File: Polygon_2_algorithms_impl.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (552 lines) | stat: -rw-r--r-- 18,590 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
// Copyright (c) 1997
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Polygon/include/CGAL/Polygon_2/Polygon_2_algorithms_impl.h $
// $Id: include/CGAL/Polygon_2/Polygon_2_algorithms_impl.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Wieger Wesselink <wieger@cs.ruu.nl>

#include <CGAL/algorithm.h>
#include <CGAL/assertions.h>
#include <CGAL/determinant.h>
#include <CGAL/number_utils.h>

#include <CGAL/Polygon_2/Polygon_2_simplicity.h>

#include <algorithm>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <set>
#include <vector>

/// \cond SKIP_IN_MANUAL

namespace CGAL {

namespace internal {
namespace Polygon_2 {

// Filter a range of points to simplify sequences of collinear (or almost) points.
// A point is removed if the two segments, formed using its previous and next points
// in the range are collinear segments, up to a given tolerance.
//
// \tparam K must be a model of `Kernel`
// \tparam InputForwardIterator must be a model of `ForwardIterator`
//                              with value type `K::Point_2`
// \tparam OutputForwardIterator must be a model of `OutputIterator`
//                               with value type `K::Point_2`
//
// \param first, beyond the range
// \param out points that are not removed are output in `out`
// \param tolerance a tolerance on the collinearity of the two segments formed
//                  by three consecutive points of the range (more specifically,
//                  on the value of the determinant).
//
// \pre The range `(first, beyond)` is composed of at least three points.
// \pre Not all points in the range `(first, beyond)` are (almost) collinear.
template<typename K, typename InputForwardIterator, typename OutputForwardIterator>
OutputForwardIterator filter_collinear_points(InputForwardIterator first,
                                              InputForwardIterator beyond,
                                              OutputForwardIterator out,
                                              const typename K::FT tolerance =
                                                std::numeric_limits<typename K::FT>::epsilon())
{
  CGAL_precondition(std::distance(first, beyond) >= 3);

  typedef typename K::FT                              FT;
  typedef typename K::Point_2                         Point;

  InputForwardIterator last = std::prev(beyond);

  InputForwardIterator vit = first, vit_next = vit, vit_next_2 = vit, vend = vit;
  ++vit_next;
  ++(++vit_next_2);

  bool stop = false;

  do
  {
    CGAL_assertion(vit != vit_next);
    CGAL_assertion(vit_next != vit_next_2);
    CGAL_assertion(vit != vit_next_2);

    const Point& o = *vit;
    const Point& p = *vit_next;
    const Point& q = *vit_next_2;

    // Stop when 'p' is the starting point. It does not matter whether we are
    // in a collinear case or not.
    stop = (vit_next == vend);

    const FT det = CGAL::determinant(o.x() - q.x(), o.y() - q.y(),
                                     p.x() - q.x(), p.y() - q.y());

    if(CGAL::abs(det) <= tolerance)
    {
      // Only move 'p' and 'q' to ignore consecutive collinear points
      vit_next = (vit_next == last) ? first : ++vit_next;
      vit_next_2 = (vit_next_2 == last) ? first : ++vit_next_2;
    }
    else
    {
      // 'vit = vit_next' and not '++vit' because we don't necessarily have *(next(vit) == p)
      // and collinear points between 'o' and 'p' are ignored
      vit = vit_next;
      vit_next = (vit_next == last) ? first : ++vit_next;
      vit_next_2 = (vit_next_2 == last) ? first : ++vit_next_2;

      *out++ = p;
    }
  }
  while(!stop);

  return out;
}

} // namespace Polygon_2
} // namespace internal


//-----------------------------------------------------------------------//
//                          is_simple_2
//-----------------------------------------------------------------------//
// uses PolygonTraits::Less_xy_2
//      PolygonTraits::less_xy_2
//      PolygonTraits::Orientation_2
//      PolygonTraits::orientation_2
//      PolygonTraits::Point_2


template <class ForwardIterator, class PolygonTraits>
bool is_simple_2(ForwardIterator first,
                      ForwardIterator last,
                      const PolygonTraits& traits)
{
    if (first == last) return true;

    return is_simple_polygon(first, last, traits);
}

namespace internal { namespace Polygon_2 {

template <typename Traits>
class Compare_vertices {
    typedef typename Traits::Less_xy_2 Less_xy_2;
    typedef typename Traits::Point_2 Point_2;
    Less_xy_2 less;
public:
    Compare_vertices(Less_xy_2 less) : less(less) {}

