1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
|
// Copyright (c) 2015 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/distance.h $
// $Id: include/CGAL/Polygon_mesh_processing/distance.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Maxime Gimeno, Sebastien Loriot, Martin Skrodzki, Dmitry Anisimov
#ifndef CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#define CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#include <CGAL/license/Polygon_mesh_processing/distance.h>
#include <CGAL/Polygon_mesh_processing/internal/mesh_to_point_set_hausdorff_distance.h>
#include <CGAL/Polygon_mesh_processing/internal/AABB_traversal_traits_with_Hausdorff_distance.h>
#include <CGAL/Polygon_mesh_processing/measure.h>
#include <CGAL/Polygon_mesh_processing/bbox.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits_3.h>
#include <CGAL/AABB_triangle_primitive_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/utility.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Spatial_sort_traits_adapter_3.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/Real_timer.h>
#include <CGAL/iterator.h>
#include <CGAL/boost/graph/Face_filtered_graph.h>
#if defined(CGAL_METIS_ENABLED)
#include <CGAL/boost/graph/partition.h>
#endif // CGAL_METIS_ENABLED
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range.h>
#endif // CGAL_LINKED_WITH_TBB
#if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED) && defined(USE_PARALLEL_BEHD)
# include <any>
#endif
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include <type_traits>
#include <unordered_set>
#ifdef CGAL_HAUSDORFF_DEBUG_PP
#ifndef CGAL_HAUSDORFF_DEBUG
#define CGAL_HAUSDORFF_DEBUG
#endif
#endif
namespace CGAL {
namespace Polygon_mesh_processing {
namespace internal {
template <class Kernel, class PointOutputIterator>
PointOutputIterator
triangle_grid_sampling(const typename Kernel::Point_3& p0,
const typename Kernel::Point_3& p1,
const typename Kernel::Point_3& p2,
double distance,
PointOutputIterator out)
{
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt(squared_distance(p0, p1)));
const double d_p0p2 = to_double(approximate_sqrt(squared_distance(p0, p2)));
const double n = (std::max)(std::ceil(d_p0p1 / distance),
std::ceil(d_p0p2 / distance));
for(double i=1; i<n; ++i)
{
for(double j=1; j<n-i; ++j)
{
const double c0=(1-(i+j)/n), c1=i/n, c2=j/n;
*out++ = typename Kernel::Point_3(p0.x()*c0 + p1.x()*c1 + p2.x()*c2,
p0.y()*c0 + p1.y()*c1 + p2.y()*c2,
p0.z()*c0 + p1.z()*c1 + p2.z()*c2);
}
}
return out;
}
#if defined(CGAL_LINKED_WITH_TBB)
template <class Kernel, class AABB_tree, class PointRange>
struct Distance_computation
{
typedef typename Kernel::FT FT;
typedef typename PointRange::const_iterator::value_type Point_3;
const AABB_tree& tree;
const PointRange& sample_points;
Point_3 initial_hint;
FT sq_distance;
//constructor
Distance_computation(const AABB_tree& tree,
const Point_3& p,
const PointRange& sample_points)
: tree(tree),
sample_points(sample_points),
initial_hint(p),
sq_distance(-1)
{}
//split constructor
Distance_computation(Distance_computation& s, tbb::split)
: tree(s.tree),
sample_points(s.sample_points),
initial_hint(s.initial_hint),
sq_distance(-1)
{}
void operator()(const tbb::blocked_range<std::size_t>& range)
{
Point_3 hint = initial_hint;
FT sq_hdist = 0;
typename Kernel_traits<Point_3>::Kernel::Compute_squared_distance_3 squared_distance;
for(std::size_t i = range.begin(); i != range.end(); ++i)
{
hint = tree.closest_point(*(sample_points.begin() + i), hint);
FT sq_d = squared_distance(hint,*(sample_points.begin() + i));
if(sq_d > sq_hdist)
sq_hdist = sq_d;
}
if(sq_hdist > sq_distance)
sq_distance = sq_hdist;
}
void join(Distance_computation& rhs) { sq_distance = (std::max)(rhs.sq_distance, sq_distance); }
};
#endif
template <class Concurrency_tag,
class PointRange,
class AABBTree,
class Kernel>
double max_distance_to_mesh_impl(const PointRange& sample_points,
const AABBTree& tree,
typename Kernel::Point_3 hint, // intentional copy
const Kernel& k)
{
using FT = typename Kernel::FT;
#if !defined(CGAL_LINKED_WITH_TBB)
static_assert (!(std::is_convertible<Concurrency_tag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if(std::is_convertible<Concurrency_tag,Parallel_tag>::value)
{
Distance_computation<Kernel, AABBTree, PointRange> f(tree, hint, sample_points);
tbb::parallel_reduce(tbb::blocked_range<std::size_t>(0, sample_points.size()), f);
return to_double(approximate_sqrt(f.sq_distance));
}
else
#endif
{
FT sq_hdist = 0;
typename Kernel::Compute_squared_distance_3 squared_distance = k.compute_squared_distance_3_object();
for(const typename Kernel::Point_3& pt : sample_points)
{
hint = tree.closest_point(pt, hint);
FT sq_d = squared_distance(hint, pt);
if(sq_d > sq_hdist)
sq_hdist = sq_d;
}
return to_double(approximate_sqrt(sq_hdist));
}
}
template<typename PointOutputIterator,
typename GeomTraits,
typename NamedParameters,
typename TriangleIterator,
typename Randomizer,
typename Creator,
typename Derived>
struct Triangle_structure_sampler_base
{
const NamedParameters np;
GeomTraits gt;
PointOutputIterator& out;
Triangle_structure_sampler_base(PointOutputIterator& out,
const NamedParameters& np)
: np(np), out(out)
{}
void sample_points();
double get_squared_minimum_edge_length();
template<typename Tr>
double get_tr_area(const Tr&);
template<typename Tr>
std::array<typename GeomTraits::Point_3, 3> get_tr_points(const Tr& tr);
void ms_edges_sample(const std::size_t& nb_points_per_edge,
const std::size_t& nb_pts_l_u);
void ru_edges_sample();
void internal_sample_triangles(double, bool, bool);
Randomizer get_randomizer();
std::pair<TriangleIterator, TriangleIterator> get_range();
std::size_t get_points_size();
void procede()
{
using parameters::choose_parameter;
using parameters::get_parameter;
using parameters::is_default_parameter;
gt = choose_parameter<GeomTraits>(get_parameter(np, internal_np::geom_traits));
bool use_rs = choose_parameter(get_parameter(np, internal_np::random_uniform_sampling), true);
bool use_gs = choose_parameter(get_parameter(np, internal_np::grid_sampling), false);
bool use_ms = choose_parameter(get_parameter(np, internal_np::monte_carlo_sampling), false);
if(use_gs || use_ms)
{
if(is_default_parameter<NamedParameters, internal_np::random_uniform_sampling_t>::value)
use_rs = false;
}
bool smpl_vrtcs = choose_parameter(get_parameter(np, internal_np::do_sample_vertices), true);
bool smpl_dgs = choose_parameter(get_parameter(np, internal_np::do_sample_edges), true);
bool smpl_fcs = choose_parameter(get_parameter(np, internal_np::do_sample_faces), true);
double nb_pts_a_u = choose_parameter(get_parameter(np, internal_np::nb_points_per_area_unit), 0.);
double nb_pts_l_u = choose_parameter(get_parameter(np, internal_np::nb_points_per_distance_unit), 0.);
// sample vertices
if(smpl_vrtcs)
static_cast<Derived*>(this)->sample_points();
// grid sampling
if(use_gs)
{
double grid_spacing_ = choose_parameter(get_parameter(np, internal_np::grid_spacing), 0.);
// set grid spacing to the shortest edge length
if(grid_spacing_ == 0.)
