1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
// Copyright (c) 1998-2021
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Distance_3/include/CGAL/Distance_3/Triangle_3_Triangle_3.h $
// $Id: include/CGAL/Distance_3/Triangle_3_Triangle_3.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Mael Rouxel-Labbé
#ifndef CGAL_DISTANCE_3_TRIANGLE_3_TRIANGLE_3_H
#define CGAL_DISTANCE_3_TRIANGLE_3_TRIANGLE_3_H
#include <CGAL/Distance_3/Point_3_Point_3.h>
#include <CGAL/Distance_3/Segment_3_Segment_3.h>
#include <CGAL/Triangle_3.h>
namespace CGAL {
namespace Distance_3 {
namespace internal {
template <typename K>
std::pair<Segment_3_Segment_3_Result<K>, bool>
test_edge_pair(const typename K::Point_3& p1,
const typename K::Point_3& q1,
const typename K::Point_3& r1,
const typename K::Point_3& p2,
const typename K::Point_3& q2,
const typename K::Point_3& r2,
const K& k,
typename K::FT& global_min_sqd,
bool& are_triangles_known_to_be_disjoint)
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typename K::Compute_scalar_product_3 scalar_product = k.compute_scalar_product_3_object();
typename K::Construct_segment_3 segment = k.construct_segment_3_object();
typename K::Construct_scaled_vector_3 scale_vector = k.construct_scaled_vector_3_object();
typename K::Construct_vector_3 vector = k.construct_vector_3_object();
typename K::Construct_translated_point_3 translate = k.construct_translated_point_3_object();
Distance_3::internal::Segment_3_Segment_3_Result<K> res =
internal::squared_distance(segment(p1, q1), segment(p2, q2), k);
if(res.squared_distance <= global_min_sqd)
global_min_sqd = res.squared_distance;
else
return std::make_pair(res, false);
const Vector_3 v1 = vector(p1, q1), v2 = vector(p2, q2);
const Point_3 m1 = translate(p1, scale_vector(v1, res.x));
const Point_3 m2 = translate(p2, scale_vector(v2, res.y));
const Vector_3 vr1 = vector(m1, r1), vr2 = vector(m2, r2);
const Vector_3 n = vector(m1, m2);
const FT sp_r1 = scalar_product(vr1, n);
const FT sp_r2 = scalar_product(vr2, n);
const bool is_r1_closer = (sp_r1 > 0); // Plane_3{m1, n}.has_on_positive_side(r1);
const bool is_r2_closer = (sp_r2 < 0); // Plane_3{m2, -n}.has_on_positive_side(r2);
const bool is_best_pair = !is_r1_closer && !is_r2_closer;
// Even if it is not the best pair, one may be able to deduce if the triangles do not intersect
// by checking if there is a void space between the planes orthogonal to the vector realizing
// the min distance between the edges and passing through the third points.
if(!is_best_pair)
{
FT separating_distance = res.squared_distance;
if(is_r1_closer)
separating_distance -= sp_r1;
if(is_r2_closer)
separating_distance += sp_r2;
if(separating_distance > 0)
are_triangles_known_to_be_disjoint = true;
}
return std::make_pair(res, is_best_pair);
}
template <typename K>
std::pair<typename K::FT, bool>
test_vertex_triangle(const typename K::Triangle_3& tr1,
const typename K::Triangle_3& tr2,
const K& k,
bool& are_triangles_known_to_be_disjoint)
{
typedef typename K::FT FT;
typedef typename K::Point_3 Point_3;
typedef typename K::Vector_3 Vector_3;
typename K::Compute_scalar_product_3 scalar_product = k.compute_scalar_product_3_object();
typename K::Construct_cross_product_vector_3 cross_product = k.construct_cross_product_vector_3_object();
typename K::Construct_vector_3 vector = k.construct_vector_3_object();
typename K::Construct_vertex_3 vertex = k.construct_vertex_3_object();
const Point_3& p1 = vertex(tr1, 0);
const Point_3& q1 = vertex(tr1, 1);
const Point_3& r1 = vertex(tr1, 2);
const Point_3& p2 = vertex(tr2, 0);
const Point_3& q2 = vertex(tr2, 1);
const Point_3& r2 = vertex(tr2, 2);
const Vector_3 p2q2 = vector(p2, q2);
const Vector_3 p2r2 = vector(p2, r2);
const Vector_3 n2 = cross_product(p2q2, p2r2);
if(scalar_product(n2, n2) == FT(0))
return std::make_pair(0, false);
std::array<FT, 3> sps = { scalar_product(vector(p2, p1), n2),
scalar_product(vector(p2, q1), n2),
scalar_product(vector(p2, r1), n2) };
// All the vertices of tr1 must be on the same side of tr2
// Coplanarity is tolerated, so '1' and '0' should be allowed, but not '1' and '-1'
if(CGAL::sign(sps[0]) == - CGAL::sign(sps[1]) || CGAL::sign(sps[1]) == - CGAL::sign(sps[2]))
return std::make_pair(0, false);
std::for_each(sps.begin(), sps.end(), [](FT& v) { v = abs(v); });
const auto min_pos = std::min_element(sps.begin(), sps.end());
const std::size_t min_id = static_cast<std::size_t>(std::distance(sps.begin(), min_pos));
if(sps[min_id] > 0)
are_triangles_known_to_be_disjoint = true;
const Point_3& x1 = vertex(tr1, static_cast<int>(min_id));
if(CGAL::internal::on_left_of_triangle_edge(x1, n2, p2, q2, k) &&
CGAL::internal::on_left_of_triangle_edge(x1, n2, q2, r2, k) &&
CGAL::internal::on_left_of_triangle_edge(x1, n2, r2, p2, k))
{
// the projection of `x1` is inside the triangle
return std::make_pair(CGAL::internal::squared_distance_to_plane(n2, vector(p2, x1), k), true);
}
return std::make_pair(0, false);
}
} // namespace internal
} // namespace Distance_3
namespace internal {
template <typename K>
typename K::FT
squared_distance(const typename K::Triangle_3& tr1,
const typename K::Triangle_3& tr2,
const K& k)
{
typedef typename K::FT FT;
typename K::Construct_vertex_3 vertex = k.construct_vertex_3_object();
// ideally just limits<FT>::infinity|max(), but it is not available for exact NTs...