    // `Point_like` derives from `Point_2`
    template <typename Point_like>
    bool operator()(const Point_like& p1, const Point_like& p2) {
        return less(Point_2(p1), Point_2(p2));
    }
}; // end Compare_vertices

} // end namespace Polygon_2
} // end namespace internal

//-----------------------------------------------------------------------//
//                          left_vertex_2
//-----------------------------------------------------------------------//
// uses PolygonTraits::Less_xy_2 and less_xy_2_object()

template <class ForwardIterator, class PolygonTraits>
ForwardIterator left_vertex_2(ForwardIterator first,
                                   ForwardIterator last,
                                   const PolygonTraits&traits)
{
    CGAL_precondition(first != last);
    internal::Polygon_2::Compare_vertices<PolygonTraits>
        less(traits.less_xy_2_object());
    return std::min_element(first, last, less);
}

//-----------------------------------------------------------------------//
//                          right_vertex_2
//-----------------------------------------------------------------------//
// uses PolygonTraits::Less_xy_2 and less_xy_2_object()

template <class ForwardIterator, class PolygonTraits>
ForwardIterator right_vertex_2(ForwardIterator first,
                                    ForwardIterator last,
                                    const PolygonTraits &traits)
{
    CGAL_precondition(first != last);
    internal::Polygon_2::Compare_vertices<PolygonTraits>
        less(traits.less_xy_2_object());
    return std::max_element(first, last, less);
}

//-----------------------------------------------------------------------//
//                          top_vertex_2
//-----------------------------------------------------------------------//
// uses PolygonTraits::Less_yx_2 and less_yx_2_object()

template <class ForwardIterator, class PolygonTraits>
ForwardIterator top_vertex_2(ForwardIterator first,
                                  ForwardIterator last,
                                  const PolygonTraits&traits)
{
    CGAL_precondition(first != last);
    return std::max_element(first, last, traits.less_yx_2_object());
}

//-----------------------------------------------------------------------//
//                          bottom_vertex_2
//-----------------------------------------------------------------------//
// uses PolygonTraits::Less_yx_2 and less_yx_2_object()

template <class ForwardIterator, class PolygonTraits>
ForwardIterator bottom_vertex_2(ForwardIterator first,
                                     ForwardIterator last,
                                     const PolygonTraits&traits)
{
    CGAL_precondition(first != last);
    return std::min_element(first, last, traits.less_yx_2_object());
}

//-----------------------------------------------------------------------//
//                          area_2
//-----------------------------------------------------------------------//
// uses Traits::
//  implemented in header file


//-----------------------------------------------------------------------//
//                          is_convex_2
//-----------------------------------------------------------------------//
// uses Traits::Less_xy_2 and less_xy_2_object()
//      Traits::Orientation_2 and orientation_2_object()
//      Traits::Equal_2 for filtering repeated points

template <class ForwardIterator, class Traits>
bool is_convex_2(ForwardIterator first,
                      ForwardIterator last,
                      const Traits& traits)
{
  ForwardIterator previous = first;
  if (previous == last) return true;

  ForwardIterator current = previous; ++current;
  if (current == last) return true;

  ForwardIterator next = current; ++next;
  if (next == last) return true;

  typename Traits::Equal_2 equal = traits.equal_2_object();

  while(equal(*previous, *current)) {
    current = next;
    ++next;
    if (next == last) return true;
  }

  typename Traits::Less_xy_2 less_xy_2 = traits.less_xy_2_object();
  typename Traits::Orientation_2 orientation = traits.orientation_2_object();
  // initialization
  bool HasClockwiseTriples = false;
  bool HasCounterClockwiseTriples = false;
  bool Order = less_xy_2(*previous, *current);
  int NumOrderChanges = 0;

  do {
  switch_orient:
    switch (orientation(*previous, *current, *next)) {
      case CLOCKWISE:
        HasClockwiseTriples = true;
        break;
      case COUNTERCLOCKWISE:
        HasCounterClockwiseTriples = true;
        break;
      case ZERO:
        if(equal(*current, *next)) {
          if(next == first) {
            first = current;
          }
          ++next;
          if (next == last)
            next = first;
          goto switch_orient;
        }
        break;
    }

