1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
|
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Polygon/include/CGAL/Polygon_2.h $
// $Id: include/CGAL/Polygon_2.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Geert-Jan Giezeman <geert@cs.uu.nl>
// Wieger Wesselink
/*!
\file Polygon_2.h
*/
#ifndef CGAL_POLYGON_2_H
#define CGAL_POLYGON_2_H
#include <CGAL/config.h>
#include <vector>
#include <list>
#include <iterator>
#include <CGAL/assertions.h>
#include <CGAL/algorithm.h>
#include <CGAL/circulator.h>
#include <CGAL/Iterator_range.h>
#include <CGAL/enum.h>
#include <CGAL/Aff_transformation_2.h>
#include <CGAL/Container_helper.h>
#include <CGAL/Polygon_2_algorithms.h>
#include <CGAL/Polygon_2/Polygon_2_vertex_circulator.h>
#include <CGAL/Polygon_2/Polygon_2_edge_iterator.h>
#include <CGAL/Polygon_2/Polygon_2_edge_circulator.h>
namespace CGAL {
/// \ingroup PkgPolygon2Ref
/// The class `Polygon_2` implements polygons. The `Polygon_2` is
/// parameterized by a traits class and a container class. The latter
/// can be any class that fulfills the requirements for an STL
/// container, and has a function `resize()` that takes an `std::size_t` as argument.
/// It defaults to the `std::vector` class.
///
/// \cgalHeading{Implementation}
///
/// The methods `is_simple()`, `is_convex()`, `orientation()`,
/// `oriented_side()`, `bounded_side()`, `bbox()`, `area()`, `left_vertex()`,
/// `right_vertex()`, `top_vertex()` and `bottom_vertex()` are all
/// implemented using the algorithms on sequences of 2D points. See
/// the corresponding global functions for information about which
/// algorithms were used and what complexity they have.
///
template <class Traits_, class Container_
= std::vector<typename Traits_::Point_2> >
class Polygon_2 {
public:
/// \name Types
/// @{
/// The traits type.
typedef Traits_ Traits;
/// The container type.
typedef Container_ Container;
/// The number type of the coordinates of the points of the polygon.
typedef typename Traits_::FT FT;
/// The point type of the polygon.
typedef typename Traits_::Point_2 Point_2;
/// The type of a segment between two points of the polygon.
typedef typename Traits_::Segment_2 Segment_2;
/// @}
typedef typename Container_::difference_type difference_type;
typedef typename Container_::value_type value_type;
typedef typename Container_::pointer pointer;
typedef typename Container_::reference reference;
typedef typename Container_::const_reference const_reference;
//-------------------------------------------------------//
// this intermediary step is required by Sun C++ 4.1
typedef typename Container_::iterator iterator;
typedef typename Container_::const_iterator const_iterator;
//-------------------------------------------------------//
typedef typename Container::iterator Vertex_const_iterator;
typedef Polygon_circulator<Container_> Vertex_const_circulator;
/// \name Iterators
///
/// The following types denote iterators that allow to traverse
/// the vertices and edges of a polygon. Since
/// a polygon can be viewed as a circular as well as a
/// linear data structure both circulators and iterators are
/// defined.
///
/// \note At least conceptually, the circulators and iterators are
/// non-mutable. The enforcement depends on preprocessor flags.
///
/// \note The iterator category is in all cases bidirectional, except
/// for Vertex_iterator, which has the same iterator category as
/// `Container::iterator`. In fact all of them should have
/// the same iterator category as `Container::iterator`. However,
/// due to compiler problems this is currently not possible.
///
/// @{
/// vertex iterator type
typedef typename Container::iterator Vertex_iterator;
/// a range type to iterate over the vertices
typedef Container Vertices;
//typedef typename Container::const_iterator Vertex_const_iterator; ??
#ifdef DOXYGEN_RUNNING
/// vertex circulator type
typedef unspecified_type Vertex_circulator;
/// edge iterator type
typedef unspecified_type Edge_const_iterator;
/// a range type to iterate over the vertices
typedef unspecified_type Edges;
/// edge circular type
typedef unspecified_type Edge_const_circulator;
//
#else
typedef Vertex_const_circulator Vertex_circulator;
typedef Polygon_2_edge_iterator<Traits_,Container_> Edge_const_iterator;
typedef Polygon_2_const_edge_circulator<Traits_,
Container_> Edge_const_circulator;
typedef Polygon_2_edge_iterator<Traits_,Container_,
Tag_false> Vertex_pair_iterator;
typedef Iterator_range<Edge_const_iterator> Edges;
#endif // DOXYGEN_RUNNING
/// @}
/// \name Creation
/// @{
/// Creates an empty polygon.
