1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
|
// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Mesh_3/include/CGAL/Mesh_3/Worksharing_data_structures.h $
// $Id: include/CGAL/Mesh_3/Worksharing_data_structures.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Clement Jamin
#ifndef CGAL_MESH_3_WORKSHARING_DATA_STRUCTURES_H
#define CGAL_MESH_3_WORKSHARING_DATA_STRUCTURES_H
#include <CGAL/license/Mesh_3.h>
#include <CGAL/disable_warnings.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <CGAL/Mesh_3/Concurrent_mesher_config.h>
#include <CGAL/Bbox_3.h>
#include <tbb/concurrent_queue.h>
#include <tbb/task_group.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/concurrent_vector.h>
#include <tbb/scalable_allocator.h>
#include <atomic>
#include <vector>
namespace CGAL { namespace Mesh_3 {
// Forward declarations
class Load_based_worksharing_ds;
class Auto_worksharing_ds;
// Typedef
// Load-based
#ifdef CGAL_MESH_3_LOAD_BASED_WORKSHARING
typedef Load_based_worksharing_ds WorksharingDataStructureType;
// Task-scheduler with TLS work buffers
// => 1 work-buffer / thread
#else
typedef Auto_worksharing_ds WorksharingDataStructureType;
#endif
class Work_statistics
{
public:
// Constructors
Work_statistics(const Bbox_3 &bbox,
int num_grid_cells_per_axis)
: m_num_grid_cells_per_axis(num_grid_cells_per_axis)
{
m_laziest_cell_index = 0;
m_laziest_cell_occupation = 1000;
m_num_cells =
num_grid_cells_per_axis*num_grid_cells_per_axis*num_grid_cells_per_axis;
m_occupation_grid = new std::atomic<int>[m_num_cells];
m_num_batches_grid = new std::atomic<int>[m_num_cells];
// Initialize grid
for (int i = 0 ; i < m_num_cells ; ++i)
{
m_occupation_grid[i] = 0;
m_num_batches_grid[i] = 0;
}
set_bbox(bbox);
}
/// Destructor
virtual ~Work_statistics()
{
delete [] m_occupation_grid;
delete [] m_num_batches_grid;
}
void set_bbox(const Bbox_3 &bbox)
{
// Keep mins and resolutions
m_xmin = bbox.xmin();
m_ymin = bbox.ymin();
m_zmin = bbox.zmin();
double n = static_cast<double>(m_num_grid_cells_per_axis);
m_resolution_x = n / (bbox.xmax() - m_xmin);
m_resolution_y = n / (bbox.ymax() - m_ymin);
m_resolution_z = n / (bbox.zmax() - m_zmin);
#ifdef CGAL_CONCURRENT_MESH_3_VERBOSE
std::cerr << "Worksharing data structure Bounding Box = ["
<< bbox.xmin() << ", " << bbox.xmax() << "], "
<< bbox.ymin() << ", " << bbox.ymax() << "], "
<< bbox.zmin() << ", " << bbox.zmax() << "]"
<< std::endl;
#endif
}
void add_batch(int cell_index, int to_add)
{
m_num_batches_grid[cell_index].fetch_add(to_add);
}
void add_occupation(int cell_index, int to_add, int)
{
m_occupation_grid[cell_index].fetch_add(to_add);
/*int new_occupation =
(m_occupation_grid[cell_index].fetch_add(to_add))
+ to_add;
//m_num_batches_grid[cell_index] = num_items_in_work_queue;
// If this cell is the current most lazy, update the value
if (cell_index == m_laziest_cell_index)
{
if (num_items_in_work_queue == 0)
// So that it won't stay long the laziest
m_laziest_cell_occupation = 999999;
else
m_laziest_cell_occupation = new_occupation;
}
else if (num_items_in_work_queue > 0
&& new_occupation <= m_laziest_cell_occupation)
{
m_laziest_cell_index = cell_index;
m_laziest_cell_occupation = new_occupation;
}*/
}
void add_occupation(int index_x, int index_y, int index_z,
int to_add, int num_items_in_work_queue)
