1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Classification/include/CGAL/Classification/Point_set_feature_generator.h $
// $Id: include/CGAL/Classification/Point_set_feature_generator.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H
#define CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H
#include <CGAL/license/Classification.h>
#include <CGAL/property_map.h>
#include <CGAL/Classification/Point_set_neighborhood.h>
#include <CGAL/Classification/Planimetric_grid.h>
#include <CGAL/Classification/Local_eigen_analysis.h>
#include <CGAL/Classification/Feature_base.h>
#include <CGAL/Classification/Feature/Distance_to_plane.h>
#include <CGAL/Classification/Feature/Echo_scatter.h>
#include <CGAL/Classification/Feature/Elevation.h>
#include <CGAL/Classification/Feature/Vertical_dispersion.h>
#include <CGAL/Classification/Feature/Verticality.h>
#include <CGAL/Classification/Feature/Eigenvalue.h>
#include <CGAL/Classification/Feature/Color_channel.h>
#include <CGAL/Classification/Feature/Height_below.h>
#include <CGAL/Classification/Feature/Height_above.h>
#include <CGAL/Classification/Feature/Vertical_range.h>
#include <CGAL/Classification/internal/verbosity.h>
#include <CGAL/Classification/Feature_set.h>
#include <CGAL/bounding_box.h>
#include <CGAL/Real_timer.h>
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationPointSet
\brief generates a set of generic features for point set
classification.
This class takes care of computing and storing all necessary data
structures and of generating a set of generic features at multiple
scales to increase the reliability of the classification.
\warning The generated features use data structures that are stored
inside the generator. For this reason, the generator should be
instantiated _within the same scope_ as the feature set and should
not be deleted before the feature set.
\tparam GeomTraits model of \cgal Kernel.
\tparam PointRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam PointMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `PointRange` and value type
is `GeomTraits::Point_3`.
\tparam ConcurrencyTag enables sequential versus parallel
computation of `CGAL::Classification::Local_eigen_analysis`
objects. Possible values are `Parallel_tag` (default value is \cgal
is linked with TBB) or `Sequential_tag` (default value otherwise).
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
is available and `CGAL_EIGEN3_ENABLED` is defined: in that case, an
overload using `Eigen_diagonalize_traits` is provided.
*/
template <typename GeomTraits,
typename PointRange,
typename PointMap,
#if defined(DOXYGEN_RUNNING)
typename ConcurrencyTag,
#else
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
#endif
#if defined(DOXYGEN_RUNNING)
typename DiagonalizeTraits>
#else
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float,3> >
#endif
class Point_set_feature_generator
{
public:
using Iso_cuboid_3 = typename GeomTraits::Iso_cuboid_3;
/// \cond SKIP_IN_MANUAL
using Iterator = typename PointRange::const_iterator;
using Point = typename PointMap::value_type;
/// \endcond
using Planimetric_grid = Classification::Planimetric_grid<GeomTraits, PointRange, PointMap>;
using Neighborhood = Classification::Point_set_neighborhood<GeomTraits, PointRange, PointMap>;
using Local_eigen_analysis = Classification::Local_eigen_analysis;
/// \cond SKIP_IN_MANUAL
using Feature_handle = Classification::Feature_handle;
using Distance_to_plane = Classification::Feature::Distance_to_plane<PointRange, PointMap>;
using Elevation = Classification::Feature::Elevation<GeomTraits, PointRange, PointMap>;
using Height_below = Classification::Feature::Height_below<GeomTraits, PointRange, PointMap>;
using Height_above = Classification::Feature::Height_above<GeomTraits, PointRange, PointMap>;
using Vertical_range = Classification::Feature::Vertical_range<GeomTraits, PointRange, PointMap>;
using Dispersion = Classification::Feature::Vertical_dispersion<GeomTraits, PointRange, PointMap>;
using Verticality = Classification::Feature::Verticality<GeomTraits>;
using Eigenvalue = Classification::Feature::Eigenvalue;
using Neighbor_query = typename Neighborhood::K_neighbor_query;
/// \endcond
private:
struct Scale
{
std::unique_ptr<Neighborhood> neighborhood;
std::unique_ptr<Planimetric_grid> grid;
std::unique_ptr<Local_eigen_analysis> eigen;
float voxel_size;
Scale (const PointRange& input, PointMap point_map,
const Iso_cuboid_3& bbox, float voxel_size,
const std::unique_ptr<Planimetric_grid>& lower_grid
= std::unique_ptr<Planimetric_grid>())
: voxel_size (voxel_size)
{
CGAL::Real_timer t;
t.start();
if (!lower_grid)
neighborhood = std::make_unique<Neighborhood> (input, point_map, ConcurrencyTag());
else