Polygon_2() = default;
/// Creates an empty polygon.
Polygon_2(const Traits & p_traits) : traits(p_traits) {}
// Move constructor
// Polygon_2(Polygon_2<Traits_,Container_>&& polygon) = default;
/// Creates a polygon with vertices from the sequence
/// defined by the range \c [first,last).
/// The value type of \c InputIterator must be \c Point_2.
template <class InputIterator>
Polygon_2(InputIterator first, InputIterator last,
Traits p_traits = Traits())
: d_container(first,last), traits(p_traits)
{}
/// @}
/// \name Modifiers
/// @{
/// Acts as `*i = q`, except that that would be illegal because
/// the iterator is not mutable.
void set(Vertex_iterator i, const Point_2& q)
{ *i = q; }
/// \cond
void set(Polygon_circulator<Container>const &i, const Point_2& q)
{
*i.mod_iterator() = q;
}
/// \endcond
/// Inserts the vertex `q` before `i`. The return value points to
/// the inserted vertex.
Vertex_iterator insert(Vertex_iterator i, const Point_2& q)
{
return d_container.insert(i,q);
}
/// Inserts the vertex `q` before `i`. The return value points to
/// the inserted vertex.
Vertex_iterator insert(Vertex_circulator i, const Point_2& q)
{
return d_container.insert(i.mod_iterator(),q);
}
/// Inserts the vertices in the range `[first, last)`
/// before `i`. The value type of points in the range
/// `[first,last)` must be `Point_2`.
template <class InputIterator>
void insert(Vertex_iterator i,
InputIterator first,
InputIterator last)
{ d_container.insert(i, first, last); }
/// Inserts the vertices in the range `[first, last)`
/// before `i`. The value type of points in the range
/// `[first,last)` must be `Point_2`.
template <class InputIterator>
void insert(Vertex_circulator i,
InputIterator first,
InputIterator last)
{ d_container.insert(i.mod_iterator(), first, last); }
/// Has the same semantics as `p.insert(p.vertices_end(), q)`.
void push_back(const Point_2& x)
{ d_container.insert(d_container.end(), x); }
/// Erases the vertex pointed to by `i`.
Vertex_iterator erase(Vertex_iterator i)
{
return d_container.erase(i);
}
/// Erases the vertex pointed to by `i`.
Vertex_circulator erase(Vertex_circulator i)
{
auto it = d_container.erase(i.mod_iterator());
if(it == d_container.end()){
it = d_container.begin();
}
return Vertex_circulator(&d_container, it);
}
/// Erases the vertices in the range `[first, last)`.
Vertex_iterator erase(Vertex_iterator first, Vertex_iterator last)
{
return d_container.erase(first, last);
}
/// Erases the vertices in the range `[first, last)`.
void clear()
{
d_container.clear();
}
/// Reverses the orientation of the polygon. The vertex pointed to
/// by `p.vertices_begin()` remains the same.
void reverse_orientation()
{
if (size() <= 1)
return;
typename Container_::iterator i = d_container.begin();
std::reverse(++i, d_container.end());
}
/// @}
/// \name Access Functions
/// The following methods of the class Polygon_2
/// return circulators and iterators that allow to traverse the
/// vertices and edges.
/// @{
/// Returns a constant iterator that allows to traverse the
/// vertices of the polygon.
Vertex_iterator vertices_begin() const
{ return const_cast<Polygon_2&>(*this).d_container.begin(); }
/// Returns the corresponding past-the-end iterator.
Vertex_iterator vertices_end() const
{ return const_cast<Polygon_2&>(*this).d_container.end(); }
/// returns the range of vertices.
const Vertices& vertices() const
{
return d_container;
}
// Vertex_const_circulator vertices_circulator() const
// { return Vertex_const_circulator(&d_container, d_container.begin()); }
/// Returns a constant circulator that allows to traverse the
/// vertices of the polygon.
Vertex_circulator vertices_circulator() const
{
Polygon_2& self = const_cast<Polygon_2&>(*this);
return Vertex_circulator(&self.d_container,
self.d_container.begin());
}
/// Returns a non-mutable iterator that allows to traverse the
/// edges of the polygon.
Edge_const_iterator edges_begin() const
{ return Edge_const_iterator(&d_container, d_container.begin()); }
/// Returns the corresponding past-the-end iterator.
Edge_const_iterator edges_end() const
{ return Edge_const_iterator(&d_container, d_container.end()); }
/// returns the range of edges.
Edges edges() const
{
return make_range(edges_begin(),edges_end());
}
/// Returns a non-mutable circulator that allows to traverse the
/// edges of the polygon.
