File: Orthtree.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (1489 lines) | stat: -rw-r--r-- 49,579 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
// Copyright (c) 2007-2020  INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Orthtree/include/CGAL/Orthtree.h $
// $Id: include/CGAL/Orthtree.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Jackson Campolattaro, Simon Giraudot, Cédric Portaneri, Tong Zhao

#ifndef CGAL_ORTHTREE_H
#define CGAL_ORTHTREE_H

#include <CGAL/license/Orthtree.h>

#include <CGAL/Orthtree/Cartesian_ranges.h>
#include <CGAL/Orthtree/Split_predicates.h>
#include <CGAL/Orthtree/Traversals.h>
#include <CGAL/Orthtree/Traversal_iterator.h>
#include <CGAL/Orthtree/IO.h>

#include <CGAL/NT_converter.h>
#include <CGAL/Cartesian_converter.h>
#include <CGAL/Property_container.h>
#include <CGAL/property_map.h>
#include <CGAL/intersections.h>
#include <CGAL/squared_distance_3.h>

#include <boost/function.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/range/iterator_range.hpp>

#include <iostream>
#include <fstream>
#include <ostream>
#include <functional>

#include <bitset>
#include <stack>
#include <queue>
#include <vector>
#include <math.h>
#include <utility>

#include <boost/mpl/has_xxx.hpp>

namespace CGAL {

namespace Orthtree_impl {

BOOST_MPL_HAS_XXX_TRAIT_DEF(Node_data)
BOOST_MPL_HAS_XXX_TRAIT_DEF(Squared_distance_of_element)

template <class GT, bool has_data>
struct Node_data_wrapper;

template <class GT>
struct Node_data_wrapper<GT, true>
{
  using Node_index = typename GT::Node_index;
  using Node_data = typename GT::Node_data;
  typename CGAL::Properties::Experimental::Property_container<Node_index>::template Array<Node_data>& m_node_contents;

  template <class Property_container>
  Node_data_wrapper(Property_container& node_properties)
    : m_node_contents(node_properties.template get_or_add_property<Node_data>("contents").first)
  {}

  const Node_data& operator[](Node_index n) const
  {
    return m_node_contents[n];
  }

  Node_data& operator[](Node_index n)
  {
    return m_node_contents[n];
  }
};

template <class GT>
struct Node_data_wrapper<GT, false>
{
  using Node_index = typename GT::Node_index;
  using Node_data = void*;

  template <class Property_container>
  Node_data_wrapper(Property_container&) {}

  void* operator[](Node_index) const
  {
    return nullptr;
  }
};

} // end of Orthtree_impl namespace

/*!
  \ingroup PkgOrthtreeRef

  \brief A data structure using an axis-aligned hyperrectangle
  decomposition of dD space for efficient access and
  computation.

  \details It builds a hierarchy of nodes which subdivides the space.
  Each node represents an axis-aligned hyperrectangle region of space.
  The contents of nodes depend on the traits class, non-leaf nodes also
  contain \f$2^{dim}\f$ other nodes which further subdivide the
  region.

  \sa `CGAL::Quadtree`
  \sa `CGAL::Octree`

  \tparam GeomTraits must be a model of `OrthtreeTraits` or `OrthtreeTraitsWithData`.
 */
template <typename GeomTraits>
class Orthtree {
public:
  /// \name Template Types
  /// @{
  using Traits = GeomTraits; ///< Geometry traits
  /// @}

  /// \name Traits Types
  /// @{
#ifndef DOXYGEN_RUNNING
  static inline constexpr bool has_data = Orthtree_impl::has_Node_data<GeomTraits>::value;
  static inline constexpr bool supports_neighbor_search = Orthtree_impl::has_Squared_distance_of_element<GeomTraits>::value;
#else
  static inline constexpr bool has_data = bool_value; ///< `true` if `GeomTraits` is a model of `OrthtreeTraitsWithData` and `false` otherwise.
  static inline constexpr bool supports_neighbor_search = bool_value; ///< `true` if `GeomTraits` is a model of `CollectionPartitioningOrthtreeTraits` and `false` otherwise.
#endif
  static constexpr int dimension = Traits::dimension; ///< Dimension of the tree
  using Kernel = typename Traits::Kernel; ///< Kernel type.
  using Geom_traits = Kernel;
  using FT = typename Traits::FT; ///< Number type.
  using Point = typename Traits::Point_d; ///< Point type.
  using Bbox = typename Traits::Bbox_d; ///< Bounding box type.
  using Sphere = typename Traits::Sphere_d; ///< Sphere type.
  using Adjacency = typename Traits::Adjacency; ///< Adjacency type.

  using Node_index = typename Traits::Node_index; ///< Index of a given node in the tree; the root always has index 0.
#ifndef DOXYGEN_RUNNING
  using Node_data = typename Orthtree_impl::Node_data_wrapper<Traits, has_data>::Node_data;
#else
  using Node_data = std::conditional_t<has_data,typename GeomTraits::Node_data,void*>;
#endif

  /// @}

  /// \name Public Types
  /// @{

  /*!
   * \brief Self alias for convenience.
   */
  using Self = Orthtree<Traits>;

  /*!
   * \brief Degree of the tree (number of children of non-leaf nodes).
   */
  static constexpr int degree = (2 << (dimension - 1));

  /*!
    \brief Set of bits representing this node's relationship to its parent.

    Equivalent to an array of Booleans, where index[0] is whether `x`
    is greater, index[1] is whether `y` is greater, index[2] is whether
    `z` is greater, and so on for higher dimensions if needed.
    Used to represent a node's relationship to the center of its parent.
   */
  using Local_coordinates = std::bitset<dimension>;

  /*!
    \brief Coordinates representing this node's relationship
    with the rest of the tree.