grid_spacing_ = std::sqrt(static_cast<Derived*>(this)->get_squared_minimum_edge_length());
static_cast<Derived*>(this)->internal_sample_triangles(grid_spacing_, smpl_fcs, smpl_dgs);
}
// monte carlo sampling
if(use_ms)
{
double min_sq_edge_length = (std::numeric_limits<double>::max)();
std::size_t nb_points_per_face =
choose_parameter(get_parameter(np, internal_np::number_of_points_per_face), 0);
std::size_t nb_points_per_edge =
choose_parameter(get_parameter(np, internal_np::number_of_points_per_edge), 0);
if((nb_points_per_face == 0 && nb_pts_a_u == 0.) ||
(nb_points_per_edge == 0 && nb_pts_l_u == 0.))
{
min_sq_edge_length = static_cast<Derived*>(this)->get_squared_minimum_edge_length();
}
// sample faces
if(smpl_fcs)
{
// set default value
if(nb_points_per_face == 0 && nb_pts_a_u == 0.)
nb_pts_a_u = 2. / min_sq_edge_length;
for(const auto& tr : make_range(static_cast<Derived*>(this)->get_range()))
{
std::size_t nb_points = nb_points_per_face;
if(nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>(
std::ceil(static_cast<Derived*>(this)->get_tr_area(tr))
*nb_pts_a_u), std::size_t(1));
}
// extract triangle face points
std::array<typename GeomTraits::Point_3, 3> points = static_cast<Derived*>(this)->get_tr_points(tr);
Random_points_in_triangle_3<typename GeomTraits::Point_3, Creator> g(points[0], points[1], points[2]);
out = std::copy_n(g, nb_points, out);
}
}
// sample edges
if(smpl_dgs)
static_cast<Derived*>(this)->ms_edges_sample(nb_points_per_edge, nb_pts_l_u);
}
// random uniform sampling
if(use_rs)
{
// sample faces
if(smpl_fcs)
{
std::size_t nb_points
= choose_parameter(get_parameter(np, internal_np::number_of_points_on_faces), 0);
typename Derived::Randomizer g = static_cast<Derived*>(this)->get_randomizer();
if(nb_points == 0)
{
if(nb_pts_a_u == 0.)
nb_points = static_cast<Derived*>(this)->get_points_size();
else
nb_points = static_cast<std::size_t>(std::ceil(g.sum_of_weights()*nb_pts_a_u));
}
out = std::copy_n(g, nb_points, out);
}
// sample edges
if(smpl_dgs)
static_cast<Derived*>(this)->ru_edges_sample(nb_pts_l_u,nb_pts_a_u);
}
}
};
} // namespace internal
template <class Kernel,
class FaceRange,
class TriangleMesh,
class VertexPointMap,
class PointOutputIterator>
PointOutputIterator
sample_triangles(const FaceRange& triangles,
const TriangleMesh& tm,
VertexPointMap vpm,
double distance,
PointOutputIterator out,
bool sample_faces,
bool sample_edges,
bool add_vertices)
{
typedef typename boost::property_traits<VertexPointMap>::reference Point_ref;
typedef typename Kernel::Vector_3 Vector_3;
typedef typename boost::graph_traits<TriangleMesh>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<TriangleMesh>::edge_descriptor edge_descriptor;
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
std::unordered_set<edge_descriptor> sampled_edges;
std::unordered_set<vertex_descriptor> endpoints;
for(face_descriptor fd : triangles)
{
// sample edges but skip endpoints
halfedge_descriptor hd = halfedge(fd, tm);
for(int i=0;i<3; ++i)
{
if(sample_edges && sampled_edges.insert(edge(hd, tm)).second)
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt(squared_distance(p0, p1)));
const double nb_pts = std::ceil(d_p0p1 / distance);
const Vector_3 step_vec = typename Kernel::Construct_scaled_vector_3()(
typename Kernel::Construct_vector_3()(p0, p1),
typename Kernel::FT(1)/typename Kernel::FT(nb_pts));
for(double i=1; i<nb_pts; ++i)
{
*out++=typename Kernel::Construct_translated_point_3()(p0,
typename Kernel::Construct_scaled_vector_3()(step_vec ,
typename Kernel::FT(i)));
}
}
//add endpoints once
if(add_vertices && endpoints.insert(target(hd, tm)).second)
*out++ = get(vpm, target(hd, tm));
hd = next(hd, tm);
}
// sample triangles
if(sample_faces)
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
Point_ref p2 = get(vpm, target(next(hd, tm), tm));
out = internal::triangle_grid_sampling<Kernel>(p0, p1, p2, distance, out);
}
}
return out;
}
namespace internal {
template<typename Mesh,
typename PointOutputIterator,
typename GeomTraits,
typename Creator,
typename Vpm,
typename NamedParameters>
struct Triangle_structure_sampler_for_triangle_mesh
: Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename boost::graph_traits<Mesh>::face_iterator,
Random_points_in_triangle_mesh_3<Mesh, Vpm, Creator>,
Creator,
Triangle_structure_sampler_for_triangle_mesh<Mesh,
PointOutputIterator,
GeomTraits,
Creator,
Vpm,
NamedParameters> >
{
typedef Triangle_structure_sampler_for_triangle_mesh<Mesh,
PointOutputIterator,
GeomTraits,
Creator, Vpm,
NamedParameters> Self;
typedef Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename boost::graph_traits<Mesh>::face_iterator,
Random_points_in_triangle_mesh_3<Mesh, Vpm, Creator>,
Creator,
Self> Base;
typedef typename boost::graph_traits<Mesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<Mesh>::edge_descriptor edge_descriptor;
typedef typename boost::graph_traits<Mesh>::face_descriptor face_descriptor;
typedef typename GeomTraits::FT FT;
typedef Random_points_in_triangle_mesh_3<Mesh, Vpm,Creator> Randomizer;
typedef typename boost::graph_traits<Mesh>::face_iterator TriangleIterator;
Vpm pmap;
double min_sq_edge_length;
const Mesh& tm;
CGAL::Random rnd;
Triangle_structure_sampler_for_triangle_mesh(const Mesh& m,
PointOutputIterator& out,
const NamedParameters& np)
: Base(out, np), tm(m)
{
using parameters::choose_parameter;
using parameters::get_parameter;
using parameters::is_default_parameter;
CGAL_assertion(!is_empty(tm));
pmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm));
if(!(is_default_parameter<NamedParameters, internal_np::random_seed_t>::value))
rnd = CGAL::Random(choose_parameter(get_parameter(np, internal_np::random_seed),0));
min_sq_edge_length = (std::numeric_limits<double>::max)();
}
std::pair<TriangleIterator, TriangleIterator> get_range()
{
return std::make_pair(faces(tm).begin(), faces(tm).end());
}
void sample_points()
{
Property_map_to_unary_function<Vpm> unary(pmap);
this->out = std::copy(boost::make_transform_iterator(std::begin(vertices(tm)), unary),
boost::make_transform_iterator(std::end(vertices(tm)), unary),
this->out);
}
double get_squared_minimum_edge_length()
{
typedef typename boost::graph_traits<Mesh>::edge_descriptor edge_descriptor;
if(min_sq_edge_length != (std::numeric_limits<double>::max)())
return min_sq_edge_length;
FT m_sq_el = min_sq_edge_length;
for(edge_descriptor ed : edges(tm))
{
const FT sq_el = this->gt.compute_squared_distance_3_object()(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm)));
if(sq_el < m_sq_el)
m_sq_el = sq_el;
}
min_sq_edge_length = to_double(m_sq_el);
return min_sq_edge_length;
}
double get_tr_area(const typename boost::graph_traits<Mesh>::face_descriptor& tr)
{
return to_double(face_area(tr, tm, parameters::geom_traits(this->gt)));
}
template<typename Tr>//tr = face_descriptor here
std::array<typename GeomTraits::Point_3, 3> get_tr_points(const Tr& tr)
{
std::array<typename GeomTraits::Point_3, 3> points;
halfedge_descriptor hd(halfedge(tr,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(hd, tm));
hd = next(hd, tm);
}
return points;
}
void ms_edges_sample(std::size_t nb_points_per_edge,
double nb_pts_l_u)
{
typename GeomTraits::Compute_squared_distance_3 squared_distance = this->gt.compute_squared_distance_3_object();
if(nb_points_per_edge == 0 && nb_pts_l_u == 0.)