Edge_const_circulator edges_circulator() const
{ return Edge_const_circulator(vertices_circulator()); }
/// @}
/// \cond SKIP_IN_MANUAL
Vertex_pair_iterator vertex_pairs_begin() const
{ return Vertex_pair_iterator(&d_container, d_container.begin()); }
Vertex_pair_iterator vertex_pairs_end() const
{ return Vertex_pair_iterator(&d_container, d_container.end()); }
/// \endcond
/// \name Predicates
/// @{
/// Returns whether this is a simple polygon.
bool is_simple() const
{
return is_simple_2(d_container.begin(),d_container.end(), traits);
}
/// Returns whether this is convex.
bool is_convex() const
{
return is_convex_2(d_container.begin(),d_container.end(), traits);
}
/// Returns the orientation. If the number of vertices
/// `p.size() < 3` then \c COLLINEAR is returned.
/// \pre `p.is_simple()`.
Orientation orientation() const
{
return orientation_2(d_container.begin(), d_container.end(), traits);
}
/// Returns `ON_POSITIVE_SIDE`, or `ON_NEGATIVE_SIDE`,
/// or `ON_ORIENTED_BOUNDARY`, depending on where point
/// `q` is.
/// \pre `p.is_simple()`.
Oriented_side oriented_side(const Point_2& value) const
{
return oriented_side_2(d_container.begin(), d_container.end(),
value, traits);
}
/// Returns the symbolic constant `ON_BOUNDED_SIDE`,
/// `ON_BOUNDARY` or `ON_UNBOUNDED_SIDE`,
/// depending on where point `q` is. \pre
/// `p.is_simple()`.
Bounded_side bounded_side(const Point_2& value) const
{
CGAL_precondition(is_simple());
return bounded_side_2(d_container.begin(), d_container.end(),
value, traits);
}
/// Returns the smallest bounding box containing this polygon.
Bbox_2 bbox() const
{
return bbox_2(d_container.begin(), d_container.end());
}
/// Returns the signed area of the polygon. This means that the
/// area is positive for counter clockwise polygons and negative
/// for clockwise polygons.
FT area() const
{
return polygon_area_2(d_container.begin(), d_container.end(), traits);
}
/// Returns the leftmost vertex of the polygon with the smallest
/// `x`-coordinate.
Vertex_const_iterator left_vertex() const
{
Polygon_2 &self = const_cast<Polygon_2&>(*this);
return left_vertex_2(self.d_container.begin(),
self.d_container.end(), traits);
}
/// Returns the rightmost vertex of the polygon with the largest
/// `x`-coordinate.
Vertex_const_iterator right_vertex() const
{
Polygon_2 &self = const_cast<Polygon_2&>(*this);
return right_vertex_2(self.d_container.begin(),
self.d_container.end(), traits);
}
/// Returns the topmost vertex of the polygon with the largest
/// `y`-coordinate.
Vertex_const_iterator top_vertex() const
{
Polygon_2 &self = const_cast<Polygon_2&>(*this);
return top_vertex_2(self.d_container.begin(),
self.d_container.end(), traits);
}
/// Returns the bottommost vertex of the polygon with the
/// smallest `y`-coordinate.
Vertex_const_iterator bottom_vertex() const
{
Polygon_2 &self = const_cast<Polygon_2&>(*this);
return bottom_vertex_2(self.d_container.begin(),
self.d_container.end(), traits);
}
/// @}
/// \name Convenience Orientation Functions
/// For convenience we provide the following Boolean functions:
/// @{
/// returns `orientation() == COUNTERCLOCKWISE`
bool is_counterclockwise_oriented() const
{ return orientation() == COUNTERCLOCKWISE; }
/// returns `orientation() == CLOCKWISE`
bool is_clockwise_oriented() const
{ return orientation() == CLOCKWISE; }
/// returns `orientation() == COLLINEAR`
bool is_collinear_oriented() const
{ return orientation() == COLLINEAR; }
/// returns `oriented_side(q) == ON_POSITIVE_SIDE`
bool has_on_positive_side(const Point_2& q) const
{ return oriented_side(q) == ON_POSITIVE_SIDE; }
/// returns `oriented_side(q) == ON_NEGATIVE_SIDE`
bool has_on_negative_side(const Point_2& q) const
{ return oriented_side(q) == ON_NEGATIVE_SIDE; }
/// returns `bounded_side(q) == ON_BOUNDARY`
bool has_on_boundary(const Point_2& q) const
{ return bounded_side(q) == ON_BOUNDARY; }
/// returns `bounded_side(q) == ON_BOUNDED_SIDE`
bool has_on_bounded_side(const Point_2& q) const
{ return bounded_side(q) == ON_BOUNDED_SIDE; }
/// returns `bounded_side(q) == ON_UNBOUNDED_SIDE`
bool has_on_unbounded_side(const Point_2& q) const
{ return bounded_side(q) == ON_UNBOUNDED_SIDE; }
/// @}
/// \name Random Access Methods
/// @{
/// Returns a (const) reference to the `i`-th vertex.
const Point_2& vertex(std::size_t i) const
{
CGAL_precondition( i < d_container.size() );
return *(std::next(d_container.begin(), i));
}
/// Returns a (const) reference to the `i`-th vertex.
const Point_2& operator[](std::size_t i) const
{ return vertex(i); }
/// Returns a reference to the `i`-th vertex.