    Each value `(x, y, z, ...)` of global coordinates is calculated by doubling
    the parent's global coordinates and adding the local coordinates.
   */
  using Global_coordinates = std::array<std::uint32_t, dimension>;

  /*!
   * \brief A predicate that determines whether a node must be split when refining a tree.
   */
  using Split_predicate = std::function<bool(Node_index, const Self&)>;

  /*!
   * \brief A model of `ForwardRange` whose value type is `Node_index`.
   */
#ifdef DOXYGEN_RUNNING
  using Node_index_range = unspecified_type;
#else
  using Node_index_range = boost::iterator_range<Index_traversal_iterator<Self>>;
#endif

  /*!
   * \brief A model of `LvaluePropertyMap` with `Node_index` as key type and `T` as value type.
   */
#ifdef DOXYGEN_RUNNING
  template <class T>
  using Property_map = unspecified_type;
#else
  template <class T>
  using Property_map = Properties::Experimental::Property_array_handle<Node_index, T>;
#endif

  /// @}

private: // data members :

  using Cartesian_ranges = Orthtrees::internal::Cartesian_ranges<Traits>;
  using Node_property_container = Properties::Experimental::Property_container<Node_index>;

  template <typename T>
  using Property_array = typename Properties::Experimental::Property_container<Node_index>::template Array<T>;

  Traits m_traits; /* the tree traits */
  Kernel m_kernel;

  Node_property_container m_node_properties;
  Orthtree_impl::Node_data_wrapper<Traits, has_data> m_node_contents;
  Property_array<std::uint8_t>& m_node_depths;
  Property_array<Global_coordinates>& m_node_coordinates;
  Property_array<std::optional<Node_index>>& m_node_parents;
  Property_array<std::optional<Node_index>>& m_node_children;

  using Bbox_dimensions = std::array<FT, dimension>;
  Bbox m_bbox;
  std::vector<Bbox_dimensions> m_side_per_depth;      /* precomputed (potentially approximated) side length per node's depth */

  Cartesian_ranges cartesian_range; /* a helper to easily iterate over coordinates of points */

public:

  /// \name Constructor
  /// @{

  /*!
    \brief constructs an orthtree for a traits instance.

    The constructed orthtree has a root node with no children,
    containing the contents determined by `Construct_root_node_contents` from the traits class.
    That root node has a bounding box determined by `Construct_root_node_bbox` from the traits class,
    which typically encloses its contents.

    This single-node orthtree is valid and compatible
    with all orthtree functionality, but any performance benefits are
    unlikely to be realized until `refine()` is called.

    \param traits the traits object.
  */
  explicit Orthtree(Traits traits) :
    m_traits(traits),
    m_node_contents(m_node_properties),
    m_node_depths(m_node_properties.template get_or_add_property<std::uint8_t>("depths", 0).first),
    m_node_coordinates(m_node_properties.template get_or_add_property<Global_coordinates>("coordinates").first),
    m_node_parents(m_node_properties.template get_or_add_property<std::optional<Node_index>>("parents").first),
    m_node_children(m_node_properties.template get_or_add_property<std::optional<Node_index>>("children").first) {

    m_node_properties.emplace();

    // init bbox with first values found
    m_bbox = m_traits.construct_root_node_bbox_object()();

    // Determine dimensions of the root bbox

    Bbox_dimensions size;
    for (int i = 0; i < dimension; ++i)
    {
      size[i] = (m_bbox.max)()[i] - (m_bbox.min)()[i];
    }
    // save orthtree attributes
    m_side_per_depth.push_back(size);

    if constexpr (has_data)
      data(root()) = m_traits.construct_root_node_contents_object()();
  }

  /*!
    constructs an orthtree from a set of arguments provided to the traits constructor
   */
  template <class ... Args, class = std::enable_if_t<sizeof...(Args)>= 2>>
  explicit Orthtree(Args&& ... args)
    : Orthtree(Traits(std::forward<Args>(args)...))
  {}

  /// copy constructor
  explicit Orthtree(const Orthtree& other) :
    m_traits(other.m_traits),
    m_node_properties(other.m_node_properties),
    m_node_contents(m_node_properties),
    m_node_depths(m_node_properties.template get_property<std::uint8_t>("depths")),
    m_node_coordinates(m_node_properties.template get_property<Global_coordinates>("coordinates")),
    m_node_parents(m_node_properties.template get_property<std::optional<Node_index>>("parents")),
    m_node_children(m_node_properties.template get_property<std::optional<Node_index>>("children")),
    m_bbox(other.m_bbox), m_side_per_depth(other.m_side_per_depth) {}

  /// move constructor
  explicit Orthtree(Orthtree&& other) :
    m_traits(other.m_traits),
    m_node_properties(std::move(other.m_node_properties)),
    m_node_contents(m_node_properties),
    m_node_depths(m_node_properties.template get_property<std::uint8_t>("depths")),
    m_node_coordinates(m_node_properties.template get_property<Global_coordinates>("coordinates")),
    m_node_parents(m_node_properties.template get_property<std::optional<Node_index>>("parents")),
    m_node_children(m_node_properties.template get_property<std::optional<Node_index>>("children")),
    m_bbox(other.m_bbox), m_side_per_depth(other.m_side_per_depth)
  {
    other.m_node_properties.emplace();
  }

  /// @}


  // Non-necessary but just to be clear on the rule of 5:

  // assignment operators deleted
  Orthtree& operator=(const Orthtree& other) = delete;

  Orthtree& operator=(Orthtree&& other) = delete;

  /// \name Tree Building
  /// @{

  /*!
    \brief recursively subdivides the orthtree until it meets the given criteria.

    The split predicate should return `true` if a leaf node should be split and `false` otherwise.

    This function may be called several times with different
    predicates: in that case, nodes already split are left unaltered,
    while nodes that were not split and for which `split_predicate`
    returns `true` are split.