nb_pts_l_u = 1. / std::sqrt(min_sq_edge_length);
for(edge_descriptor ed : edges(tm))
{
std::size_t nb_points = nb_points_per_edge;
if(nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>(std::ceil(std::sqrt(to_double(
squared_distance(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm))))) * nb_pts_l_u)),
std::size_t(1));
}
// now do the sampling of the edge
Random_points_on_segment_3<typename GeomTraits::Point_3, Creator>
g(get(pmap, source(ed,tm)), get(pmap, target(ed, tm)));
this->out = std::copy_n(g, nb_points, this->out);
}
}
void ru_edges_sample(double nb_pts_l_u,
double nb_pts_a_u)
{
using parameters::choose_parameter;
using parameters::get_parameter;
std::size_t nb_points = choose_parameter(get_parameter(this->np, internal_np::number_of_points_on_edges), 0);
Random_points_on_edge_list_graph_3<Mesh, Vpm, Creator> g(tm, pmap);
if(nb_points == 0)
{
if(nb_pts_l_u == 0)
nb_points = num_vertices(tm);
else
nb_points = static_cast<std::size_t>(std::ceil(g.mesh_length() * nb_pts_a_u));
}
this->out = std::copy_n(g, nb_points, this->out);
}
Randomizer get_randomizer()
{
return Randomizer(tm, pmap, rnd);
}
void internal_sample_triangles(double grid_spacing_, bool smpl_fcs, bool smpl_dgs)
{
this->out = sample_triangles<GeomTraits>(faces(tm), tm, pmap, grid_spacing_,
this->out, smpl_fcs, smpl_dgs, false);
}
std::size_t get_points_size()
{
return num_vertices(tm);
}
};
template<typename PointRange,
typename TriangleRange,
typename PointOutputIterator,
typename GeomTraits,
typename Creator,
typename NamedParameters>
struct Triangle_structure_sampler_for_triangle_soup
: Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename TriangleRange::const_iterator,
Random_points_in_triangle_soup<PointRange,
typename TriangleRange::value_type,
Creator>,
Creator,
Triangle_structure_sampler_for_triangle_soup<PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator,
NamedParameters> >
{
typedef typename TriangleRange::value_type TriangleType;
typedef Triangle_structure_sampler_for_triangle_soup<PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator,
NamedParameters> Self;
typedef Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename TriangleRange::const_iterator,
Random_points_in_triangle_soup<PointRange, TriangleType, Creator>,
Creator,
Self> Base;
typedef typename GeomTraits::FT FT;
typedef typename GeomTraits::Point_3 Point_3;
typedef Random_points_in_triangle_soup<PointRange, TriangleType, Creator> Randomizer;
typedef typename TriangleRange::const_iterator TriangleIterator;
double min_sq_edge_length;
const PointRange& points;
const TriangleRange& triangles;
Random rnd;
Triangle_structure_sampler_for_triangle_soup(const PointRange& pts,
const TriangleRange& trs,
PointOutputIterator& out,
const NamedParameters& np)
: Base(out, np), points(pts), triangles(trs)
{
using parameters::choose_parameter;
using parameters::get_parameter;
using parameters::is_default_parameter;
min_sq_edge_length = (std::numeric_limits<double>::max)();
if(!(is_default_parameter<NamedParameters, internal_np::random_seed_t>::value))
rnd = CGAL::Random(choose_parameter(get_parameter(np, internal_np::random_seed),0));
}
std::pair<TriangleIterator, TriangleIterator> get_range()
{
return std::make_pair(triangles.begin(), triangles.end());
}
void sample_points()
{
this->out = std::copy(points.begin(), points.end(), this->out);
}
double get_squared_minimum_edge_length()
{
if(min_sq_edge_length != (std::numeric_limits<double>::max)())
return min_sq_edge_length;
FT m_sq_el = min_sq_edge_length;
for(const auto& tr : triangles)
{
for(std::size_t i = 0; i< 3; ++i)
{
const Point_3& a = points[tr[i]];
const Point_3& b = points[tr[(i+1)%3]];
const FT sq_el = this->gt.compute_squared_distance_3_object()(a, b);
if(sq_el < m_sq_el)
m_sq_el = sq_el;
}
}
min_sq_edge_length = to_double(m_sq_el);
return min_sq_edge_length;
}
template<typename Tr>
double get_tr_area(const Tr& tr)
{
// Kernel_3::Compute_area_3 uses `sqrt()`
return to_double(approximate_sqrt(
this->gt.compute_squared_area_3_object()(
points[tr[0]], points[tr[1]], points[tr[2]])));
}
template<typename Tr>
std::array<Point_3, 3> get_tr_points(const Tr& tr)
{
std::array<Point_3, 3> points;
for(int i=0; i<3; ++i)
points[i] = this->points[tr[i]];
return points;
}
void ms_edges_sample(std::size_t, double)
{
// don't sample edges in soup.
}
void ru_edges_sample(double, double)
{
// don't sample edges in soup.
}
Randomizer get_randomizer()
{
return Randomizer(triangles, points, rnd);
}
void internal_sample_triangles(double distance, bool, bool)
{
for(const auto& tr : triangles)
{
const Point_3& p0 = points[tr[0]];
const Point_3& p1 = points[tr[1]];
const Point_3& p2 = points[tr[2]];
this->out = internal::triangle_grid_sampling<GeomTraits>(p0, p1, p2, distance, this->out);
}
}
std::size_t get_points_size()
{
return points.size();
}
};
} // namespace internal
/** \ingroup PMP_distance_grp
*
* generates points on `tm` and outputs them to `out`; the sampling method
* is selected using named parameters.
*
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam PointOutputIterator a model of `OutputIterator`
* holding objects of the same point type as
* the value type of the point type associated to the mesh `tm`, i.e., the value type of the vertex
* point map property map, if provided, or the value type of the internal point property map otherwise
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param tm the triangle mesh to be sampled
* @param out output iterator to be filled with sample points
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
*
* \cgalParamNBegin{random_seed}
* \cgalParamDescription{a value to seed the random number generator}
* \cgalParamType{unsigned int}
* \cgalParamDefault{a value generated with `std::time()`}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_random_uniform_sampling}
* \cgalParamDescription{If `true` is passed, points are generated uniformly at random on faces and/or edges of `tm`.
