1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
// Copyright (c) 2006 GeometryFactory (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Surface_mesh_simplification/include/CGAL/Cartesian/MatrixC33.h $
// $Id: include/CGAL/Cartesian/MatrixC33.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Fernando Cacciola <fernando.cacciola@geometryfactory.com>
//
#ifndef CGAL_CARTESIAN_MATRIXC33_H
#define CGAL_CARTESIAN_MATRIXC33_H
#include <CGAL/license/Surface_mesh_simplification.h>
#include <CGAL/determinant.h>
#include <CGAL/Null_matrix.h>
#include <CGAL/number_utils.h>
#include <CGAL/Vector_3.h>
#include <optional>
namespace CGAL {
template <class R_>
class MatrixC33
{
public:
typedef R_ R;
typedef typename R::FT RT;
typedef typename R::Vector_3 Vector_3;
MatrixC33(Null_matrix)
: mR0(NULL_VECTOR),
mR1(NULL_VECTOR),
mR2(NULL_VECTOR)
{}
MatrixC33(const RT& r0x, const RT& r0y, const RT& r0z,
const RT& r1x, const RT& r1y, const RT& r1z,
const RT& r2x, const RT& r2y, const RT& r2z)
: mR0(r0x,r0y,r0z),
mR1(r1x,r1y,r1z),
mR2(r2x,r2y,r2z)
{}
MatrixC33(const Vector_3& r0, const Vector_3& r1, const Vector_3& r2)
: mR0(r0),
mR1(r1),
mR2(r2)
{}
const Vector_3& r0() const { return mR0; }
const Vector_3& r1() const { return mR1; }
const Vector_3& r2() const { return mR2; }
Vector_3& r0() { return mR0; }
Vector_3& r1() { return mR1; }
Vector_3& r2() { return mR2; }
const Vector_3& operator[](int row) const { return row == 0 ? mR0 : (row == 1 ? mR1 : mR2); }
Vector_3& operator[](int row) { return row == 0 ? mR0 : (row == 1 ? mR1 : mR2); }
MatrixC33& operator+=(const MatrixC33& m)
{
mR0 = mR0 + m.r0();
mR1 = mR1 + m.r1();
mR2 = mR2 + m.r2();
return *this;
}
MatrixC33& operator-=(const MatrixC33& m)
{
mR0 = mR0 - m.r0();
mR1 = mR1 - m.r1();
mR2 = mR2 - m.r2();
return *this;
}
MatrixC33& operator*=(const RT& c)
{
mR0 = mR0 * c;
mR1 = mR1 * c;
mR2 = mR2 * c;
return *this;
}
MatrixC33& operator/=(const RT& c)
{
mR0 = mR0 / c;
mR1 = mR1 / c;
mR2 = mR2 / c;
return *this;
}
friend MatrixC33 operator+(const MatrixC33& a, const MatrixC33& b)
{
return MatrixC33(a.r0() + b.r0(),
a.r1() + b.r1(),
a.r2() + b.r2());
}
friend MatrixC33 operator-(const MatrixC33& a, const MatrixC33& b)
{
return MatrixC33(a.r0() - b.r0(),
a.r1() - b.r1(),
a.r2() - b.r2());
}
friend MatrixC33 operator*(const MatrixC33& m, const RT& c)
{
return MatrixC33(m.r0()*c, m.r1()*c, m.r2()*c);
}
friend MatrixC33 operator*(const RT& c, const MatrixC33& m)
{
return MatrixC33(m.r0()*c, m.r1()*c, m.r2()*c);
}
friend MatrixC33 operator/(const MatrixC33& m, const RT& c)
{
return MatrixC33(m.r0()/c, m.r1()/c, m.r2()/c);
}
friend Vector_3 operator*(const MatrixC33& m, const Vector_3& v)
{
return Vector_3(m.r0()*v, m.r1()*v, m.r2()*v);
}
friend Vector_3 operator*(const Vector_3& v, const MatrixC33& m)