    \param split_predicate determines whether or not a leaf node needs to be subdivided.
   */
  void refine(const Split_predicate& split_predicate) {

    // Initialize a queue of nodes that need to be refined
    std::queue<Node_index> todo;
    todo.push(0);

    // Process items in the queue until it's consumed fully
    while (!todo.empty()) {

      // Get the next element
      auto current = todo.front();
      todo.pop();

      // Check if this node needs to be processed
      if (split_predicate(current, *this)) {

        // Split the node, redistributing its contents to its children
        split(current);

      }

      // Check if the node has children which need to be processed
      if (!is_leaf(current)) {

        // Process each of its children
        for (int i = 0; i < degree; ++i)
          todo.push(child(current, i));
      }
    }
  }

  /*!
    \brief convenience overload that refines an orthtree using a
    maximum depth and maximum number of contained elements in a node as split
    predicate.

    This is equivalent to calling
    `refine(Orthtrees::Maximum_depth_and_maximum_contained_elements(max_depth,
    bucket_size))`.

    The refinement is stopped as soon as one of the conditions is
    violated: if a node contains more elements than `bucket_size` but is
    already at `max_depth`, it is not split. Similarly, a node that is
    at a depth smaller than `max_depth` but already contains fewer elements
    than `bucket_size`, it is not split.

    \warning This convenience method is only appropriate for trees with traits classes where
    `Node_data` is a model of `Range`. `RandomAccessRange` is suggested for performance.

    \param max_depth deepest a tree is allowed to be (nodes at this depth will not be split).
    \param bucket_size maximum number of items a node is allowed to contain.
   */
  template<typename Orthtree = Self>
  auto refine(size_t max_depth = 10, size_t bucket_size = 20) -> std::enable_if_t<Orthtree::has_data, void> {
    refine(Orthtrees::Maximum_depth_and_maximum_contained_elements(max_depth, bucket_size));
  }

  /*!
    \brief refines the orthtree such that the difference of depth
    between two immediate neighbor leaves is never more than 1.

    This is done only by adding nodes, nodes are never removed.
   */
  void grade() {

    // Collect all the leaf nodes
    std::queue<Node_index> leaf_nodes;
    for (Node_index leaf: traverse(Orthtrees::Leaves_traversal<Self>(*this))) {
      leaf_nodes.push(leaf);
    }

    // Iterate over the nodes
    while (!leaf_nodes.empty()) {

      // Get the next node
      Node_index node = leaf_nodes.front();
      leaf_nodes.pop();

      // Skip this node if it isn't a leaf anymore
      if (!is_leaf(node))
        continue;

      // Iterate over each of the neighbors
      for (int direction = 0; direction < 6; ++direction) {

        // Get the neighbor
        auto neighbor = adjacent_node(node, direction);

        // If it doesn't exist, skip it
        if (!neighbor)
          continue;

        // Skip if this neighbor is a direct sibling (it's guaranteed to be the same depth)
        // TODO: This check might be redundant, if it doesn't affect performance maybe I could remove it
        if (parent(*neighbor) == parent(node))
          continue;

        // If it's already been split, skip it
        if (!is_leaf(*neighbor))
          continue;

        // Check if the neighbor breaks our grading rule
        // TODO: could the rule be parametrized?
        if ((depth(node) - depth(*neighbor)) > 1) {

          // Split the neighbor
          split(*neighbor);

          // Add newly created children to the queue
          for (int i = 0; i < degree; ++i) {
            leaf_nodes.push(child(*neighbor, i));
          }
        }
      }
    }
  }

  /// @}

  /// \name Accessors
  /// @{

  /*!
   * \brief provides direct read-only access to the tree traits.
   */
  const Traits& traits() const { return m_traits; }

  const Kernel& geom_traits() const
  {
    return m_kernel;
  }

  /*!
    \brief provides access to the root node, and by
    extension the rest of the tree.
   */
  Node_index root() const { return 0; }

  /*!
    \brief returns the deepest level reached by a leaf node in this tree (root being level 0).
   */
  std::size_t depth() const { return m_side_per_depth.size() - 1; }

  /*!
    \brief constructs a node index range using a tree-traversal function.

    This method allows iteration over the nodes of the tree with a
    user-selected order (preorder, postorder, leaves-only, etc.).

    \tparam Traversal a model of `OrthtreeTraversal`

    \param traversal class defining the traversal strategy

    \return a `ForwardRange` over the node indices of the tree
   */
  template <typename Traversal>
  Node_index_range traverse(Traversal traversal) const {

    Node_index first = traversal.first_index();

    auto next = [=](const Self&, Node_index index) -> std::optional<Node_index> {
      return traversal.next_index(index);
    };

    return boost::make_iterator_range(Index_traversal_iterator<Self>(*this, first, next),
                                      Index_traversal_iterator<Self>());
  }


  /*!
    \brief convenience method for using a traversal without constructing it yourself

    \tparam Traversal a model of `OrthtreeTraversal`

    \param args Arguments to to pass to the traversal's constructor, excluding the first (always an orthtree reference)

    \return a `ForwardRange` over the node indices of the tree
   */
  template <typename Traversal, typename ...Args>
  Node_index_range traverse(Args&& ...args) const {
    return traverse(Traversal{*this, std::forward<Args>(args)...});
  }

  // TODO shall we document it?
  FT
  compute_cartesian_coordinate(std::uint32_t gc, std::size_t depth, int ci) const
  {
    CGAL_assertion(depth <= m_side_per_depth.size());
    // an odd coordinate will be first computed at the current depth,
    // while an even coordinate has already been computed at a previous depth.
    // So while the coordinate is even, we decrease the depth to end up of the first
    // non-even coordinate to compute it (with particular case for bbox limits).
    // Note that if the depth becomes too large, we might end up with incorrect coordinates
    // due to rounding errors.
    if (gc == (1u << depth)) return (m_bbox.max)()[ci]; // gc == 2^node_depth
    if (gc == 0) return (m_bbox.min)()[ci];
    if (gc % 2 !=0)
    {
      FT size = depth < m_side_per_depth.size()
              ? m_side_per_depth[depth][ci]
              : m_side_per_depth[depth-1][ci]/FT(2);
      return (m_bbox.min)()[ci] + int(gc) * size;
    }
    std::size_t nd = depth;
    do{
      --nd;
      gc = gc >> 1;
    }
    while((gc&1)==0); // while even, shift
    return (m_bbox.min)()[ci] + int(gc) * m_side_per_depth[nd][ci];
  }

  /*!
    \brief constructs the bounding box of a node.