If `do_sample_faces` is `true`, random points will be iteratively generated uniformly at random in the triangle of a face
selected with probability proportional to its area. If `do_sample_edges` is `true`, random points will be iteratively generated uniformly at random in the segment of an edge
selected with probability proportional to its length.}
* \cgalParamType{Boolean}
* \cgalParamType{`true`}
* \cgalParamExtra{For faces, the number of sample points is the value passed to the named
* parameter `number_of_points_on_faces`. If not set,
* the value passed to the named parameter `number_of_points_per_area_unit`
* is multiplied by the area of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.
* For edges, the number of the number of sample points is the value passed to the named
* parameter `number_of_points_on_edges`. If not set,
* the value passed to the named parameter `number_of_points_per_distance_unit`
* is multiplied by the sum of the length of edges of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_grid_sampling}
* \cgalParamDescription{If `true` is passed, points are generated on a grid in each triangle,
* with a minimum of one point per triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The distance between two consecutive points in the grid is that of the length
* of the smallest non-null edge of `tm` or the value passed to the named parameter
* `grid_spacing`. Edges are also split using the same distance, if requested.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_monte_carlo_sampling}
* \cgalParamDescription{if `true` is passed, points are generated randomly in each triangle and/or on each edge.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{For faces, the number of points per triangle is the value passed to the named
* parameter `number_of_points_per_face`. If not set, the value passed
* to the named parameter `number_of_points_per_area_unit` is
* used to pick a number of points per face proportional to the triangle
* area with a minimum of one point per face. If none of these parameters
* is set, 2 divided by the square of the length of the smallest non-null
* edge of `tm` is used as if it was passed to
* `number_of_points_per_area_unit`.
* For edges, the number of points per edge is the value passed to the named
* parameter `number_of_points_per_edge`. If not set, the value passed
* to the named parameter `number_of_points_per_distance_unit` is
* used to pick a number of points per edge proportional to the length of
* the edge with a minimum of one point per face. If none of these parameters
* is set, 1 divided by the length of the smallest non-null edge of `tm`
* is used as if it was passed to `number_of_points_per_distance_unit`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{do_sample_vertices}
* \cgalParamDescription{If `true` is passed, the vertices of `tm` are part of the sample.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{do_sample_edges}
* \cgalParamDescription{If `true` is passed, edges of `tm` are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{do_sample_faces}
* \cgalParamDescription{If `true` is passed, faces of `tm` are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{grid_spacing}
* \cgalParamDescription{a value used as the grid spacing for the grid sampling method}
* \cgalParamType{double}
* \cgalParamDefault{the length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_edges}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick exclusively on edges}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`num_vertices(tm)` or a value based on `nb_points_per_distance_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_faces}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick on the surface}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`num_vertices(tm)` or a value based on `nb_points_per_area_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_distance_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points on edges and the number of points per edge}
* \cgalParamType{double}
* \cgalParamDefault{`1` divided by the length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_edge}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per edge to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_area_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points inside faces and the number of points per face}
* \cgalParamType{double}
* \cgalParamDefault{`2` divided by the squared length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_face}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per face to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @see `CGAL::Polygon_mesh_processing::sample_triangle_soup()`
*/
template<class PointOutputIterator, class TriangleMesh,
class NamedParameters = parameters::Default_named_parameters>
PointOutputIterator
sample_triangle_mesh(const TriangleMesh& tm,
PointOutputIterator out,
const NamedParameters& np = parameters::default_values())
{
typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type GeomTraits;
typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type Vpm;
CGAL_precondition(!is_empty(tm) && is_triangle_mesh(tm));
internal::Triangle_structure_sampler_for_triangle_mesh<
TriangleMesh,
PointOutputIterator,
GeomTraits,
Creator_uniform_3<typename GeomTraits::FT, typename GeomTraits::Point_3>,
Vpm,
NamedParameters> performer(tm, out, np);
performer.procede();
return performer.out;
}
/** \ingroup PMP_distance_grp
*
* generates points on a triangle soup and puts them to `out`; the sampling method
* is selected using named parameters.
*
* @tparam PointRange a model of the concept `RandomAccessContainer` whose value type is the point type.
* @tparam TriangleRange a model of the concept `RandomAccessContainer`
* whose `value_type` is itself a model of the concept `RandomAccessContainer`
* whose `value_type` is an unsigned integral value.
* @tparam PointOutputIterator a model of `OutputIterator` holding objects of the same type as `PointRange`'s value type
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points the points of the soup
* @param triangles a `TriangleRange` containing the triangles of the soup to be sampled
* @param out output iterator to be filled with sample points
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the point range's point type.}
* \cgalParamNEnd
*
* \cgalParamNBegin{random_seed}
* \cgalParamDescription{a value to seed the random number generator}
* \cgalParamType{unsigned int}
* \cgalParamDefault{a value generated with `std::time()`}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_random_uniform_sampling}
* \cgalParamDescription{If `true` is passed, points are generated in a random and uniform way
* over the triangles of the soup.}
* \cgalParamType{Boolean}
* \cgalParamType{`true`}
* \cgalParamExtra{The number of sample points is the value passed to the named
* parameter `number_of_points_on_faces`. If not set,
* the value passed to the named parameter `number_of_points_per_area_unit`
* is multiplied by the area of the soup to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `points.size()`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_grid_sampling}
* \cgalParamDescription{If `true` is passed, points are generated on a grid in each triangle,
* with a minimum of one point per triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The distance between two consecutive points in the grid is that of the length
* of the smallest non-null edge of the soup or the value passed to the named parameter
* `grid_spacing`.}
* \cgalParamNEnd
* \cgalParamNBegin{use_monte_carlo_sampling}
* \cgalParamDescription{if `true` is passed, points are generated randomly in each triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The number of points per triangle is the value passed to the named
* parameter `number_of_points_per_face`. If not set, the value passed
* to the named parameter `number_of_points_per_area_unit` is
* used to pick a number of points per face proportional to the triangle
* area with a minimum of one point per face. If none of these parameters
* is set, the number of points per area unit is set to 2 divided
* by the square of the length of the smallest non-null edge of the soup.}
* \cgalParamNEnd
*
* \cgalParamNBegin{do_sample_vertices}
* \cgalParamDescription{If `true` is passed, the points of `points` are part of the sample.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{do_sample_faces}
* \cgalParamDescription{If `true` is passed, faces of the soup are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{grid_spacing}
* \cgalParamDescription{a value used as the grid spacing for the grid sampling method}
* \cgalParamType{double}
* \cgalParamDefault{the length of the shortest, non-degenerate edge of the soup}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_faces}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick on the surface}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`points.size()` or a value based on `nb_points_per_area_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_face}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per face to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_area_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points inside faces and the number of points per face}
* \cgalParamType{double}
* \cgalParamDefault{`2` divided by the squared length of the shortest, non-degenerate edge of the soup}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* \attention Contrary to `sample_triangle_mesh()`, this method does not allow to sample edges.