{
int index =
index_z*m_num_grid_cells_per_axis*m_num_grid_cells_per_axis
+ index_y*m_num_grid_cells_per_axis
+ index_x;
return add_occupation(index, to_add, num_items_in_work_queue);
}
/// P3 must provide .x(), .y(), .z()
template <typename P3>
int compute_index(const P3 &point) const
{
// Compute indices on grid
int index_x = static_cast<int>( (to_double(point.x()) - m_xmin) * m_resolution_x);
index_x = (std::max)( 0, (std::min)(index_x, m_num_grid_cells_per_axis - 1) );
int index_y = static_cast<int>( (to_double(point.y()) - m_ymin) * m_resolution_y);
index_y = (std::max)( 0, (std::min)(index_y, m_num_grid_cells_per_axis - 1) );
int index_z = static_cast<int>( (to_double(point.z()) - m_zmin) * m_resolution_z);
index_z = (std::max)( 0, (std::min)(index_z, m_num_grid_cells_per_axis - 1) );
int index =
index_z*m_num_grid_cells_per_axis*m_num_grid_cells_per_axis
+ index_y*m_num_grid_cells_per_axis
+ index_x;
return index;
}
/// P3 must provide .x(), .y(), .z()
// Returns index in grid
template <typename P3>
int add_occupation(const P3 &point, int to_add, int num_items_in_work_queue)
{
int index = compute_index(point);
add_occupation(index, to_add, num_items_in_work_queue);
return index;
}
int get_laziest_cell_index() const
{
//return m_laziest_cell_index;
/*
// Look for best occupation/work ratio
int laziest_index = 0;
float laziest_ratio = 200000.f;
for (int i = 0 ; i < m_num_cells ; ++i)
{
if (m_num_batches_grid[i] > 0)
{
float ratio =
static_cast<float>(m_occupation_grid[i])
/ m_num_batches_grid[i];
if (ratio < laziest_ratio)
{
laziest_index = i;
laziest_ratio = ratio;
}
}
}
return laziest_index;*/
// Look for the least occupied
/*int laziest_index = 0;
int smallest_occupation = 99999;
for (int i = 0 ; i < m_num_cells ; ++i)
{
if (m_num_batches_grid[i] > 1)
{
if (m_occupation_grid[i] < smallest_occupation)
{
laziest_index = i;
smallest_occupation = m_occupation_grid[i];
}
}
}
//std::cerr << "Occ=" << m_occupation_grid[laziest_index]
// << " / Bat=" << m_num_batches_grid[laziest_index]
// << std::endl;
return laziest_index;*/
// Rotate
static std::atomic<int> last_cell_index;
//std::cerr << "last=" << last_cell_index << std::endl;
int i = (last_cell_index + 1) % m_num_cells;
for ( ; i != last_cell_index ; i = (i + 1) % m_num_cells)
{
//std::cerr << "#" << i << "=" << m_num_batches_grid[i] << std::endl;
if (m_num_batches_grid[i] > 0)
{
break;
}
}
last_cell_index = i;
return i;
}
protected:
double m_xmin;
double m_ymin;
double m_zmin;
double m_resolution_x;
double m_resolution_y;
double m_resolution_z;
int m_num_grid_cells_per_axis;
int m_num_cells;
std::atomic<int> * m_occupation_grid;
std::atomic<int> * m_num_batches_grid;
std::atomic<int> m_laziest_cell_index;
std::atomic<int> m_laziest_cell_occupation;
};
/*
* ==============
* class WorkItem
* Abstract base class for a piece of work.
* ==============
*/
class WorkItem
{
public:
WorkItem() {}
virtual ~WorkItem() { }
// Derived class defines the actual work.
virtual void operator()() const = 0;
virtual bool less_than(const WorkItem &) const = 0;
};
struct CompareTwoWorkItems
{
bool operator()(const WorkItem *p1, const WorkItem *p2) const
{
return p1->less_than(*p2);
}
};
/*
* ==============
* class MeshRefinementWorkItem
* Concrete class for a piece of work in the refinement process.