    \note The object constructed is not the bounding box of the node's contents,
    but the bounding box of the node itself.

    \param n node to generate a bounding box for

    \return the bounding box of the node n
   */
  Bbox bbox(Node_index n) const {
    using Cartesian_coordinate = std::array<FT, dimension>;
    Cartesian_coordinate min_corner, max_corner;
    std::size_t node_depth = depth(n);

    for (int i = 0; i < dimension; i++)
    {
      min_corner[i]=compute_cartesian_coordinate(global_coordinates(n)[i], node_depth, i);
      max_corner[i]=compute_cartesian_coordinate(global_coordinates(n)[i]+1, node_depth, i);
    }
    return {std::apply(m_traits.construct_point_d_object(), min_corner),
            std::apply(m_traits.construct_point_d_object(), max_corner)};
  }

  /// @}

  /// \name Custom Properties
  /// @{

  /*!
    \brief gets a property for nodes, adding it if it does not already exist.

    \tparam T the type of the property to add

    \param name the name of the new property
    \param default_value the default value assigned to nodes for this property

    \return pair of the property map and a Boolean which is `true` if the property needed to be created
   */
  template <typename T>
  std::pair<Property_map<T>, bool> add_property(const std::string& name, const T default_value = T()) {
    auto p = m_node_properties.get_or_add_property(name, default_value);
    return std::pair<Property_map<T>, bool>(Property_map<T>(p.first), p.second);
  }

  /*!
    \brief gets a property of the nodes if it exists.

    \tparam T the type of the property to retrieve

    \param name the name of the property

    \return an optional containing the property map if it exists
   */
  template <typename T>
  std::optional<Property_map<T>> property(const std::string& name) const {
    auto p = m_node_properties.template get_property_if_exists<T>(name);
    if (p)
      return std::optional<Property_map<T> >(Property_map<T>(*p));
    else
      return std::nullopt;
  }

  /*!
    \brief returns a vector of all property names.
   */
  std::vector<std::string> properties() const {
    return m_node_properties.properties();
  }

  /*!
    \brief removes the node property from the tree.

    \tparam T the type of the property to remove

    \param property the property to be removed from the tree.

    \return true if property was a valid property of the tree.
   */
  template <typename T>
  bool remove_property(Property_map<T> property) {
    return m_node_properties.remove_property(property.array());
  }

  /// @}

  /// \name Queries
  /// @{

  /*!
    \brief finds the leaf node which contains a particular point in space.

    Traverses the orthtree and finds the leaf cell that has a
    domain enclosing the point passed. The point passed must be within
    the region enclosed by the orthtree (bbox of the root node). The point is contained in the
    lower cell of each direction if its coordinate is lower than the center.

    \param point query point.

    \return the index of the node which contains the point.
   */
  Node_index locate(const Point& point) const {

    // Make sure the point is enclosed by the orthtree
    CGAL_precondition (CGAL::do_intersect(point, bbox(root())));

    // Start at the root node
    Node_index node_for_point = root();

    // Descend the tree until reaching a leaf node
    while (!is_leaf(node_for_point)) {

      // Find the point to split around
      Point center = barycenter(node_for_point);

      // Find the index of the correct sub-node
      Local_coordinates local_coords;
      std::size_t dim = 0;
      for (const auto& r : cartesian_range(center, point))
        local_coords[dim++] = (get<0>(r) <= get<1>(r));

      // Find the correct sub-node of the current node
      node_for_point = child(node_for_point, local_coords.to_ulong());
    }

    // Return the result
    return node_for_point;
  }

  /*!
  \brief finds the `k` nearest neighbors of the point `query`.

  Nearest neighbors are outputted in order of increasing distance to `query`.

  \tparam OutputIterator a model of `OutputIterator` that accepts `GeomTraits::Node_data_element` objects.

  \param query query point
  \param k number of neighbors to find
  \param output output iterator

  \warning Nearest neighbor searches requires `GeomTraits` to be a model of `CollectionPartitioningOrthtreeTraits`.
 */
  template<typename OutputIterator, typename Orthtree = Self>
  auto nearest_k_neighbors(const Point& query,
    std::size_t k,
    OutputIterator output) const -> std::enable_if_t<Orthtree::supports_neighbor_search, OutputIterator> {
    Sphere query_sphere(query, (std::numeric_limits<FT>::max)());
    CGAL_precondition(k > 0);

    return nearest_k_neighbors_within_radius(query_sphere, k, output);
  }

  /*!
  \brief finds the elements in the sphere `query`.

  Elements are outputted in order of increasing distance to
  the center of the sphere.

  \tparam OutputIterator a model of `OutputIterator` that accepts `GeomTraits::Node_data_element` objects.

  \param query query sphere
  \param output output iterator

  \warning Nearest neighbor searches requires `GeomTraits` to be a model of `CollectionPartitioningOrthtreeTraits`.
 */
  template<typename OutputIterator, typename Orthtree = Self>
  auto neighbors_within_radius(const Sphere& query, OutputIterator output) const -> std::enable_if_t<Orthtree::supports_neighbor_search, OutputIterator> {
    return nearest_k_neighbors_within_radius(query, (std::numeric_limits<std::size_t>::max)(), output);
  }

  /*!
  \brief finds at most `k` elements within a specific radius that are
  nearest to the center of the sphere `query`: if `query` does not contain
  at least `k` elements, only contained elements will be returned.

  This function is useful when the user already knows how sparse the elements are,
  or if they do not care about elements that are too far away.
  Setting a small radius may have performance benefits.