{
return Vector_3(v*m.r0(), v*m.r1(), v*m.r2());
}
friend std::ostream& operator<<(std::ostream & os, const MatrixC33& m)
{
return os << m.r0() << std::endl
<< m.r1() << std::endl
<< m.r2() << std::endl;
}
RT determinant() const
{
return CGAL::determinant(r0().x(), r0().y(), r0().z(),
r1().x(), r1().y(), r1().z(),
r2().x(), r2().y(), r2().z());
}
MatrixC33& transpose()
{
mR0 = Vector_3(r0().x(),r1().x(),r2().x());
mR1 = Vector_3(r0().y(),r1().y(),r2().y());
mR2 = Vector_3(r0().z(),r1().z(),r2().z());
return *this;
}
private:
Vector_3 mR0;
Vector_3 mR1;
Vector_3 mR2;
};
template<class R>
inline
MatrixC33<R> direct_product(const Vector_3<R>& u,
const Vector_3<R>& v)
{
return MatrixC33<R>(v * u.x(),
v * u.y(),
v * u.z());
}
template<class R>
MatrixC33<R> transposed_matrix(const MatrixC33<R>& m)
{
MatrixC33<R> copy = m;
copy.Transpose();
return copy;
}
template<class R>
MatrixC33<R> cofactors_matrix(const MatrixC33<R>& m)
{
typedef typename R::RT RT;
RT c00 = determinant(m.r1().y(),m.r1().z(),m.r2().y(),m.r2().z());
RT c01 = -determinant(m.r1().x(),m.r1().z(),m.r2().x(),m.r2().z());
RT c02 = determinant(m.r1().x(),m.r1().y(),m.r2().x(),m.r2().y());
RT c10 = -determinant(m.r0().y(),m.r0().z(),m.r2().y(),m.r2().z());
RT c11 = determinant(m.r0().x(),m.r0().z(),m.r2().x(),m.r2().z());
RT c12 = -determinant(m.r0().x(),m.r0().y(),m.r2().x(),m.r2().y());
RT c20 = determinant(m.r0().y(),m.r0().z(),m.r1().y(),m.r1().z());
RT c21 = -determinant(m.r0().x(),m.r0().z(),m.r1().x(),m.r1().z());
RT c22 = determinant(m.r0().x(),m.r0().y(),m.r1().x(),m.r1().y());
return MatrixC33<R>(c00,c01,c02,
c10,c11,c12,
c20,c21,c22);
}
template<class R>
MatrixC33<R> adjoint_matrix(const MatrixC33<R>& m)
{
return cofactors_matrix(m).transpose();
}
template<class R>
std::optional< MatrixC33<R> > inverse_matrix(const MatrixC33<R>& m)
{
typedef typename R::RT RT;
typedef MatrixC33<R> Matrix;
typedef std::optional<Matrix> result_type;
result_type rInverse;
RT det = m.determinant();
if(! CGAL_NTS is_zero(det))
{
RT c00 = (m.r1().y()*m.r2().z() - m.r1().z()*m.r2().y()) / det;
RT c01 = (m.r2().y()*m.r0().z() - m.r0().y()*m.r2().z()) / det;
RT c02 = (m.r0().y()*m.r1().z() - m.r1().y()*m.r0().z()) / det;
RT c10 = (m.r1().z()*m.r2().x() - m.r1().x()*m.r2().z()) / det;
RT c11 = (m.r0().x()*m.r2().z() - m.r2().x()*m.r0().z()) / det;
RT c12 = (m.r1().x()*m.r0().z() - m.r0().x()*m.r1().z()) / det;
RT c20 = (m.r1().x()*m.r2().y() - m.r2().x()*m.r1().y()) / det;
RT c21 = (m.r2().x()*m.r0().y() - m.r0().x()*m.r2().y()) / det;
RT c22 = (m.r0().x()*m.r1().y() - m.r0().y()*m.r1().x()) / det;
rInverse = result_type(Matrix(c00,c01,c02,
c10,c11,c12,
c20,c21,c22));
}
return rInverse;
}
} // namespace CGAL
#endif // CGAL_CARTESIAN_MATRIXC33_H //
// EOF //
|