* ==============
*/
template<typename Func, typename Quality>
class MeshRefinementWorkItem
: public WorkItem
{
public:
MeshRefinementWorkItem(const Func& func, const Quality &quality)
: m_func(func), m_quality(quality)
{}
~MeshRefinementWorkItem() override
{}
void operator()() const override
{
m_func();
tbb::scalable_allocator<MeshRefinementWorkItem>().deallocate(
const_cast<MeshRefinementWorkItem *>(this), 1);
}
bool less_than (const WorkItem &other) const override
{
/*try
{
const MeshRefinementWorkItem& other_cwi = dynamic_cast<const MeshRefinementWorkItem<Func,Quality>&>(other);
return m_quality < other_cwi.m_quality;
}
catch (const std::bad_cast&)
{
return false;
}*/
const MeshRefinementWorkItem& other_cwi = static_cast<const MeshRefinementWorkItem<Func,Quality>&>(other);
return m_quality < other_cwi.m_quality;
}
private:
Func m_func;
Quality m_quality;
};
/*
* ==============
* class SimpleFunctorWorkItem
* Concrete class for a work item embedding a simple functor
* ==============
*/
template<typename Func>
class SimpleFunctorWorkItem
: public WorkItem
{
public:
SimpleFunctorWorkItem(const Func& func)
: m_func(func)
{}
~SimpleFunctorWorkItem() override = default;
void operator()() const override
{
m_func();
tbb::scalable_allocator<SimpleFunctorWorkItem>().deallocate(
const_cast<SimpleFunctorWorkItem *>(this), 1);
}
// Irrelevant here
bool less_than (const WorkItem &other) const override
{
// Just compare addresses
return this < &other;
}
private:
Func m_func;
};
/*
* ===============
* class WorkBatch
* ===============
*/
class WorkBatch
{
public:
typedef std::vector<WorkItem *> Batch;
typedef Batch::const_iterator BatchConstIterator;
typedef Batch::iterator BatchIterator;
WorkBatch() {}
void add_work_item(WorkItem *p_item)
{
m_batch.push_back(p_item);
}
void operator()() const
{
std::sort(m_batch.begin(), m_batch.end(), CompareTwoWorkItems());
BatchIterator it = m_batch.begin();
BatchIterator it_end = m_batch.end();
for ( ; it != it_end ; ++it)
(*it)->operator()();
}
size_t size() const
{
return m_batch.size();
}
void clear()
{
m_batch.clear();
}
protected:
mutable Batch m_batch;
};
/*
* ===================
* class WorkItemTask
* ===================
*/
class WorkItemTask
{
public:
WorkItemTask(WorkItem *pwi)
: m_pwi(pwi)
{
}
private:
inline void operator()() const;
WorkItem *m_pwi;
};
/*
* =======================================
* class Simple_worksharing_ds
* =======================================
*/
class Simple_worksharing_ds
{
template <typename Func>
void enqueue_work(Func f, tbb::task_group &task_group) const
{
task_group.run(f);
}
};
/*
* ==================
* class TokenTask
* ==================
*/
class TokenTask
{
public:
TokenTask(Load_based_worksharing_ds *p_wsds)
: m_worksharing_ds(p_wsds) {}
inline void operator()() const;
private:
Load_based_worksharing_ds *m_worksharing_ds;
};
/*
* =======================================
* class Load_based_worksharing_ds
* =======================================
*/
class Load_based_worksharing_ds
{
public:
// Constructors
Load_based_worksharing_ds(const Bbox_3 &bbox)
: NUM_WORK_ITEMS_PER_BATCH(
Concurrent_mesher_config::get().num_work_items_per_batch),
m_num_cells_per_axis(
Concurrent_mesher_config::get().work_stats_grid_num_cells_per_axis),
m_num_cells(m_num_cells_per_axis*m_num_cells_per_axis*m_num_cells_per_axis),
m_stats(bbox, m_num_cells_per_axis)
{
m_tls_work_buffers = new TLS_WorkBuffer[m_num_cells];
m_work_batches = new tbb::concurrent_queue<WorkBatch>[m_num_cells];
m_num_batches = new std::atomic<int>[m_num_cells];
for (int i = 0 ; i < m_num_cells ; ++i)
m_num_batches[i] = 0;
set_bbox(bbox);
}
/// Destructor
virtual ~Load_based_worksharing_ds()
{
delete [] m_tls_work_buffers;
delete [] m_work_batches;
delete [] m_num_batches;
}
void set_bbox(const Bbox_3 &bbox)
{
m_stats.set_bbox(bbox);
}
template <typename P3, typename Func, typename Quality>
void enqueue_work(Func f, const Quality &quality, tbb::task_group &task_group, const P3 &point)
{
WorkItem *p_item = new MeshRefinementWorkItem<Func, Quality>(f, quality);