  \tparam OutputIterator must be a model of `OutputIterator` that accepts `GeomTraits::Node_data_element`

  \param query the region to search within
  \param k the number of elements to find
  \param output the output iterator to add the found elements to (in order of increasing distance)

  \warning Nearest neighbor searches requires `GeomTraits` to be a model of `CollectionPartitioningOrthtreeTraits`.
 */
  template <typename OutputIterator, typename Orthtree = Self>
  auto nearest_k_neighbors_within_radius(
    const Sphere& query,
    std::size_t k,
    OutputIterator output
  ) const -> std::enable_if_t<Orthtree::supports_neighbor_search, OutputIterator> {
    CGAL_precondition(k > 0);
    Sphere query_sphere = query;

    // todo: this type is over-constrained, this must be made more generic
    struct Node_element_with_distance {
      typename Traits::Node_data_element element;
      FT distance;
    };

    // Create an empty list of elements
    std::vector<Node_element_with_distance> element_list;
    if (k != (std::numeric_limits<std::size_t>::max)())
      element_list.reserve(k);

    // Invoking the recursive function adds those elements to the vector (passed by reference)
    nearest_k_neighbors_recursive(query_sphere, root(), element_list, k);

    // Add all the points found to the output
    for (auto& item : element_list)
      *output++ = item.element;

    return output;
  }

  /*!
    \brief finds the leaf nodes that intersect with any primitive.

    \note this function requires the function
    `bool CGAL::do_intersect(QueryType, Traits::Bbox_d)` to be defined.

    This function finds all the intersecting leaf nodes and writes their indices to the output iterator.

    \tparam Query the primitive class (e.g., sphere, ray)
    \tparam OutputIterator a model of `OutputIterator` that accepts `Node_index` types

    \param query the intersecting primitive.
    \param output output iterator.

    \return the output iterator after writing
   */
  template <typename Query, typename OutputIterator>
  OutputIterator intersected_nodes(const Query& query, OutputIterator output) const {
    return intersected_nodes_recursive(query, root(), output);
  }

  /// @}

  /// \name Operators
  /// @{

  /*!
    \brief compares the topology of the orthtree with that of `rhs`.

    Trees may be considered equivalent even if they have different contents.
    Equivalent trees must have the same root bounding box and the same node structure.

    \param rhs the other orthtree

    \return `true` if the trees have the same topology, and `false` otherwise
   */
  bool operator==(const Self& rhs) const {

    // Identical trees should have the same bounding box
    if (rhs.m_bbox != m_bbox || rhs.m_side_per_depth[0] != m_side_per_depth[0])
      return false;

    // Identical trees should have the same depth
    if (rhs.depth() != depth())
      return false;

    // If all else is equal, recursively compare the trees themselves
    return is_topology_equal(*this, rhs);
  }

  /*!
    \brief compares the topology of the orthtree with that of `rhs`.

    \param rhs the other orthtree

    \return `false` if the trees have the same topology, and `true` otherwise
   */
  bool operator!=(const Self& rhs) const {
    return !operator==(rhs);
  }

  /// @}

  /// \name Node Access
  /// @{

  /*!
    \brief determines whether the node specified by index `n` is a leaf node.
   */
  bool is_leaf(Node_index n) const {
    return !m_node_children[n].has_value();
  }

  /*!
    \brief determines whether the node specified by index `n` is the root node.
   */
  bool is_root(Node_index n) const {
    return n == 0;
  }

  /*!
    \brief determines the depth of the node specified.

    The root node has depth 0, its children have depth 1, and so on.

    \param n index of the node to check.

    \return the depth of the node n within its tree.
   */
  std::size_t depth(Node_index n) const {
    return m_node_depths[n];
  }

  /*!
    \brief retrieves a reference to the `Node_data` associated with the node specified by `n` if
    `GeomTraits` is a model of `OrthtreeTraitswithData`, and `nullptr` otherwise.
   */
  std::conditional_t<has_data,Node_data&,void*>& data(Node_index n){
    return m_node_contents[n];
  }

  /*!
    \brief retrieves a const reference to the `Node_data` associated with the node specified by `n` if
    `GeomTraits` is a model of `OrthtreeTraitswithData`, and `nullptr` otherwise.
   */
  std::conditional_t<has_data,const Node_data&,void*> data(Node_index n) const{
    return m_node_contents[n];
  }

  /*!
    \brief retrieves the global coordinates of the node.
   */
  Global_coordinates global_coordinates(Node_index n) const {
    return m_node_coordinates[n];
  }

  /*!
    \brief retrieves the local coordinates of the node.
   */
  Local_coordinates local_coordinates(Node_index n) const {
    Local_coordinates result;
    for (std::size_t i = 0; i < dimension; ++i)
      result[i] = global_coordinates(n)[i] & 1;
    return result;
  }

  /*!
    \brief returns this n's parent.

    \pre `!is_root()`

    \param n index of the node to retrieve the parent of

    \return the index of the parent of node n
   */
  Node_index parent(Node_index n) const {
    CGAL_precondition (!is_root(n));
    return *m_node_parents[n];
  }

  /*!
    \brief returns a node's `i`th child.

    \pre `!is_leaf()`

    \param n index of the node to retrieve the child of
    \param i in [0, 2^D) specifying the child to retrieve

    \return the index of the `i`th child of node n
   */
  Node_index child(Node_index n, std::size_t i) const {
    CGAL_precondition (!is_leaf(n));
    return *m_node_children[n] + i;
  }

  /*!
    \brief retrieves an arbitrary descendant of the node specified by `node`.

    Convenience function to avoid the need to call `orthtree.child(orthtree.child(node, 0), 1)`.

    Each index in `indices` specifies which child to enter as descending the tree from `node` down.
    Indices are evaluated in the order they appear as parameters, so
    `descendant(root, 0, 1)` returns the second child of the first child of the root.

    \param node the node to descend
    \param indices the integer indices specifying the descent to perform

    \return the index of the specified descendant node
   */
  template <typename... Indices>
  Node_index descendant(Node_index node, Indices... indices) const {
    return recursive_descendant(node, indices...);
  }

  /*!
    \brief convenience function for retrieving arbitrary nodes.