*
* @see `CGAL::Polygon_mesh_processing::sample_triangle_mesh()`
*/
template<class PointOutputIterator,
class TriangleRange,
class PointRange,
class NamedParameters = parameters::Default_named_parameters>
PointOutputIterator
sample_triangle_soup(const PointRange& points,
const TriangleRange& triangles,
PointOutputIterator out,
const NamedParameters& np = parameters::default_values())
{
typedef typename PointRange::value_type Point_3;
typedef typename Kernel_traits<Point_3>::Kernel GeomTraits;
static_assert(std::is_same<Point_3, typename GeomTraits::Point_3>::value, "Wrong point type.");
CGAL_precondition(!triangles.empty());
internal::Triangle_structure_sampler_for_triangle_soup<
PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator_uniform_3<typename GeomTraits::FT, typename GeomTraits::Point_3>,
NamedParameters> performer(points, triangles, out, np);
performer.procede();
return performer.out;
}
/**
* \ingroup PMP_distance_grp
*
* returns the distance to `tm` of the point from `points` that is the furthest from `tm`.
*
* @tparam PointRange a range of `Point_3`, model of `Range`. Its iterator type is `RandomAccessIterator`.
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points the range of points of interest
* @param tm the triangle mesh to compute the distance to
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @pre `tm` is a non-empty triangle mesh and `points` is not empty.
*/
template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters = parameters::Default_named_parameters>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm,
const NamedParameters& np = parameters::default_values())
{
CGAL_precondition(!is_empty(tm) && is_triangle_mesh(tm));
using parameters::choose_parameter;
using parameters::get_parameter;
typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type GeomTraits;
typedef typename GeomTraits::Point_3 Point_3;
GeomTraits gt = choose_parameter<GeomTraits>(get_parameter(np, internal_np::geom_traits));
typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type VPM;
VPM vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm));
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Nb sample points " << points.size() << "\n";
#endif
std::vector<Point_3> points_cpy(std::begin(points), std::end(points));
spatial_sort(points_cpy.begin(), points_cpy.end());
typedef AABB_face_graph_triangle_primitive<TriangleMesh, VPM> Primitive;
typedef AABB_traits_3<GeomTraits, Primitive> Tree_traits;
typedef AABB_tree<Tree_traits> Tree;
Tree_traits tgt/*(gt)*/;
Tree tree(tgt);
tree.insert(faces(tm).first, faces(tm).second, tm, vpm);
const Point_3& hint = get(vpm, *vertices(tm).first);
return internal::max_distance_to_mesh_impl<Concurrency_tag>(points_cpy, tree, hint, gt);
}
/**
* \ingroup PMP_distance_grp
*
* computes the approximate Hausdorff distance from `tm1` to `tm2` by returning
* the distance of the farthest point from `tm2` amongst a sampling of `tm1`
* generated with the function `sample_triangle_mesh()` with
* `tm1` and `np1` as parameter.
*
* A parallel version is provided and requires the executable to be
* linked against the <a href="https://github.com/oneapi-src/oneTBB">Intel TBB library</a>.
* To control the number of threads used, the user may use the `tbb::task_scheduler_init` class.
* See the <a href="https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html">TBB documentation</a>
* for more details.
*
* @tparam Concurrency_tag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag`, `Parallel_tag`, and `Parallel_if_available_tag`.
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam NamedParameters1 a sequence of \ref bgl_namedparameters "Named Parameters" for `tm1`
* @tparam NamedParameters2 a sequence of \ref bgl_namedparameters "Named Parameters" for `tm2`
*
* @param tm1 the triangle mesh that will be sampled
* @param tm2 the triangle mesh to compute the distance to
* @param np1 an optional sequence of \ref bgl_namedparameters "Named Parameters" forwarded to `sample_triangle_mesh()`
* @param np2 an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm2`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm2)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @pre `tm1` and `tm2` are non-empty triangle meshes.
*/
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
double approximate_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
typedef typename GetGeomTraits<TriangleMesh, NamedParameters1>::type GeomTraits;
typedef typename GeomTraits::Point_3 Point_3;
CGAL_precondition(!is_empty(tm1) && is_triangle_mesh(tm1));
CGAL_precondition(!is_empty(tm2) && is_triangle_mesh(tm2));
std::vector<Point_3> sample_points;
sample_triangle_mesh(tm1, std::back_inserter(sample_points), np1);
return max_distance_to_triangle_mesh<Concurrency_tag>(sample_points, tm2, np2);
}
/**
* \ingroup PMP_distance_grp
*
* returns the approximate symmetric Hausdorff distance between `tm1` and `tm2`,
* that is the maximum of `approximate_Hausdorff_distance(tm1, tm2, np1, np2)`
* and `approximate_Hausdorff_distance(tm2, tm1, np2, np1)`.
*
* See the function `approximate_Hausdorff_distance()` for a complete description of the parameters
* and requirements.
*/
template <class Concurrency_tag,
class TriangleMesh,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
double approximate_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
return (std::max)(approximate_Hausdorff_distance<Concurrency_tag>(tm1,tm2,np1,np2),
approximate_Hausdorff_distance<Concurrency_tag>(tm2,tm1,np2,np1));
}
/*!
*\ingroup PMP_distance_grp
*
* returns an approximation of the distance between `points` and the point lying on `tm` that is the farthest from `points`.
*
* @tparam PointRange a range of `Point_3`, model of `Range`
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param tm a triangle mesh
* @param points a range of points
* @param precision for each triangle of `tm`, the distance of its farthest point from `points` is bounded.
* A triangle is subdivided into sub-triangles so that the difference of its distance bounds
* is smaller than `precision`. `precision` must be strictly positive to avoid infinite loops.
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @pre `tm` is a non-empty triangle mesh and `points` is not empty.
*/
template< class TriangleMesh,
class PointRange,
class NamedParameters = parameters::Default_named_parameters>
double approximate_max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const double precision,
const NamedParameters& np = parameters::default_values())
{
CGAL_precondition(!is_empty(tm) && is_triangle_mesh(tm));
CGAL_precondition(!points.empty());
typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type GeomTraits;
typedef typename boost::graph_traits<TriangleMesh>::halfedge_descriptor halfedge_descriptor;
typedef typename boost::graph_traits<TriangleMesh>::face_descriptor face_descriptor;
typedef Orthogonal_k_neighbor_search<Search_traits_3<GeomTraits> > Knn;
typedef typename Knn::Tree Tree;
Tree tree(points.begin(), points.end());
CRefiner<GeomTraits> ref;
for(face_descriptor f : faces(tm))
{
typename GeomTraits::Point_3 points[3];
halfedge_descriptor hd(halfedge(f,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(parameters::choose_parameter(parameters::get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm)),
target(hd, tm));
hd = next(hd, tm);
}
ref.add(points[0], points[1], points[2], tree);
}
return to_double(ref.refine(precision, tree));
}
////////////////////////////////////////////////////////////////////////
// Use this def in order to get back the parallel version of the one-sided Hausdorff code!