int index = m_stats.compute_index(point);
WorkBatch &wb = m_tls_work_buffers[index].local();
wb.add_work_item(p_item);
if (wb.size() >= NUM_WORK_ITEMS_PER_BATCH)
{
add_batch_and_enqueue_task(wb, index, task_group);
wb.clear();
}
}
// Returns true if some items were flushed
bool flush_work_buffers(tbb::task_group &task_group)
{
int num_flushed_items = 0;
for (int i = 0 ; i < m_num_cells ; ++i)
{
for (TLS_WorkBuffer::iterator it_buffer = m_tls_work_buffers[i].begin() ;
it_buffer != m_tls_work_buffers[i].end() ;
++it_buffer )
{
if (it_buffer->size() > 0)
{
add_batch(*it_buffer, i);
it_buffer->clear();
++num_flushed_items;
}
}
}
for (int i = 0 ; i < num_flushed_items ; ++i)
enqueue_task(task_group);
return (num_flushed_items > 0);
}
void run_next_work_item()
{
WorkBuffer wb;
int index = m_stats.get_laziest_cell_index();
bool popped = m_work_batches[index].try_pop(wb);
if (!popped)
{
// Look for an non-empty queue
for (index = 0 ; !popped ; ++index)
{
CGAL_assertion(index < m_num_cells);
popped = m_work_batches[index].try_pop(wb);
}
--index;
}
CGAL_assertion(index < m_num_cells);
--m_num_batches[index];
m_stats.add_batch(index, -1);
add_occupation(index, 1);
#ifdef CGAL_CONCURRENT_MESH_3_VERY_VERBOSE
std::cerr << "Running a batch of " << wb.size() <<
" elements on cell #" << index << std::endl;
#endif
wb();
add_occupation(index, -1);
}
protected:
// TLS
typedef WorkBatch WorkBuffer;
typedef tbb::enumerable_thread_specific<WorkBuffer> TLS_WorkBuffer;
void add_batch(const WorkBuffer &wb, int index)
{
m_work_batches[index].push(wb);
++m_num_batches[index];
m_stats.add_batch(index, 1);
}
void enqueue_task(tbb::task_group &task_group)
{
// Warning: when using "enqueue", the system will use up to two threads
// even if you told task_scheduler_init to use only one
// (see http://software.intel.com/en-us/forums/showthread.php?t=101669)
task_group.run(TokenTask(this));
}
void add_batch_and_enqueue_task(const WorkBuffer &wb, int index,
tbb::task_group &task_group)
{
add_batch(wb, index);
enqueue_task(task_group);
}
void add_occupation(int cell_index, int to_add, int occupation_radius = 1)
{
int index_z = cell_index/(m_num_cells_per_axis*
m_num_cells_per_axis);
cell_index -= index_z*
m_num_cells_per_axis*
m_num_cells_per_axis;
int index_y = cell_index/m_num_cells_per_axis;
cell_index -= index_y*m_num_cells_per_axis;
int index_x = cell_index;
// For each cell inside the square
for (int i = (std::max)(0, index_x-occupation_radius) ;
i <= (std::min)(m_num_cells_per_axis - 1, index_x+occupation_radius) ;
++i)
{
for (int j = (std::max)(0, index_y-occupation_radius) ;
j <= (std::min)(m_num_cells_per_axis - 1, index_y+occupation_radius) ;
++j)
{
for (int k = (std::max)(0, index_z-occupation_radius) ;
k <= (std::min)(m_num_cells_per_axis - 1, index_z+occupation_radius) ;
++k)
{
int index =
k*m_num_cells_per_axis*m_num_cells_per_axis
+ j*m_num_cells_per_axis
+ i;
int weight =
(occupation_radius + 1 - std::abs(i - index_x))
*(occupation_radius + 1 - std::abs(j - index_y))
*(occupation_radius + 1 - std::abs(k - index_z));
m_stats.add_occupation(index, to_add*weight, m_num_batches[index]);
}
}
}
}
const size_t NUM_WORK_ITEMS_PER_BATCH;
int m_num_cells_per_axis;
int m_num_cells;
Work_statistics m_stats;
TLS_WorkBuffer *m_tls_work_buffers;
tbb::concurrent_queue<WorkBatch> *m_work_batches;
std::atomic<int> *m_num_batches;
};
/*
* ===================
* class WorkBatchTask
* ===================
*/
class WorkBatchTask
{
public:
WorkBatchTask(const WorkBatch &wb)
: m_wb(wb)
{
}
inline void operator()() const;
private:
WorkBatch m_wb;
};
/*
* =======================================
* class Auto_worksharing_ds
* =======================================
*/
class Auto_worksharing_ds
{
public:
// Constructors
Auto_worksharing_ds(const Bbox_3 &bbox)
: NUM_WORK_ITEMS_PER_BATCH(
Concurrent_mesher_config::get().num_work_items_per_batch)
{
set_bbox(bbox);
}
/// Destructor
virtual ~Auto_worksharing_ds()
{
}
void set_bbox(const Bbox_3 &/*bbox*/)
{
// We don't need it.