    Equivalent to `tree.descendant(tree.root(), indices...)`.

    \param indices the integer indices specifying the descent to perform, starting from the root

    \return the index of the specified node
   */
  template <typename... Indices>
  Node_index node(Indices... indices) const {
    return descendant(root(), indices...);
  }

  /*!
    \brief finds the next sibling in the parent of the node specified by the index `n`.

    Traverses the tree in increasing order of local index (e.g., 000, 001, 010, etc.)

    \param n the index of the node to find the sibling of

    \return the index of the next sibling of n
    if n is not the last node in its parent, otherwise `std::nullopt`.
   */
  const std::optional<Node_index> next_sibling(Node_index n) const {

    // Root node has no siblings
    if (is_root(n)) return {};

    // Find out which child this is
    std::size_t local_coords = local_coordinates(n).to_ulong();

    // The last child has no more siblings
    if (int(local_coords) == degree - 1)
      return {};

    // The next sibling is the child of the parent with the following local coordinates
    return child(parent(n), local_coords + 1);
  }

  /*!
    \brief finds the next sibling of the parent of the node specified by `n` if it exists.

    \param n the index node to find the sibling up of.

    \return The index of the next sibling of the parent of n
    if n is not the root and its parent has a sibling, otherwise nothing.
   */
  const std::optional<Node_index> next_sibling_up(Node_index n) const {

    // the root node has no next sibling up
    if (n == 0) return {};

    auto up = std::optional<Node_index>{parent(n)};
    while (up) {

      if (next_sibling(*up)) return {next_sibling(*up)};

      up = is_root(*up) ? std::optional<Node_index>{} : std::optional<Node_index>{parent(*up)};
    }

    return {};
  }

  /*!
    \brief finds the leaf node reached when descending the tree and always choosing child 0.

    This is the starting point of a depth-first traversal.

    \param n the index of the node to find the deepest first child of.

    \return the index of the deepest first child of node n.
   */
  Node_index deepest_first_child(Node_index n) const {

    auto first = n;
    while (!is_leaf(first))
      first = child(first, 0);

    return first;
  }

  /*!
    \brief finds node reached when descending the tree to a depth `d` and always choosing child 0.

    Similar to `deepest_first_child()`, but does go to a fixed depth.

    \param n the index of the node to find the `d`th first child of.
    \param d the depth to descend to.

    \return the index of the `d`th first child, nothing if the tree is not deep enough.
   */
  std::optional<Node_index> first_child_at_depth(Node_index n, std::size_t d) const {

    std::queue<Node_index> todo;
    todo.push(n);

    while (!todo.empty()) {
      Node_index node = todo.front();
      todo.pop();

      if (depth(node) == d)
        return node;

      if (!is_leaf(node))
        for (int i = 0; i < degree; ++i)
          todo.push(child(node, i));
    }

    return {};
  }

  /*!
    \brief splits a node into subnodes.

    Only leaf nodes should be split.
    When a node is split it is no longer a leaf node.
    The full set of `degree` children are constructed automatically, and their values are set.
    Contents of this node are _not_ propagated automatically, this is responsibility of the
    `distribute_node_contents_object` in the traits class.

    \param n index of the node to split
 */
  void split(Node_index n) {

    // Make sure the node hasn't already been split
    CGAL_precondition (is_leaf(n));

    // Split the node to create children
    using Local_coordinates = Local_coordinates;
    m_node_children[n] = m_node_properties.emplace_group(degree);
    for (std::size_t i = 0; i < degree; i++) {

      Node_index c = *m_node_children[n] + i;

      // Make sure the node isn't one of its own children
      CGAL_assertion(n != *m_node_children[n] + i);

      Local_coordinates local_coordinates{i};
      for (int i = 0; i < dimension; i++)
        m_node_coordinates[c][i] = (2 * m_node_coordinates[n][i]) + local_coordinates[i];
      m_node_depths[c] = m_node_depths[n] + 1;
      m_node_parents[c] = n;
    }

    // Check if we've reached a new max depth
    if (depth(n) + 1 == m_side_per_depth.size()) {
      // Update the side length map with the dimensions of the children
      Bbox_dimensions size = m_side_per_depth.back();
      Bbox_dimensions child_size;
      for (int i = 0; i < dimension; ++i)
        child_size[i] = size[i] / FT(2);
      m_side_per_depth.push_back(child_size);
    }

    // Find the point around which the node is split
    Point center = barycenter(n);

    // Add the node's contents to its children
    if constexpr (has_data)
      m_traits.distribute_node_contents_object()(n, *this, center);
  }

  /*!
   * \brief returns the center point of a node.
   *
   * @param n index of the node to find the center point for
   *
   * @return the center point of node n
   */
  Point barycenter(Node_index n) const {
    std::size_t node_depth = depth(n);
    // the barycenter is computed as the lower corner of the lexicographically top child node
    std::array<FT, dimension> bary;
    for (int i = 0; i < dimension; i++)
      bary[i] = compute_cartesian_coordinate(2 * global_coordinates(n)[i]+1, node_depth+1, i);

    return std::apply(m_traits.construct_point_d_object(), bary);
  }

  /*!
    \brief determines whether a pair of subtrees have the same topology.

    \param lhsNode index of a node in lhsTree
    \param lhsTree an Orthtree
    \param rhsNode index of a node in rhsTree
    \param rhsTree another Orthtree

    @return true if lhsNode and rhsNode have the same topology, false otherwise
   */
  static bool is_topology_equal(Node_index lhsNode, const Self& lhsTree, Node_index rhsNode, const Self& rhsTree) {

    // If one node is a leaf, and the other isn't, they're not the same
    if (lhsTree.is_leaf(lhsNode) != rhsTree.is_leaf(rhsNode))
      return false;

    // If both nodes are non-leaf
    if (!lhsTree.is_leaf(lhsNode)) {

      // Check all the children
      for (int i = 0; i < degree; ++i) {
        // If any child cell is different, they're not the same
        if (!is_topology_equal(lhsTree.child(lhsNode, i), lhsTree,
                               rhsTree.child(rhsNode, i), rhsTree))
          return false;
      }
    }

    return (lhsTree.global_coordinates(lhsNode) == rhsTree.global_coordinates(rhsNode));
  }

  /*!
    \brief helper function for calling `is_topology_equal()` on the root nodes of two trees.