FT global_min_sqd = squared_distance(vertex(tr1, 0), vertex(tr2, 0));
bool are_triangles_known_to_be_disjoint = false;
std::pair<Distance_3::internal::Segment_3_Segment_3_Result<K>, bool> ss_res;
for(int i=0; i<3; ++i)
{
for(int j=0; j<3; ++j)
{
ss_res = Distance_3::internal::test_edge_pair(
vertex(tr1, i%3), vertex(tr1, (i+1)%3), vertex(tr1, (i+2)%3),
vertex(tr2, j%3), vertex(tr2, (j+1)%3), vertex(tr2, (j+2)%3), k,
global_min_sqd, are_triangles_known_to_be_disjoint);
if(ss_res.second)
return ss_res.first.squared_distance;
}
}
// Failed to find a minimum between segment pairs, explore vertex-triangle distances
#if 1
std::pair<FT, bool> pt_res =
Distance_3::internal::test_vertex_triangle(tr1, tr2, k, are_triangles_known_to_be_disjoint);
if(pt_res.second)
return pt_res.first;
pt_res = Distance_3::internal::test_vertex_triangle(tr2, tr1, k, are_triangles_known_to_be_disjoint);
if(pt_res.second)
return pt_res.first;
if(are_triangles_known_to_be_disjoint)
return global_min_sqd;
else
return 0;
#else // A tiny bit less efficient, but a lot clearer!
// @todo does not handle degenerate inputs
if(!are_triangles_known_to_be_disjoint && CGAL::do_intersect(tr1, tr2))
return 0;
FT sqd_p1 = CGAL::squared_distance(vertex(tr1, 0), tr2);
FT sqd_q1 = CGAL::squared_distance(vertex(tr1, 1), tr2);
FT sqd_r1 = CGAL::squared_distance(vertex(tr1, 2), tr2);
FT sqd_p2 = CGAL::squared_distance(vertex(tr2, 0), tr1);
FT sqd_q2 = CGAL::squared_distance(vertex(tr2, 1), tr1);
FT sqd_r2 = CGAL::squared_distance(vertex(tr2, 2), tr1);
const FT m = (std::min)({sqd_p1, sqd_q1, sqd_r1, sqd_p2, sqd_q2, sqd_r2});
return m;
#endif
}
template <typename K>
typename K::Comparison_result
compare_squared_distance_disjoint(const typename K::Triangle_3& tr1,
const typename K::Triangle_3& tr2,
const K& k,
const typename K::FT& d2)
{
typedef typename K::Segment_3 Segment_3;
typename K::Construct_vertex_3 vertex = k.construct_vertex_3_object();
typename K::Compare_squared_distance_3 csq_dist = k.compare_squared_distance_3_object();
typename K::Comparison_result res(LARGER);
// The tiangle are supposed to be disjoint
assert(!do_intersect(tr1, tr2));
for(int i=0; i<3; ++i)
{
//Compare the distance between edges
for(int j=0; j<3; ++j)
{
typename K::Comparison_result temp_res_ss=csq_dist(Segment_3(vertex(tr1, i%3), vertex(tr1, (i+1)%3)),Segment_3(vertex(tr2, j%3), vertex(tr2, (j+1)%3)),d2);
if(certainly(temp_res_ss==SMALLER))
return SMALLER;
res=smaller_of(res, temp_res_ss);
}
//Compare the distance between vertices and triangles
typename K::Comparison_result temp_res_v_pl= csq_dist(vertex(tr1, i), tr2,d2);
if(certainly(temp_res_v_pl==SMALLER))
return SMALLER;
res=smaller_of(res, temp_res_v_pl);
temp_res_v_pl= csq_dist(vertex(tr2, i), tr1,d2);
if(certainly(temp_res_v_pl==SMALLER))
return SMALLER;
res=smaller_of(res, temp_res_v_pl);
}
return res;
}
template <typename K>
typename K::Comparison_result
compare_squared_distance(const typename K::Triangle_3& tr1,
const typename K::Triangle_3& tr2,
const K& k,
const typename K::FT& d2){
// sq_dist and csq_dist does not exist for Segment-Triangle, sq supports degenerate triangle
if(tr1.is_degenerate() || tr2.is_degenerate())
return ::CGAL::compare(squared_distance(tr1,tr2, k), d2);
if(do_intersect(tr1, tr2))
return ::CGAL::compare(typename K::FT(0), d2);
return compare_squared_distance_disjoint(tr1, tr2, k, d2);
}
} // namespace internal
} // namespace CGAL
#endif // CGAL_DISTANCE_3_TRIANGLE_3_TRIANGLE_3_H
|