neighborhood = std::make_unique<Neighborhood> (input, point_map, voxel_size, ConcurrencyTag());
t.stop();
if (!lower_grid)
CGAL_CLASSIFICATION_CERR << "Neighborhood computed in " << t.time() << " second(s)" << std::endl;
else
CGAL_CLASSIFICATION_CERR << "Neighborhood with voxel size " << voxel_size
<< " computed in " << t.time() << " second(s)" << std::endl;
t.reset();
t.start();
eigen = std::make_unique<Local_eigen_analysis>
(Local_eigen_analysis::create_from_point_set
(input, point_map, neighborhood->k_neighbor_query(12), ConcurrencyTag(), DiagonalizeTraits()));
float range = eigen->mean_range();
if (this->voxel_size < 0)
this->voxel_size = range;
t.stop();
CGAL_CLASSIFICATION_CERR << "Eigen values computed in " << t.time() << " second(s)" << std::endl;
CGAL_CLASSIFICATION_CERR << "Range = " << range << std::endl;
t.reset();
t.start();
if (!lower_grid)
grid = std::make_unique<Planimetric_grid> (input, point_map, bbox, this->voxel_size);
else
grid = std::make_unique<Planimetric_grid>(lower_grid.get());
t.stop();
CGAL_CLASSIFICATION_CERR << "Planimetric grid computed in " << t.time() << " second(s)" << std::endl;
t.reset();
}
float grid_resolution() const { return voxel_size; }
float radius_neighbors() const { return voxel_size * 3; }
float radius_dtm() const { return voxel_size * 10; }
};
Iso_cuboid_3 m_bbox;
std::vector<std::unique_ptr<Scale> > m_scales;
const PointRange& m_input;
PointMap m_point_map;
public:
/// \name Constructor
/// @{
/*!
\brief initializes a feature generator from an input range.
If not provided by the user, The size of the smallest scale is
automatically estimated using a method equivalent to
`CGAL::compute_average_spacing()` using 6 neighbors. The data
structures needed (`Neighborhood`, `Planimetric_grid` and
`Local_eigen_analysis`) are computed at `nb_scales` recursively
larger scales.
\param input point range.
\param point_map property map to access the input points.
\param nb_scales number of scales to compute.
\param voxel_size smallest scale used as a voxel size for the
planimetric grid (if the default value -1 is used, its value is
automatically estimated).
*/
Point_set_feature_generator(const PointRange& input,
PointMap point_map,
std::size_t nb_scales,
float voxel_size = -1.f)
: m_input (input), m_point_map (point_map)
{
m_bbox = CGAL::bounding_box
(CGAL::make_transform_iterator_from_property_map (m_input.begin(), m_point_map),
CGAL::make_transform_iterator_from_property_map (m_input.end(), m_point_map));
CGAL::Real_timer t; t.start();
m_scales.reserve (nb_scales);
m_scales.emplace_back (std::make_unique<Scale> (m_input, m_point_map, m_bbox, voxel_size));
if (voxel_size == -1.f)
voxel_size = m_scales[0]->grid_resolution();
for (std::size_t i = 1; i < nb_scales; ++ i)
{
voxel_size *= 2;
m_scales.push_back (std::make_unique<Scale> (m_input, m_point_map, m_bbox, voxel_size, m_scales[i-1]->grid));
}
t.stop();
CGAL_CLASSIFICATION_CERR << "Scales computed in " << t.time() << " second(s)" << std::endl;
t.reset();
}
/// @}
/// \name Feature Generation
/// @{
/*!
\brief generates geometric features based on point position information.
This is a meta-function that calls the following functions:
- `generate_eigen_features()`
- `generate_dispersion_features()`
- `generate_elevation_features()`
- The version of `generate_normal_based_features()` without a normal map
\param features the feature set where the features are instantiated.
*/
void generate_point_based_features (Feature_set& features)
{
generate_eigen_features (features);
generate_dispersion_features (features);
generate_elevation_features (features);
generate_normal_based_features (features);
}
/*!
\brief generates geometric eigen features.
At each scale, features
`CGAL::Classification::Feature::Eigenvalue` with indices 0, 1 and
2 are generated.
\param features the feature set where the features are instantiated.
*/
void generate_eigen_features (Feature_set& features)
{
for (int j = 0; j < 3; ++ j)
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Eigenvalue> (i, m_input, eigen(i), (unsigned int)(j));
}
/*!
\brief generates geometric features based on local dispersion information.
At each scale, the following features are generated:
- `CGAL::Classification::Feature::Distance_to_plane`
- `CGAL::Classification::Feature::Vertical_dispersion`
\param features the feature set where the features are instantiated.
*/
void generate_dispersion_features (Feature_set& features)
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Distance_to_plane> (i, m_input, m_point_map, eigen(i));
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Dispersion> (i, m_input, m_point_map, grid(i), radius_neighbors(i));
}
/*!
\brief generates geometric features based on elevation information.