    \param lhs an Orthtree
    \param rhs another Orthtree

    \return `true` if `lhs` and `rhs` have the same topology, and `false` otherwise
   */
  static bool is_topology_equal(const Self& lhs, const Self& rhs) {
    return is_topology_equal(lhs.root(), lhs, rhs.root(), rhs);
  }

  /*!
    \brief finds the directly adjacent node in a specific direction

    \pre `direction.to_ulong < 2 * dimension`

    Adjacent nodes are found according to several properties:
    - adjacent nodes may be larger than the seek node, but never smaller
    - a node has at most `2 * dimension` different adjacent nodes (in 3D: left, right, up, down, front, back)
    - adjacent nodes are not required to be leaf nodes

    Here's a diagram demonstrating the concept for a quadtree:

    ```
    +---------------+---------------+
    |               |               |
    |               |               |
    |               |               |
    |       A       |               |
    |               |               |
    |               |               |
    |               |               |
    +-------+-------+---+---+-------+
    |       |       |   |   |       |
    |   A   |  (S)  +---A---+       |
    |       |       |   |   |       |
    +---+---+-------+---+---+-------+
    |   |   |       |       |       |
    +---+---+   A   |       |       |
    |   |   |       |       |       |
    +---+---+-------+-------+-------+
    ```

    - (S) : Seek node
    - A  : Adjacent node

    Note how the top adjacent node is larger than the seek node.  The
    right adjacent node is the same size, even though it contains
    further subdivisions.

    This implementation returns the adjacent node if it's found.  If
    there is no adjacent node in that direction, it returns a null
    node.

    \param n index of the node to find a neighbor of
    \param direction which way to find the adjacent node relative to
    this one. Each successive bit selects the direction for the
    corresponding dimension: for an octree in 3D, 010 means: negative
    direction in X, position direction in Y, negative direction in Z.

    \return the index of the adjacent node if it exists, nothing otherwise.
  */
  std::optional<Node_index> adjacent_node(Node_index n, const Local_coordinates& direction) const {

    // Direction:   LEFT  RIGHT  DOWN    UP  BACK FRONT
    // direction:    000    001   010   011   100   101

    // Nodes only have up to 2*dim different adjacent nodes (since boxes have 6 sides)
    CGAL_precondition(direction.to_ulong() < dimension * 2);

    // The root node has no adjacent nodes!
    if (is_root(n)) return {};

    // The least significant bit indicates the sign (which side of the node)
    bool sign = direction[0];

    // The first two bits indicate the dimension/axis (x, y, z)
    uint8_t dim = uint8_t((direction >> 1).to_ulong());

    // Create an offset so that the bit-significance lines up with the dimension (e.g., 1, 2, 4 --> 001, 010, 100)
    int8_t offset = (uint8_t) 1 << dim;

    // Finally, apply the sign to the offset
    offset = (sign ? offset : -offset);

    // Check if this child has the opposite sign along the direction's axis
    if (local_coordinates(n)[dim] != sign) {
      // This means the adjacent node is a direct sibling, the offset can be applied easily!
      return {child(parent(n), local_coordinates(n).to_ulong() + offset)};
    }

    // Find the parent's neighbor in that direction, if it exists
    auto adjacent_node_of_parent = adjacent_node(parent(n), direction);

    // If the parent has no neighbor, then this node doesn't have one
    if (!adjacent_node_of_parent) return {};

    // If the parent's adjacent node has no children, then it's this node's adjacent node
    if (is_leaf(*adjacent_node_of_parent))
      return adjacent_node_of_parent;

    // Return the nearest node of the parent by subtracting the offset instead of adding
    return {child(*adjacent_node_of_parent, local_coordinates(n).to_ulong() - offset)};
  }

  /*!
    \brief equivalent to `adjacent_node()`, with an adjacency direction rather than a bitset.

    \param n index of the node to find a neighbor of
    \param adjacency which way to find the adjacent node relative to this one
   */
  std::optional<Node_index> adjacent_node(Node_index n, Adjacency adjacency) const {
    return adjacent_node(n, std::bitset<dimension>(static_cast<int>(adjacency)));
  }

  /// @}

private: // functions :

  Node_index recursive_descendant(Node_index node, std::size_t i) const { return child(node, i); }

  template <typename... Indices>
  Node_index recursive_descendant(Node_index node, std::size_t i, Indices... remaining_indices) const {
    return recursive_descendant(child(node, i), remaining_indices...);
  }

  bool do_intersect(Node_index n, const Sphere& sphere) const {

    // Create a bounding box from the node
    Bbox node_box = bbox(n);

    // Check for intersection between the node and the sphere
    return CGAL::do_intersect(node_box, sphere);
  }

  template <typename Query, typename Node_output_iterator>
  Node_output_iterator intersected_nodes_recursive(const Query& query, Node_index node,
                                                   Node_output_iterator output) const {

    // Check if the current node intersects with the query
    if (CGAL::do_intersect(query, bbox(node))) {

      // if this node is a leaf, then it's considered an intersecting node
      if (is_leaf(node)) {
        *output++ = node;
        return output;
      }

      // Otherwise, each of the children need to be checked
      for (int i = 0; i < degree; ++i) {
        intersected_nodes_recursive(query, child(node, i), output);
      }
    }
    return output;
  }

  template <typename Result, typename Orthtree = Self>
  auto nearest_k_neighbors_recursive(
    Sphere& search_bounds,
    Node_index node,
    std::vector<Result>& results,
    std::size_t k,
    FT epsilon = 0) const -> std::enable_if_t<Orthtree::supports_neighbor_search> {