    bool NewOrder = less_xy_2(*current, *next);
    if (Order != NewOrder) NumOrderChanges++;

    if (NumOrderChanges > 2) {
#ifdef CGAL_POLYGON_DEBUG
std::cout << "too many order changes: not convex!" << std::endl;
#endif
      return false;
    }

    if (HasClockwiseTriples && HasCounterClockwiseTriples) {
#ifdef CGAL_POLYGON_DEBUG
std::cout << "polygon not locally convex!" << std::endl;
#endif
      return false;
    }

    previous = current;
    current = next;
    ++next;
    if (next == last) next = first;
    Order = NewOrder;
  }
  while (previous != first);

  return true;
}

//-----------------------------------------------------------------------//
//                          oriented_side_2
//-----------------------------------------------------------------------//
// uses Traits::Less_xy_2
//      Traits::Compare_x_2 compare_x_2_object()
//      Traits::Compare_y_2 compare_y_2_object()
//      Traits::Orientation_2 and orientation_2_object()

template <class ForwardIterator, class Point, class Traits>
Oriented_side oriented_side_2(ForwardIterator first,
                                        ForwardIterator last,
                                        const Point& point,
                                        const Traits& traits)
{
  Orientation o = orientation_2(first, last, traits);
  CGAL_assertion(o != COLLINEAR);

  Bounded_side b = bounded_side_2(first, last, point, traits);
  switch (b) {
    case ON_BOUNDARY:
      return ON_ORIENTED_BOUNDARY;

    case ON_BOUNDED_SIDE:
      return (o == CLOCKWISE) ?  ON_NEGATIVE_SIDE : ON_POSITIVE_SIDE;

    default:
    //case ON_UNBOUNDED_SIDE:
      return (o == CLOCKWISE) ?  ON_POSITIVE_SIDE : ON_NEGATIVE_SIDE;
  }
}

//-----------------------------------------------------------------------//
//                          bounded_side_2
//-----------------------------------------------------------------------//
// uses Traits::Compare_x_2 compare_x_2_object()
//      Traits::Compare_y_2 compare_y_2_object()
//      Traits::Orientation_2 and orientation_2_object()
//
// returns ON_BOUNDED_SIDE, ON_BOUNDARY or ON_UNBOUNDED_SIDE

/*
   Implementation: we shoot a horizontal ray from the point to the right
   and count the number of intersections with polygon segments.
   If the number of intersections is odd, the point is inside.
   We don't count intersections with horizontal segments.
   With non-horizontal segments, the top vertex is considered to be part of
   the segment, but the bottom vertex is not. (Segments are half-closed).
*/

namespace i_polygon {

template <class Point, class Orientation_2, class CompareX_2>
int which_side_in_slab(Point const &point, Point const &low, Point const &high,
    Orientation_2 &orientation_2, CompareX_2 &compare_x_2)
// returns -1 if point is left of segment <low, high>, 0 if its on the segment
// and 1 if it is to the right
// precondition: low.y < point.y < high.y
{
    // first we try to decide on x coordinate values alone
    // This is an optimization (whether this is really faster for
    // a homogeneous kernel is not clear, as comparisons can be expensive.
    Comparison_result low_x_comp_res = compare_x_2(point, low);
    Comparison_result high_x_comp_res = compare_x_2(point, high);
    if (low_x_comp_res == SMALLER) {
        if (high_x_comp_res == SMALLER)
            return -1;
    } else {
        switch (high_x_comp_res) {
          case LARGER: return 1;
          case SMALLER: break;
          case EQUAL: return (low_x_comp_res == EQUAL) ? 0 : 1;
        }
    }
    switch (orientation_2(low, point, high)) {
      case LEFT_TURN: return 1;
      case RIGHT_TURN: return -1;
      default: return 0;
    }
}

}  // end namespace i_polygon

template <class ForwardIterator, class Point, class PolygonTraits>
Bounded_side bounded_side_2(ForwardIterator first,
                                      ForwardIterator last,
                                      const Point& point,
                                      const PolygonTraits& traits)
{

  ForwardIterator current = first;
  if (current == last) return ON_UNBOUNDED_SIDE;