// #define USE_PARALLEL_BEHD
namespace internal {
template <class Kernel,
class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2,
class NamedParameters1,
class NamedParameters2,
class TM1Tree,
class TM2Tree,
class FaceHandle1,
class FaceHandle2>
std::pair<typename Kernel::FT, bool>
preprocess_bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const bool compare_meshes,
const VPM1 vpm1,
const VPM2 vpm2,
const bool is_one_sided_distance,
const NamedParameters1& np1,
const NamedParameters2& np2,
TM1Tree& tm1_tree,
TM2Tree& tm2_tree,
std::vector<FaceHandle1>& tm1_only,
std::vector<FaceHandle2>& tm2_only)
{
using FT = typename Kernel::FT;
#ifdef CGAL_HAUSDORFF_DEBUG
using Timer = CGAL::Real_timer;
Timer timer;
timer.start();
std::cout << "* preprocessing begin ...." << std::endl;
std::cout.precision(17);
#endif
// Compute the max value that is used as infinity value for the given meshes.
// In our case, it is twice the length of the diagonal of the bbox of two input meshes.
const Bbox_3 bbox1 = bbox(tm1);
const Bbox_3 bbox2 = bbox(tm2);
const Bbox_3 bb = bbox1 + bbox2;
const FT sq_dist = square(bb.xmax() - bb.xmin())
+ square(bb.ymax() - bb.ymin())
+ square(bb.zmax() - bb.zmin());
FT infinity_value = FT(4) * sq_dist;
CGAL_assertion(infinity_value >= FT(0));
// Compare meshes and build trees.
tm1_only.clear();
tm2_only.clear();
std::vector<std::pair<FaceHandle1, FaceHandle2> > common;
const auto faces1 = faces(tm1);
const auto faces2 = faces(tm2);
CGAL_precondition(faces1.size() > 0);
CGAL_precondition(faces2.size() > 0);
// Compare meshes.
bool rebuild = false;
if(compare_meshes) // exact check
{
match_faces(tm1, tm2, std::back_inserter(common),
std::back_inserter(tm1_only), std::back_inserter(tm2_only), np1, np2);
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "- common: " << common.size() << std::endl;
std::cout << "- tm1 only: " << tm1_only.size() << std::endl;
std::cout << "- tm2 only: " << tm2_only.size() << std::endl;
#endif
if(is_one_sided_distance) // one-sided distance
{
if(tm1_only.size() > 0) // create TM1 and full TM2
{
tm1_tree.insert(tm1_only.begin(), tm1_only.end(), tm1, vpm1);
tm2_tree.insert(faces2.begin(), faces2.end(), tm2, vpm2);
}
else // do not create trees
{
CGAL_assertion(tm1_only.size() == 0);
infinity_value = FT(-1);
}
}
else // symmetric distance
{
if(tm1_only.size() == 0 && tm2_only.size() == 0) // do not create trees
{
infinity_value = FT(-1);
}
else if(common.size() == 0) // create full TM1 and TM2
{
tm1_tree.insert(faces1.begin(), faces1.end(), tm1, vpm1);
tm2_tree.insert(faces2.begin(), faces2.end(), tm2, vpm2);
}
else if(tm1_only.size() == 0) // create TM2 and full TM1
{
CGAL_assertion(tm2_only.size() > 0);
CGAL_assertion(tm2_only.size() < faces2.size());
tm1_tree.insert(faces1.begin(), faces1.end(), tm1, vpm1);
tm2_tree.insert(tm2_only.begin(), tm2_only.end(), tm2, vpm2);
}
else if(tm2_only.size() == 0) // create TM1 and full TM2
{
CGAL_assertion(tm1_only.size() > 0);
CGAL_assertion(tm1_only.size() < faces1.size());
tm1_tree.insert(tm1_only.begin(), tm1_only.end(), tm1, vpm1);
tm2_tree.insert(faces2.begin(), faces2.end(), tm2, vpm2);
}
else // create TM1 and full TM2 and set tag to rebuild them later
{
CGAL_assertion(tm1_only.size() > 0);
CGAL_assertion(tm1_only.size() < faces1.size());
tm1_tree.insert(tm1_only.begin(), tm1_only.end(), tm1, vpm1);
tm2_tree.insert(faces2.begin(), faces2.end(), tm2, vpm2);
rebuild = true;
}
}
}
else // create full TM1 and TM2
{
tm1_tree.insert(faces1.begin(), faces1.end(), tm1, vpm1);
tm2_tree.insert(faces2.begin(), faces2.end(), tm2, vpm2);
}
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* .... end preprocessing" << std::endl;
std::cout << "* preprocessing time (sec.): " << timer.time() << std::endl;
#endif
return std::make_pair(infinity_value, rebuild);
}
template <class Kernel,
class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2,
class TM1Tree,
class TM2Tree,
class OutputIterator>
typename Kernel::FT
bounded_error_squared_Hausdorff_distance_impl(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const VPM1 vpm1,
const VPM2 vpm2,
const TM1Tree& tm1_tree,
const TM2Tree& tm2_tree,
const typename Kernel::FT error_bound,
const typename Kernel::FT sq_initial_bound,
const typename Kernel::FT sq_distance_bound,
const typename Kernel::FT infinity_value,
OutputIterator& out)
{
using FT = typename Kernel::FT;
using Point_3 = typename Kernel::Point_3;
using Triangle_3 = typename Kernel::Triangle_3;
auto midpoint = Kernel().construct_midpoint_3_object();
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << " -- Bounded Hausdorff --" << std::endl;
std::cout << "error bound: " << error_bound << std::endl;
std::cout << "initial bound: " << sq_initial_bound << " (" << approximate_sqrt(sq_initial_bound) << ")" << std::endl;
std::cout << "distance bound: " << sq_distance_bound << " (" << approximate_sqrt(sq_distance_bound) << ")" << std::endl;
std::cout << "inf val: " << infinity_value << " (" << approximate_sqrt(infinity_value) << ")" << std::endl;
#endif
using TM1_hd_traits = Hausdorff_primitive_traits_tm1<Point_3, Kernel, TriangleMesh1, TriangleMesh2, VPM1, VPM2>;
using TM2_hd_traits = Hausdorff_primitive_traits_tm2<Triangle_3, Kernel, TriangleMesh1, TriangleMesh2, VPM2>;
using Face_handle_1 = typename boost::graph_traits<TriangleMesh1>::face_descriptor;
using Face_handle_2 = typename boost::graph_traits<TriangleMesh2>::face_descriptor;
using Candidate = Candidate_triangle<Kernel, Face_handle_1, Face_handle_2>;
if constexpr(std::is_floating_point_v<FT>) {
CGAL_precondition(std::nextafter(sq_initial_bound, (std::numeric_limits<FT>::max)()) >= square(FT(error_bound)));
} else {
CGAL_precondition(sq_initial_bound >= square(FT(error_bound)));
}
CGAL_precondition(sq_distance_bound != FT(0)); // value is -1 if unused
CGAL_precondition(tm1_tree.size() > 0);
CGAL_precondition(tm2_tree.size() > 0);
// First, we apply culling.
#ifdef CGAL_HAUSDORFF_DEBUG
using Timer = CGAL::Real_timer;
Timer timer;
timer.start();
std::cout << "- applying culling" << std::endl;
std::cout.precision(17);
#endif
// Build traversal traits for tm1_tree.
TM1_hd_traits traversal_traits_tm1(tm2_tree, tm1, tm2, vpm1, vpm2,
infinity_value, sq_initial_bound, sq_distance_bound);
// Find candidate triangles in TM1, which might realize the Hausdorff bound.
// We build a sorted structure while collecting the candidates.
const Point_3 stub(0, 0, 0); // dummy point given as query since it is not needed
tm1_tree.traversal_with_priority(stub, traversal_traits_tm1);
auto& candidate_triangles = traversal_traits_tm1.get_candidate_triangles();
Global_bounds<Kernel, Face_handle_1, Face_handle_2> global_bounds = traversal_traits_tm1.get_global_bounds();
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "- bounds post traversal: " << global_bounds.lower << " " << global_bounds.upper << std::endl;
std::cout << "- number of candidate triangles: " << candidate_triangles.size() << std::endl;
const FT culling_rate = FT(100) - (FT(candidate_triangles.size()) / FT(tm1_tree.size()) * FT(100));
std::cout << "- culling rate: " << culling_rate << "%" << std::endl;
timer.stop();
std::cout << "* culling (sec.): " << timer.time() << std::endl;
#endif
CGAL_assertion(global_bounds.lower >= FT(0));
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
CGAL_assertion(global_bounds.lpair.first != boost::graph_traits<TriangleMesh1>::null_face());
CGAL_assertion(global_bounds.lpair.second != boost::graph_traits<TriangleMesh2>::null_face());
CGAL_assertion(global_bounds.upair.first != boost::graph_traits<TriangleMesh1>::null_face());
CGAL_assertion(global_bounds.upair.second != boost::graph_traits<TriangleMesh2>::null_face());
// If we already reached the user-defined max distance bound, we quit.
if(traversal_traits_tm1.early_exit())
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Quitting early (TM1 traversal): temporary distance " << global_bounds.lower
<< " is already greater than user-defined bound " << sq_distance_bound << std::endl;
#endif
CGAL_assertion(global_bounds.lower > sq_distance_bound);
return global_bounds.lower;
}
// Second, we apply subdivision.
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
std::cout << "- applying subdivision" << std::endl;
timer.start();
std::size_t explored_candidates_count = 0;
#endif
// See Section 5.1 in the paper.
while(!candidate_triangles.empty())
{
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "===" << std::endl;
std::cout << candidate_triangles.size() << " candidates" << std::endl;
std::cout << "- infinity_value: " << infinity_value << std::endl;
std::cout << "- error_bound: " << error_bound << std::endl;
std::cout << "- sq_initial_bound: " << sq_initial_bound << std::endl;
std::cout << "- sq_distance_bound: " << sq_distance_bound << std::endl;
std::cout << "- global_bounds.lower: " << global_bounds.lower << std::endl;
std::cout << "- global_bounds.upper: " << global_bounds.upper << std::endl;
std::cout << "- diff = " << CGAL::approximate_sqrt(global_bounds.upper) -
CGAL::approximate_sqrt(global_bounds.lower) << ", below bound? "
<< ((CGAL::approximate_sqrt(global_bounds.upper) -
CGAL::approximate_sqrt(global_bounds.lower)) <= error_bound) << std::endl;
#endif
CGAL_assertion(global_bounds.lower >= FT(0));
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
// @todo could cache those sqrts
if(CGAL::approximate_sqrt(global_bounds.upper) - CGAL::approximate_sqrt(global_bounds.lower) <= error_bound)
break;
// Check if we can early quit.
if(is_positive(sq_distance_bound)) // empty distance bound is FT(-1)
{
const bool early_quit = (sq_distance_bound <= global_bounds.lower);
if(early_quit)
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Quitting early with lower bound: " << global_bounds.lower << std::endl;
#endif
break;
}
}
const Candidate triangle_and_bounds = candidate_triangles.top();
candidate_triangles.pop();
// Only process the triangle if it can contribute to the Hausdorff distance,
// i.e., if its upper bound is higher than the currently known best lower bound
// and the difference between the bounds to be obtained is larger than the
// user-given error.
const auto& triangle_bounds = triangle_and_bounds.bounds;
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Candidate:" << std::endl;
std::cout << triangle_and_bounds.triangle.vertex(0) << std::endl;
std::cout << triangle_and_bounds.triangle.vertex(1) << std::endl;
std::cout << triangle_and_bounds.triangle.vertex(2) << std::endl;
std::cout << "triangle_bounds.lower: " << triangle_bounds.lower << std::endl;
std::cout << "triangle_bounds.upper: " << triangle_bounds.upper << std::endl;
std::cout << "- diff = " << CGAL::approximate_sqrt(triangle_bounds.upper) -
CGAL::approximate_sqrt(triangle_bounds.lower) << ", below bound? "
<< ((CGAL::approximate_sqrt(triangle_bounds.upper) -
CGAL::approximate_sqrt(triangle_bounds.lower)) <= error_bound) << std::endl;
#endif
CGAL_assertion(triangle_bounds.lower >= FT(0));
CGAL_assertion(triangle_bounds.upper >= triangle_bounds.lower);
// @todo implement the enclosing-based end criterion (Section 5.1, optional step for TM1 & TM2 closed)
// Might have been a good candidate when added to the queue, but rendered useless by later insertions
if(triangle_bounds.upper < global_bounds.lower)
{
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Upper bound is lower than global.lower" << std::endl;
#endif
continue;
}
if((CGAL::approximate_sqrt(triangle_bounds.upper) - CGAL::approximate_sqrt(triangle_bounds.lower)) <= error_bound)
{
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Candidate triangle bounds are tight enough: " << triangle_bounds.lower << " " << triangle_bounds.upper << std::endl;
#endif
continue;
}
#ifdef CGAL_HAUSDORFF_DEBUG
++explored_candidates_count;
#endif
// Triangle to be subdivided
const Triangle_3& triangle_for_subdivision = triangle_and_bounds.triangle;
const Point_3& v0 = triangle_for_subdivision.vertex(0);
const Point_3& v1 = triangle_for_subdivision.vertex(1);
const Point_3& v2 = triangle_for_subdivision.vertex(2);
// Stopping condition: All three vertices of the triangle are projected onto the same triangle in TM2.
const auto closest_triangle_v0 = tm2_tree.closest_point_and_primitive(v0);
const auto closest_triangle_v1 = tm2_tree.closest_point_and_primitive(v1);
const auto closest_triangle_v2 = tm2_tree.closest_point_and_primitive(v2);
CGAL_assertion(closest_triangle_v0.second != boost::graph_traits<TriangleMesh2>::null_face());
CGAL_assertion(closest_triangle_v1.second != boost::graph_traits<TriangleMesh2>::null_face());
CGAL_assertion(closest_triangle_v2.second != boost::graph_traits<TriangleMesh2>::null_face());
if((closest_triangle_v0.second == closest_triangle_v1.second) &&
(closest_triangle_v1.second == closest_triangle_v2.second))
{
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Projects onto the same TM2 face" << std::endl;
#endif
// The upper bound of this triangle is the actual Hausdorff distance of
// the triangle to the second mesh. Use it as new global lower bound.
// Here, we update the reference to the realizing triangle as this is the best current guess.
global_bounds.lower = triangle_bounds.upper;
global_bounds.lpair.second = triangle_bounds.tm2_uface;
continue;
}
// Subdivide the triangle into four smaller triangles.
const Point_3 v01 = midpoint(v0, v1);
const Point_3 v02 = midpoint(v0, v2);
const Point_3 v12 = midpoint(v1, v2);
const std::array<Triangle_3, 4> sub_triangles = { Triangle_3(v0, v01, v02), Triangle_3(v1 , v01, v12),
Triangle_3(v2, v02, v12), Triangle_3(v01, v02, v12) };
// Send each of the four triangles to culling on B
for(std::size_t i=0; i<4; ++i)
{
// Call culling on B with the single triangle found.
