromString

CGAL_INLINE_FUNCTION
std::istream& BigFloatRep :: operator >>(std::istream& i) {
  int size = 20;
  std::string str;
  str.reserve(size);
  char c;
  int d = 0, e = 0, s = 0;
  // d=1 means dot is found
  // e=1 means 'e' or 'E' is found
  //  int done = 0;

  // Chen Li: fixed a bug, the original statement is
  //  for (i.get(c); c == ' '; i.get(c));
  // use isspace instead of testing c == ' ', since it must also
  // skip tab, catridge/return, etc.
  // Change to:
  //  int status;
  do {
    i.get(c);
  } while (isspace(c)); /* loop if met end-of-file, or
                               char read in is white-space. */
  // Chen Li, "if (c == EOF)" is unsafe since c is of char type and
  // EOF is of int type with a negative value -1
  if (i.eof()) {
    i.clear(std::ios::eofbit | std::ios::failbit);
    return i;
  }

  // the current content in "c" should be the first non-whitespace char
  if (c == '-' || c == '+') {
    str += c;
    i.get(c);
  }

  for (; isdigit(c) || (!d && c=='.') ||
       (!e && ((c=='e') || (c=='E'))) || (!s && (c=='-' || c=='+')); i.get(c)) {
    if (!e && (c == '-' || c == '+'))
      break;
    // Chen Li: put one more rule to prohibite input like
    //  xxxx.xxxe+xxx.xxx:
    if (e && (c == '.'))
      break;

    str += c;
    if (c == '.')
      d = 1;
    // Chen Li: fix a bug -- the sign of exponent can not happen before
    // the character "e" appears! It must follow the "e" actually.
    //    if (e || c == '-' || c == '+') s = 1;
    if (e)
      s = 1;
    if ((c == 'e') || (c=='E'))
      e = 1;
  }

  i.putback(c);
  fromString(str.c_str());
  return i;
}//operator >>


// BigFloatRep::toDouble()
//      converts the BigFloat to a machine double
//      This is a dangerous function as the method
//      is silent when it does not fit into a machine double!
// ToDo: fix this by return a machine NaN, +/- Infinity, +/- 0,
//      when appropriate.
//      Return NaN when error is larger than mantissa
//      Return +/- Infinity if BigFloat is too big
//      Return +/- 0 if BigFloat is too small
#ifdef _MSC_VER
#pragma warning(disable: 4723)
#endif
CGAL_INLINE_FUNCTION
double BigFloatRep :: toDouble() const {
  if (m == 0)
    return (sign(m) * 0.0);

  long e2 = bits(exp);
  long le = clLg(err);  // if err=0, le will be -1
  if (le == -1)
    le = 0;

  BigInt M = m >> static_cast<unsigned long>(le);// remove error bits in mantissa

  // Below, we want to return NaN by computing 0.0/0.0.
  // To avoid compiler warnings about divide by zero, we do this:

  double foolCompilerZero;
  foolCompilerZero = 0.0;

  // COMMENT: we should directly store the
  //    special IEEE values NaN, +/-Infinity, +/-0 in the code!!

  if (M == 0)
    return ( 0.0/foolCompilerZero ) ; // return NaN

  e2 += le;             // adjust exponent corresponding to error bits

  int len = bitLength(M) - 53;  // this is positive if M is too large

  if (len > 0) {
    M >>= len;
    e2 += len;
  }

  double tt = doubleValue(M);

  int ee = e2 + bitLength(M) - 1; // real exponent.

  if (ee >= 1024)       // overflow!
    return (  sign(m)/foolCompilerZero  );      // return a signed infinity

  if (ee <= -1075)      // underflow!
    // NOTE: if (-52 < ee <= 0) get denormalized number
    return ( sign(m) * 0.0 );  // return signed zero.

  // Execute this loop if e2 < 0;
  for (int i = 0; i > e2; i--)
    tt /= 2;

  // Execute this loop if e2 > 0;
  for (int j = 0; j < e2; j++)
    tt *= 2;

  return tt;
}//toDouble
#ifdef _MSC_VER
#pragma warning(default: 4723)
#endif
CGAL_INLINE_FUNCTION
BigInt BigFloatRep::toBigInt() const {
  long e2 = bits(exp);
  long le = clLg(err);
  if (le == -1)
    le = 0;
#ifdef CGAL_CORE_DEBUG
  CGAL_assertion (le >= 0);
#endif

  BigInt M = m >> static_cast<unsigned long>(le); // discard the contaminated bits.
  e2 += le;           // adjust the exponent

  if (e2 < 0)
    return M >> static_cast<unsigned long>(-e2);
  else if (e2 > 0)
    return M << static_cast<unsigned long>(e2);
  else
    return M;
}

CGAL_INLINE_FUNCTION
long BigFloatRep :: toLong() const {
  // convert a BigFloat to a long integer, rounded toward -\infty.
  long e2 = bits(exp);
  long le = clLg(err);
#ifdef CGAL_CORE_DEBUG
  CGAL_assertion (le >= 0);
#endif

  BigInt M = m >> static_cast<unsigned long>(le); // discard the contaminated bits.
  e2 += le;           // adjust the exponent
  long t;
  if (e2 < 0)
    t = ulongValue(M >> static_cast<unsigned long>(-e2));
  else if (e2 > 0)
    t = ulongValue(M << static_cast<unsigned long>(e2));
  else
    t = ulongValue(M);
  // t = M.as_long();
  // Note: as_long() will return LONG_MAX in case of overflow.

  return t;
}

// pow(r,n) function for BigFloat
// Note: power(r,n) calls pow(r,n)
CGAL_INLINE_FUNCTION
BigFloat pow(const BigFloat& r, unsigned long n) {
  if (n == 0)
    return BigFloat(1);
  else if (n == 1)
    return r;
  else {
    BigFloat x = r;
    while ((n % 2) == 0) { // n is even
      x *= x;
      n >>= 1;
    }
    BigFloat u = x;
    while (true) {
      n >>= 1;
      if (n == 0)
        return u;
      x *= x;
      if ((n % 2) == 1) // n is odd
        u *= x;
    }
    //return u; // unreachable
  }
}//pow

// experimental
CGAL_INLINE_FUNCTION
BigFloat root(const BigFloat& x, unsigned long k,
         const extLong& a, const BigFloat& A) {
  if (x.sign() == 0) {
    return BigFloat(0);
  } else if (x == 1) {
    return BigFloat(1);
  } else  {
    BigFloat q, del, zz;
    BigFloat z = A;
    BigFloat bk = long(k);
    for (; ;) {
      zz = pow(z, k-1);
      q = x.div(zz, a);
      q.makeExact();
      del = z - q;
      del.makeExact();
      if (del.MSB() < -a)
        break;
      z = ((bk-1)*z + q).div(bk, a);
          // newton's iteration: z_{n+1}=((k-1)z_n+x/z_n^{k-1})/k
      z.makeExact();
    }
    return z;
  }
}//root

  CORE_MEMORY_IMPL(BigFloatRep)

} //namespace CORE

#include <CGAL/enable_warnings.h>