  ForwardIterator next = current; ++next;
  if (next == last) return ON_UNBOUNDED_SIDE;

  typename PolygonTraits::Compare_x_2 compare_x_2 = traits.compare_x_2_object();
  typename PolygonTraits::Compare_y_2 compare_y_2 = traits.compare_y_2_object();
  typename PolygonTraits::Orientation_2 orientation_2 = traits.orientation_2_object();
  bool IsInside = false;
  Comparison_result cur_y_comp_res = compare_y_2(*current, point);

  do // check if the segment (current,next) intersects
     // the ray { (t,point.y()) | t >= point.x() }
  {
    Comparison_result next_y_comp_res = compare_y_2(*next, point);

    switch (cur_y_comp_res) {
      case SMALLER:
        switch (next_y_comp_res) {
          case SMALLER:
            break;
          case EQUAL:
            switch (compare_x_2(point, *next)) {
              case SMALLER: IsInside = !IsInside; break;
              case EQUAL:   return ON_BOUNDARY;
              case LARGER:  break;
            }
            break;
          case LARGER:
            switch (i_polygon::which_side_in_slab(point, *current, *next,
                        orientation_2, compare_x_2)) {
              case -1: IsInside = !IsInside; break;
              case  0: return ON_BOUNDARY;
            }
            break;
        }
        break;
      case EQUAL:
        switch (next_y_comp_res) {
          case SMALLER:
            switch (compare_x_2(point, *current)) {
              case SMALLER: IsInside = !IsInside; break;
              case EQUAL:   return ON_BOUNDARY;
              case LARGER:  break;
            }
            break;
          case EQUAL:
            switch (compare_x_2(point, *current)) {
              case SMALLER:
                if (compare_x_2(point, *next) != SMALLER)
                    return ON_BOUNDARY;
                break;
              case EQUAL: return ON_BOUNDARY;
              case LARGER:
                if (compare_x_2(point, *next) != LARGER)
                    return ON_BOUNDARY;
                break;
            }
            break;
          case LARGER:
            if (compare_x_2(point, *current) == EQUAL) {
              return ON_BOUNDARY;
            }
            break;
        }
        break;
      case LARGER:
        switch (next_y_comp_res) {
          case SMALLER:
            switch (i_polygon::which_side_in_slab(point, *next, *current,
                        orientation_2, compare_x_2)) {
              case -1: IsInside = !IsInside; break;
              case  0: return ON_BOUNDARY;
            }
            break;
          case EQUAL:
            if (compare_x_2(point, *next) == EQUAL) {
              return ON_BOUNDARY;
            }
            break;
          case LARGER:
            break;
        }
        break;
    }

    current = next;
    cur_y_comp_res = next_y_comp_res;
    ++next;
    if (next == last) next = first;
  }
  while (current != first);

  return IsInside ? ON_BOUNDED_SIDE : ON_UNBOUNDED_SIDE;
}

//-----------------------------------------------------------------------//
//                          orientation_2
//-----------------------------------------------------------------------//
// uses Traits::Less_xy_2 (used by left_vertex_2)
//      Traits::orientation_2_object()

namespace Polygon {
namespace internal {

// This exists because the "is_simple_2" precondition in the orientation_2() function is in fact
// stronger than necessary: it also works for strictly simple polygons, which matters for
// Straight line skeletons, as the offset polygons might have non-manifoldness.
template <class ForwardIterator, class Traits>
Orientation orientation_2_no_precondition(ForwardIterator first,
                                          ForwardIterator last,
                                          const Traits& traits)
{
  ForwardIterator i = left_vertex_2(first, last, traits);

  ForwardIterator prev = (i == first) ? last : i;
  --prev;

  ForwardIterator next = i;
  ++next;
  if (next == last)
    next = first;

  // if the range [first,last) contains fewer than three points, then some
  // of the points (prev,i,next) will coincide

  // return the orientation of the triple (prev,i,next)
  typedef typename Traits::Point_2 Point;
  return traits.orientation_2_object()(Point(*prev), Point(*i), Point(*next));
}

} // namespace internal
} // namespace Polygon

template <class ForwardIterator, class Traits>
Orientation orientation_2(ForwardIterator first,
                          ForwardIterator last,
                          const Traits& traits)
{
  CGAL_precondition(is_simple_2(first, last, traits));
  return Polygon::internal::orientation_2_no_precondition(first, last, traits);
}

} //namespace CGAL

/// \endcond

// Local Variables:
// c-basic-offset: 4
// End: