1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// Copyright (c) 2018 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Classification/include/CGAL/Classification/Feature/Cluster_size.h $
// $Id: include/CGAL/Classification/Feature/Cluster_size.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_FEATURE_CLUSTER_SIZE_H
#define CGAL_CLASSIFICATION_FEATURE_CLUSTER_SIZE_H
#include <CGAL/license/Classification.h>
#include <vector>
#include <CGAL/Classification/Feature_base.h>
namespace CGAL {
namespace Classification {
namespace Feature {
/*!
\ingroup PkgClassificationCluster
\brief %Feature that returns the size of each cluster.
Its default name is "cluster_size".
*/
class Cluster_size : public CGAL::Classification::Feature_base
{
std::vector<float> m_values;
public:
/*!
\brief constructs the feature.
\tparam ClusterRange model of `ConstRange`. Its iterator type
is `RandomAccessIterator` and its value type is the key type of
`Cluster`.
\param clusters input range.
*/
template <typename ClusterRange>
Cluster_size (ClusterRange& clusters)
{
this->set_name ("cluster_size");
m_values.reserve (clusters.size());
for (std::size_t i = 0; i < clusters.size(); ++ i)
m_values.push_back (float(clusters[i].size()));
}
/// \cond SKIP_IN_MANUAL
virtual float value (std::size_t cluster_index)
{
return m_values[cluster_index];
}
/// \endcond
};
} // namespace Feature
} // namespace Classification
} // namespace CGAL
#endif // CGAL_CLASSIFICATION_FEATURE_CLUSTER_SIZE_H
|