At each scale, the following features are generated:
- `CGAL::Classification::Feature::Elevation`
- `CGAL::Classification::Feature::Height_above`
- `CGAL::Classification::Feature::Height_below`
- `CGAL::Classification::Feature::Vertical_range`
\param features the feature set where the features are instantiated.
*/
void generate_elevation_features (Feature_set& features)
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Elevation> (i, m_input, m_point_map, grid(i), radius_dtm(i));
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Height_below> (i, m_input, m_point_map, grid(i));
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Height_above> (i, m_input, m_point_map, grid(i));
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Vertical_range> (i, m_input, m_point_map, grid(i));
}
/*!
\brief generates geometric features based on normal analysis information.
At each scale, the version of
`CGAL::Classification::Feature::Verticality` based on eigenvalue
is generated.
\param features the feature set where the features are instantiated.
*/
void generate_normal_based_features (Feature_set& features)
{
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Verticality> (i, m_input, eigen(i));
}
/*!
\brief generates geometric features based on normal vector information.
Generates the version of `CGAL::Classification::Feature::Verticality` based on normal vectors.
\tparam VectorMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`GeomTraits::Vector_3`.
\param features the feature set where the features are instantiated.
\param normal_map property map to access the normal vectors of the input points (if any).
*/
template <typename VectorMap>
void generate_normal_based_features(Feature_set& features, const VectorMap& normal_map)
{
features.add<Verticality> (m_input, normal_map);
}
/*!
\brief generates geometric features based on point color information.
Generates `CGAL::Classification::Feature::Color_channel` with
channels `HUE`, `SATURATION` and `VALUE`.
\tparam ColorMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`CGAL::IO::Color`.
\param features the feature set where the features are instantiated.
\param color_map property map to access the colors of the input points (if any).
*/
template <typename ColorMap>
void generate_color_based_features(Feature_set& features, const ColorMap& color_map)
{
typedef Feature::Color_channel<GeomTraits, PointRange, ColorMap> Color_channel;
for (std::size_t i = 0; i < 3; ++ i)
features.add<Color_channel> (m_input, color_map, typename Color_channel::Channel(i));
}
/*!
\brief generates geometric features based on echo information.
At each scale, generates `CGAL::Classification::Feature::Echo_scatter`.
\tparam EchoMap model of `ReadablePropertyMap` whose key type is
the value type of the iterator of `PointRange` and value type is
`std::size_t`.
\param features the feature set where the features are instantiated.
\param echo_map property map to access the echo values of the input points (if any).
*/
template <typename EchoMap>
void generate_echo_based_features(Feature_set& features, const EchoMap& echo_map)
{
typedef Feature::Echo_scatter<GeomTraits, PointRange, PointMap, EchoMap> Echo_scatter;
for (std::size_t i = 0; i < m_scales.size(); ++ i)
features.add_with_scale_id<Echo_scatter> (i, m_input, echo_map, grid(i), radius_neighbors(i));
}
/// @}
/// \name Data Structures Access
/// @{
/*!
\brief returns the bounding box of the input point set.
*/
const Iso_cuboid_3& bbox() const { return m_bbox; }
/*!
\brief returns the neighborhood structure at scale `scale`.
*/
const Neighborhood& neighborhood(std::size_t scale = 0) const { return (*m_scales[scale]->neighborhood); }
/*!
\brief returns the planimetric grid structure at scale `scale`.
*/
const Planimetric_grid& grid(std::size_t scale = 0) const { return *(m_scales[scale]->grid); }
/*!
\brief returns the local eigen analysis structure at scale `scale`.
*/
const Local_eigen_analysis& eigen(std::size_t scale = 0) const { return *(m_scales[scale]->eigen); }
/// @}
/// \name Parameters
/// @{
/*!
\brief returns the number of scales that were computed.
*/
std::size_t number_of_scales() const { return m_scales.size(); }
/*!
\brief returns the grid resolution at scale `scale`. This
resolution is the length and width of a cell of the
`Planimetric_grid` defined at this scale.
*/
float grid_resolution(std::size_t scale = 0) const { return m_scales[scale]->grid_resolution(); }
/*!
\brief returns the radius used for neighborhood queries at scale
`scale`. This radius is the smallest radius that is relevant from
a geometric point of view at this scale (that is to say that
encloses a few cells of `Planimetric_grid`).
*/
float radius_neighbors(std::size_t scale = 0) const { return m_scales[scale]->radius_neighbors(); }
/*!
\brief returns the radius used for digital terrain modeling at
scale `scale`. This radius represents the minimum size of a
building at this scale.
*/
float radius_dtm(std::size_t scale = 0) const { return m_scales[scale]->radius_dtm(); }
/// @}
};
} // namespace Classification
} // namespace CGAL
#endif // CGAL_CLASSIFICATION_POINT_SET_FEATURE_GENERATOR_H
|