Point_2& vertex(std::size_t i)
{
CGAL_precondition( i < d_container.size() );
return *(std::next(d_container.begin(), i));
}
/// Returns a reference to the `i`-th vertex.
Point_2& operator[](std::size_t i)
{ return vertex(i); }
/// Returns the `i`-th edge.
Segment_2 edge(std::size_t i) const
{ return *(std::next(edges_begin(), i)); }
/// @}
/// \name Miscellaneous
/// @{
/// Returns the number of vertices of the polygon.
std::size_t size() const
{ return d_container.size(); }
/// Returns `size() == 0`.
bool is_empty() const
{ return d_container.empty(); }
/// Returns a const reference to the sequence of vertices of the polygon.
const Container_& container() const
{ return d_container; }
/// Returns a reference to the sequence of vertices of the polygon.
Container_& container()
{ return d_container; }
/// Returns an iterator to the first vertex of the polygon.
typename Container_::iterator begin()
{
return container().begin();
}
/// Returns an iterator to the element after the last vertex of the polygon.
typename Container_::iterator end()
{
return container().end();
}
/// Returns a const iterator to the first vertex of the polygon.
const typename Container_::const_iterator begin() const
{
return container().begin();
}
/// Returns a const iterator to the element after the last vertex of the polygon.
const typename Container_::const_iterator end() const
{
return container().end();
}
/// Resizes the container. Calls `container().resize(s)`.
void resize(std::size_t s)
{
container().resize(s);
}
/// Calls `container().reserve(s)` if this is available for `Container`.
void reserve(std::size_t s)
{
internal::reserve(container(),s);
}
/// @}
bool identical(const Polygon_2<Traits_,Container_> &q) const
{ return this == &q; }
Traits_ const &traits_member() const { return traits;}
private:
Container_ d_container;
Traits_ traits;
};
/// \name Global Operators
/// @{
/// Test for equality: two polygons are equal iff there exists a
/// cyclic permutation of the vertices of `p2` such that they are
/// equal to the vertices of `p1`. Note that the template argument
/// `%Container` of `p1` and `p2` may be different.
/// \memberof Polygon_2
template <class Traits_, class Container1_P, class Container2_P>
bool operator==( const Polygon_2<Traits_,Container1_P> &p1,
const Polygon_2<Traits_,Container2_P> &p2 );
/// Test for inequality.
/// \memberof Polygon_2
template <class Traits_, class Container1_P, class Container2_P>
inline
bool
operator!=(const Polygon_2<Traits_,Container1_P> &p1,
const Polygon_2<Traits_,Container2_P> &p2);
/// Returns the image of the polygon \c p under the transformation \c t.
/// \relates Polygon_2
template <class Transformation, class Traits_, class Container_>
Polygon_2<Traits_,Container_>
transform(const Transformation& t, const Polygon_2<Traits_,Container_>& p);
/// @} // global operators
/// \name I/O
/// The information output in the `std::iostream` is the number of points
/// followed by the output of the coordinates of the vertices.
/// @{
/// Reads a polygon from stream `is` and assigns it to `p`.
/// \pre The extract operator must be defined for `Point_2`.
/// \relates Polygon_2
template <class Traits_, class Container_>
std::istream &operator>>(std::istream &is, Polygon_2<Traits_,Container_>& p);
/// Inserts the polygon `p` into the stream `os`.
/// \pre The insert operator must be defined for `Point_2`.
/// \relates Polygon_2
template <class Traits_, class Container_>
std::ostream &operator<<(std::ostream &os, const Polygon_2<Traits_,Container_>& p);
/// @} // IO
} //namespace CGAL
//-----------------------------------------------------------------------//
// implementation
//-----------------------------------------------------------------------//
#include <CGAL/Polygon_2/Polygon_2_impl.h>
namespace CGAL {
template <class Traits_, class Container1_P, class Container2_P>
inline
bool
operator!=(const Polygon_2<Traits_,Container1_P> &x,
const Polygon_2<Traits_,Container2_P> &y)
{
return !(x==y);
}
} //namespace CGAL
#endif
|