    // Check whether the node has children
    if (is_leaf(node)) {

      // Base case: the node has no children

      // Loop through each of the elements contained by the node
      // Note: there might be none, and that should be fine!
      for (auto& e : data(node)) {

        // Pair that element with its distance from the search point
        Result current_element_with_distance =
        { e, m_traits.squared_distance_of_element_object()(e, m_traits.construct_center_d_object()(search_bounds)) };

        // Check if the new element is within the bounds
        if (current_element_with_distance.distance < m_traits.compute_squared_radius_d_object()(search_bounds)) {

          // Check if the results list is full
          if (results.size() == k) {
            // Delete a element if we need to make room
            results.pop_back();
          }

          // Add the new element
          results.push_back(current_element_with_distance);

          // Sort the list
          std::sort(results.begin(), results.end(), [=](auto& left, auto& right) {
            return left.distance < right.distance;
            });

          // Check if the results list is full
          if (results.size() == k) {

            // Set the search radius
            search_bounds = m_traits.construct_sphere_d_object()(m_traits.construct_center_d_object()(search_bounds), results.back().distance + epsilon);
          }
        }
      }
    }
    else {

      struct Node_index_with_distance {
        Node_index index;
        FT distance;

        Node_index_with_distance(const Node_index& index, FT distance) :
          index(index), distance(distance) {}
      };

      // Recursive case: the node has children

      // Create a list to map children to their distances
      std::vector<Node_index_with_distance> children_with_distances;
      children_with_distances.reserve(Self::degree);

      // Fill the list with child nodes
      for (int i = 0; i < Self::degree; ++i) {
        auto child_node = child(node, i);

        FT squared_distance = 0;
        Point c = m_traits.construct_center_d_object()(search_bounds);
        Point b = barycenter(child_node);
        for (const auto r : cartesian_range(c, b)) {
          FT d = (get<0>(r) - get<1>(r));
          squared_distance += d * d;
        }

        // Add a child to the list, with its distance
        children_with_distances.emplace_back(
          child_node,
          squared_distance
        );
      }

      // Sort the children by their distance from the search point
      std::sort(children_with_distances.begin(), children_with_distances.end(), [=](auto& left, auto& right) {
        return left.distance < right.distance;
        });

      // Loop over the children
      for (auto child_with_distance : children_with_distances) {

        // Check whether the bounding box of the child intersects with the search bounds
        if (CGAL::do_intersect(bbox(child_with_distance.index), search_bounds)) {

          // Recursively invoke this function
          nearest_k_neighbors_recursive(search_bounds, child_with_distance.index, results, k);
        }
      }
    }
  }

public:

  /// \cond SKIP_IN_MANUAL
  template <class K>
  void dump_box_to_polylines(const Iso_rectangle_2<K>& box, std::ostream& os) const {
    // dump in 3D for visualization
    os << "5 "
       << box.xmin() << " " << box.ymin() << " 0 "
       << box.xmin() << " " << box.ymax() << " 0 "
       << box.xmax() << " " << box.ymax() << " 0 "
       << box.xmax() << " " << box.ymin() << " 0 "
       << box.xmin() << " " << box.ymin() << " 0" << std::endl;
  }

  template <class K>
  void dump_box_to_polylines(const Iso_cuboid_3<K>& box, std::ostream& os) const {
    // Back face
    os << "5 "
       << box.xmin() << " " << box.ymin() << " " << box.zmin() << " "
       << box.xmin() << " " << box.ymax() << " " << box.zmin() << " "
       << box.xmax() << " " << box.ymax() << " " << box.zmin() << " "
       << box.xmax() << " " << box.ymin() << " " << box.zmin() << " "
       << box.xmin() << " " << box.ymin() << " " << box.zmin() << std::endl;

    // Front face
    os << "5 "
       << box.xmin() << " " << box.ymin() << " " << box.zmax() << " "
       << box.xmin() << " " << box.ymax() << " " << box.zmax() << " "
       << box.xmax() << " " << box.ymax() << " " << box.zmax() << " "
       << box.xmax() << " " << box.ymin() << " " << box.zmax() << " "
       << box.xmin() << " " << box.ymin() << " " << box.zmax() << std::endl;

    // Traversal edges
    os << "2 "
       << box.xmin() << " " << box.ymin() << " " << box.zmin() << " "
       << box.xmin() << " " << box.ymin() << " " << box.zmax() << std::endl;
    os << "2 "
       << box.xmin() << " " << box.ymax() << " " << box.zmin() << " "
       << box.xmin() << " " << box.ymax() << " " << box.zmax() << std::endl;
    os << "2 "
       << box.xmax() << " " << box.ymin() << " " << box.zmin() << " "
       << box.xmax() << " " << box.ymin() << " " << box.zmax() << std::endl;
    os << "2 "
       << box.xmax() << " " << box.ymax() << " " << box.zmin() << " "
       << box.xmax() << " " << box.ymax() << " " << box.zmax() << std::endl;
  }

  void dump_to_polylines(std::ostream& os) const {
    for (Node_index n: traverse(Orthtrees::Preorder_traversal<Self>(*this)))
      if (is_leaf(n)) {
        Bbox box = bbox(n);
        dump_box_to_polylines(box, os);
      }
  }

  std::string to_string(Node_index node) {
    std::stringstream stream;
    internal::print_orthtree_node(stream, node, *this);
    return stream.str();
  }

  friend std::ostream& operator<<(std::ostream& os, const Self& orthtree) {
    // Iterate over all nodes
    for (auto n: orthtree.traverse(Orthtrees::Preorder_traversal<Self>(orthtree))) {
      // Show the depth
      for (std::size_t i = 0; i < orthtree.depth(n); ++i)
        os << ". ";
      // Print the node
      internal::print_orthtree_node(os, n, orthtree);
      os << std::endl;
    }
    return os;
  }

  /// \endcond

}; // end class Orthtree

} // namespace CGAL

#endif // CGAL_ORTHTREE_H