1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
// Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Linear_cell_complex/include/CGAL/Linear_cell_complex_operations.h $
// $Id: include/CGAL/Linear_cell_complex_operations.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_OPERATIONS_H
#define CGAL_LINEAR_CELL_COMPLEX_OPERATIONS_H 1
#include <CGAL/Cell_iterators.h>
#include <CGAL/Cell_const_iterators.h>
#include <CGAL/Origin.h>
#include <CGAL/assertions.h>
namespace CGAL {
/** @file Linear_cell_complex_operations.h
* Basic operators on a linear cell complex.
*/
namespace internal {
template <class Point, class Vector>
void newell_single_step_3_for_lcc(const Point& p, const Point& q, Vector& n)
{
// Compute normal of the face by using Newell's method: for each edge PQ
// Nx += (Py - Qy) * (Pz + Qz);
// Ny += (Pz - Qz) * (Px + Qx);
// Nz += (Px - Qx) * (Py + Qy);
n = Vector(n.x()+((p.y()-q.y())*(p.z()+q.z())),
n.y()+((p.z()-q.z())*(p.x()+q.x())),
n.z()+((p.x()-q.x())*(p.y()+q.y())));
// Dot product formula
/*n=Vector(n.x()+((p.y()*q.z())-(p.z()*q.y())),
n.y()+((p.x()*q.z())-(p.z()*q.x())),
n.z()+((p.x()*q.y())-(p.y()*q.x())));*/
}
} // End namespace internal
/** Compute the normal of the given facet.
* @param amap the used linear cell complex.
* @param adart a dart incident to the facet.
* @return the normal of the facet.
*/
template <class LCC>
typename LCC::Vector compute_normal_of_cell_2
(const LCC& amap, typename LCC::Dart_const_descriptor adart)
{
typedef typename LCC::Point Point;
typedef typename LCC::Vector Vector;
typename LCC::Dart_const_descriptor start=adart;
Vector normal(CGAL::NULL_VECTOR);
// We go to the beginning of the face (first dart)
while ( amap.is_previous_exist(start) && amap.previous(start)!=adart )
start = amap.previous(start);
// Now we advance to process each edge
unsigned int nb = 0;
const Point* curr = &amap.point(start);
adart=start;
do
{
if (amap.other_extremity(adart)==LCC::null_descriptor)
adart=start; // To leave the loop, because we know that adart has no next dart
else
{
const Point* next = &amap.point(amap.other_extremity(adart));
internal::newell_single_step_3_for_lcc(*curr, *next, normal);
++nb;
curr = next;
if (amap.is_next_exist(adart) && amap.next(adart)!=start)
adart=amap.next(adart);
else
adart=start;
}
}
while(adart!=start);
CGAL_assertion(nb>0);
return (typename LCC::Traits::Construct_scaled_vector()(normal, 1.0/nb));
// return normal / std::sqrt(normal * normal);
}
/** Compute the normal of the given vertex.
* @param amap the used linear cell complex.
* @param adart a dart incident to the vertex.
* @return the normal of the vertex.
*/
template <class LCC>
typename LCC::Vector compute_normal_of_cell_0
(const LCC& amap, typename LCC::Dart_const_descriptor adart)
{
typedef typename LCC::Vector Vector;
Vector normal(CGAL::NULL_VECTOR);
unsigned int nb = 0;
for ( typename LCC::template One_dart_per_incident_cell_range<2,0>::
const_iterator it(amap, adart); it.cont(); ++it )
{
normal = typename LCC::Traits::Construct_sum_of_vectors()
(normal, CGAL::compute_normal_of_cell_2(amap,it));
++nb;
}
if ( nb<2 ) return normal;
return (typename LCC::Traits::Construct_scaled_vector()(normal, 1.0/nb));
}
// Compute the barycenter of a given i-cell
// General case, 1<i<=dimension
template<class LCC, unsigned int i, unsigned int dim=LCC::dimension>
struct Barycenter_functor
{
static typename LCC::Point run(const LCC& amap,
typename LCC::Dart_const_descriptor adart)
{
static_assert(0<i && i<=LCC::dimension);
CGAL_assertion(adart != LCC::null_descriptor);
typename LCC::Vector vec
(typename LCC::Traits::Construct_vector()(CGAL::ORIGIN,
amap.point(adart)));
unsigned int nb = 1;
typename LCC::template One_dart_per_incident_cell_range<0, i, i>::
const_iterator it(amap, adart);
for ( ++it; it.cont(); ++it)
{
vec = typename LCC::Traits::Construct_sum_of_vectors()
(vec, typename LCC::Traits::Construct_vector()(CGAL::ORIGIN,
amap.point(it) ));
++nb;
}
return typename LCC::Traits::Construct_translated_point()
(CGAL::ORIGIN, typename LCC::Traits::Construct_scaled_vector()
(vec, 1.0/nb));
}
};
// Compute the barycenter of a given 1-cell
template<class LCC, unsigned int dim>
struct Barycenter_functor<LCC, 1, dim>
{
static typename LCC::Point run(const LCC& amap,
typename LCC::Dart_const_descriptor adart)
{
static_assert(1<=LCC::dimension);
CGAL_assertion(adart != LCC::null_descriptor);
typename LCC::Dart_const_descriptor d2=amap.other_extremity(adart);
if (d2==amap.null_descriptor) return amap.point(adart);
return typename LCC::Traits::Construct_midpoint()
(amap.point(adart),
amap.point(d2));
}
};
// Compute the barycenter of a given 2-cell
template<class LCC, unsigned int dim>
struct Barycenter_functor<LCC, 2, dim>
{
static typename LCC::Point run(const LCC& amap,
typename LCC::Dart_const_descriptor adart)
{
static_assert(2<=LCC::dimension);
CGAL_assertion(adart != LCC::null_descriptor);
// We go to the beginning of the face (first dart, case of open face)
typename LCC::Dart_const_descriptor start=adart;
while ( amap.is_previous_exist(start) && amap.previous(start)!=adart )
start = amap.previous(start);
typename LCC::Vector vec
(typename LCC::Traits::Construct_vector()(CGAL::ORIGIN,
amap.point(start)));
if ((!amap.is_previous_exist(adart) && !amap.is_next_exist(adart)) ||
amap.next(adart)==adart)
return typename LCC::Traits::Construct_translated_point()
(CGAL::ORIGIN, vec); // case of face with only one edge
unsigned int nb = 1;
// Now we advance to process each edge
adart=amap.next(start); // Because the first vertex was already sum up
do
{
vec = typename LCC::Traits::Construct_sum_of_vectors()
(vec, typename LCC::Traits::Construct_vector()(CGAL::ORIGIN,
amap.point(adart)));
++nb;
if (amap.is_next_exist(adart) && amap.next(adart)!=start)
adart=amap.next(adart);
else
adart=start;
}
while(adart!=start);
CGAL_assertion(nb>1);
return typename LCC::Traits::Construct_translated_point()
(CGAL::ORIGIN, typename LCC::Traits::Construct_scaled_vector()
(vec, 1.0/nb));
}
};
} // namespace CGAL
#endif // CGAL_LINEAR_CELL_COMPLEX_OPERATIONS_H //
// EOF //
|