}
template <typename Func>
void enqueue_work(Func f, tbb::task_group &task_group)
{
//WorkItem *p_item = new SimpleFunctorWorkItem<Func>(f);
WorkItem *p_item =
tbb::scalable_allocator<SimpleFunctorWorkItem<Func> >().allocate(1);
new (p_item) SimpleFunctorWorkItem<Func>(f);
WorkBatch &workbuffer = m_tls_work_buffers.local();
workbuffer.add_work_item(p_item);
if (workbuffer.size() >= NUM_WORK_ITEMS_PER_BATCH)
{
add_batch_and_enqueue_task(workbuffer, task_group);
workbuffer.clear();
}
}
template <typename Func, typename Quality>
void enqueue_work(Func f, const Quality &quality, tbb::task_group &task_group)
{
WorkItem *p_item =
tbb::scalable_allocator<MeshRefinementWorkItem<Func, Quality> >()
.allocate(1);
new (p_item) MeshRefinementWorkItem<Func, Quality>(f, quality);
WorkBatch &workbuffer = m_tls_work_buffers.local();
workbuffer.add_work_item(p_item);
if (workbuffer.size() >= NUM_WORK_ITEMS_PER_BATCH)
{
add_batch_and_enqueue_task(workbuffer, task_group);
workbuffer.clear();
}
}
// Returns true if some items were flushed
bool flush_work_buffers(tbb::task_group &task_group)
{
int num_flushed_items = 0;
std::vector<WorkBatchTask> tasks;
tasks.reserve(m_tls_work_buffers.size());
for (TLS_WorkBuffer::iterator it_buffer = m_tls_work_buffers.begin() ;
it_buffer != m_tls_work_buffers.end() ;
++it_buffer )
{
if (it_buffer->size() > 0)
{
tasks.push_back(create_task(*it_buffer));
it_buffer->clear();
++num_flushed_items;
}
}
for (auto it = tasks.begin() ;
it != tasks.end() ; ++it)
{
enqueue_task(*it, task_group);
}
return (num_flushed_items > 0);
}
[[deprecated]] int approximate_number_of_enqueued_element() const {
return 0;
}
protected:
// TLS
typedef WorkBatch WorkBuffer;
typedef tbb::enumerable_thread_specific<WorkBuffer> TLS_WorkBuffer;
WorkBatchTask create_task(const WorkBuffer &wb) const
{
return { wb };
}
void enqueue_task(const WorkBatchTask& task,
tbb::task_group &task_group) const
{
task_group.run(task);
}
void add_batch_and_enqueue_task(const WorkBuffer &wb,
tbb::task_group &task_group) const
{
enqueue_task(create_task(wb), task_group);
}
const size_t NUM_WORK_ITEMS_PER_BATCH;
TLS_WorkBuffer m_tls_work_buffers;
};
inline void TokenTask::operator()() const
{
m_worksharing_ds->run_next_work_item();
}
inline void WorkItemTask::operator()() const
{
m_pwi->operator()();
}
inline void WorkBatchTask::operator()() const
{
m_wb.operator()();
}
} } //namespace CGAL::Mesh_3
#else // !CGAL_LINKED_WITH_TBB
namespace CGAL { namespace Mesh_3 {
typedef void WorksharingDataStructureType;
} } //namespace CGAL::Mesh_3
#endif // CGAL_LINKED_WITH_TBB
#include <CGAL/enable_warnings.h>
#endif // CGAL_MESH_3_WORKSHARING_DATA_STRUCTURES_H
|