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "\nSubface #" << i << "\n"
<< "Geometry: " << sub_triangles[i] << std::endl;
#endif
// Checking as in during TM1 culling is expensive
// @todo? For each sub-triangle `ts1` that has a vertex of `v` of the triangle `t1` being subdivided,
// we have a lower bound on `h(ts1, TM2)` because:
// h_t1_lower = max_{vi in t1} min_{t2 in TM2} d(vi, t2)
// and
// h_ts1_lower = max_{vi in ts1} min_{t2 in TM2} d(vi, t2) > min_{t2 in TM2} d(v, t2)
// But:
// - we don't keep that in memory (not very hard to change, simply put `m_hi_lower`
// from the TM2 traversal traits into the candidate
// - what's the point? TM2 culling is performed on the local upper bound, so is there
// a benefit from providing this value?
//
// (We also have that error_bound is a lower bound.)
const Bbox_3 sub_t1_bbox = sub_triangles[i].bbox();
// The lower bound is:
// h_lower(t1, TM2) := max_{v in t1} min_{t2 in TM2} d(v, t2)
// The upper bound is:
// h_upper(t1, TM2) := min_{t2 in TM2} max_{v in t1} d(v, t2)
// The value max_{p in t1} d(p, t2) is realized at a vertex of t1.
// Thus, when splitting t1 into four subtriangles, the distance at the three new vertices
// is smaller than max_{v in t1} d(v, t2)
// Thus, subdivision can only decrease the min, and the upper bound.
Local_bounds<Kernel, Face_handle_1, Face_handle_2> bounds(triangle_bounds.upper);
// Ensure 'lface' and 'uface' are initialized in case the bounds are not changed by the subdivision
bounds.tm2_uface = triangle_bounds.tm2_uface;
bounds.tm2_lface = triangle_bounds.tm2_lface;
TM2_hd_traits traversal_traits_tm2(sub_t1_bbox, tm2, vpm2, bounds, global_bounds, infinity_value);
tm2_tree.traversal_with_priority(sub_triangles[i], traversal_traits_tm2);
// Update global lower Hausdorff bound according to the obtained local bounds.
const auto& sub_triangle_bounds = traversal_traits_tm2.get_local_bounds();
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Subdivided triangle bounds: " << sub_triangle_bounds.lower << " " << sub_triangle_bounds.upper << std::endl;
#endif
CGAL_assertion(sub_triangle_bounds.lower >= FT(0));
CGAL_assertion(sub_triangle_bounds.upper >= sub_triangle_bounds.lower);
CGAL_assertion(sub_triangle_bounds.tm2_lface != boost::graph_traits<TriangleMesh2>::null_face());
CGAL_assertion(sub_triangle_bounds.tm2_uface != boost::graph_traits<TriangleMesh2>::null_face());
// The global lower bound is the max of the per-face lower bounds
if(sub_triangle_bounds.lower > global_bounds.lower)
{
global_bounds.lower = sub_triangle_bounds.lower;
global_bounds.lpair.first = triangle_and_bounds.tm1_face;
global_bounds.lpair.second = sub_triangle_bounds.tm2_lface;
}
// The global upper bound is:
// max_{query in TM1} min_{primitive in TM2} max_{v in query} (d(v, primitive))
// which can go down, so it is only recomputed once splitting is finished,
// using the top value of the PQ
candidate_triangles.emplace(sub_triangles[i], sub_triangle_bounds, triangle_and_bounds.tm1_face);
}
// Update global upper Hausdorff bound after subdivision.
const Candidate& top_candidate = candidate_triangles.top();
const FT current_upmost = top_candidate.bounds.upper;
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "global_bounds.lower = " << global_bounds.lower << std::endl;
std::cout << "global_bounds.upper = " << global_bounds.upper << std::endl;
std::cout << "current upper bound = " << current_upmost << std::endl;
#endif
CGAL_assertion(is_positive(current_upmost));
if(current_upmost < global_bounds.lower)
{
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Top of the queue is lower than the lowest!" << std::endl;
#endif
global_bounds.upper = global_bounds.lower; // not really needed since lower is returned but doesn't hurt
global_bounds.upair.first = global_bounds.lpair.first;
global_bounds.upair.second = global_bounds.lpair.second;
break;
}
CGAL_assertion(current_upmost >= global_bounds.lower);
global_bounds.upper = current_upmost;
global_bounds.upair.first = top_candidate.tm1_face;
global_bounds.upair.second = top_candidate.bounds.tm2_uface;
#ifdef CGAL_HAUSDORFF_DEBUG_PP
std::cout << "Global bounds post subdi: " << global_bounds.lower << " " << global_bounds.upper << std::endl;
#endif
CGAL_assertion(global_bounds.lower >= FT(0));
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
}
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* subdivision (sec.): " << timer.time() << std::endl;
std::cout << "Explored " << explored_candidates_count << " candidates" << std::endl;
std::cout << "Final global bounds: " << global_bounds.lower << " " << global_bounds.upper << std::endl;
std::cout << "Final global bounds (sqrt): " << CGAL::approximate_sqrt(global_bounds.lower) << " "
<< CGAL::approximate_sqrt(global_bounds.upper) << std::endl;
std::cout << "Difference: " << CGAL::approximate_sqrt(global_bounds.upper) -
CGAL::approximate_sqrt(global_bounds.lower) << std::endl;
#endif
CGAL_assertion(global_bounds.lower >= FT(0));
CGAL_assertion(global_bounds.upper >= global_bounds.lower);
CGAL_assertion(CGAL::approximate_sqrt(global_bounds.upper) - CGAL::approximate_sqrt(global_bounds.lower) <= error_bound);
// Get realizing triangles.
CGAL_assertion(global_bounds.lpair.first != boost::graph_traits<TriangleMesh1>::null_face());
CGAL_assertion(global_bounds.lpair.second != boost::graph_traits<TriangleMesh2>::null_face());
CGAL_assertion(global_bounds.upair.first != boost::graph_traits<TriangleMesh1>::null_face());
CGAL_assertion(global_bounds.upair.second != boost::graph_traits<TriangleMesh2>::null_face());
// Output face pairs, which realize the Hausdorff distance.
*out++ = global_bounds.lpair;
*out++ = global_bounds.upair;
// Return the lower bound because if the correct value is in [0; lower_bound[, the result
// must still be within the error bound (we have set lower_bound to error_bound initially)
return global_bounds.lower;
}
#if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED) && defined(USE_PARALLEL_BEHD)
template<class TriangleMesh, class VPM, class TMTree>
struct Triangle_mesh_wrapper
{
const TriangleMesh& tm; const VPM& vpm;
const bool is_tm2; TMTree& tm_tree;
Triangle_mesh_wrapper(const TriangleMesh& tm, const VPM& vpm,
const bool is_tm2, TMTree& tm_tree)
: tm(tm), vpm(vpm), is_tm2(is_tm2), tm_tree(tm_tree)
{ }
void build_tree()
{
tm_tree.insert(faces(tm).begin(), faces(tm).end(), tm, vpm);
tm_tree.build();
if(is_tm2)
tm_tree.accelerate_distance_queries();
else
tm_tree.do_not_accelerate_distance_queries();
}
};
template<class TM1Wrapper, class TM2Wrapper>
struct Bounded_error_preprocessing
{
#ifdef CGAL_HAUSDORFF_DEBUG
using Timer = CGAL::Real_timer;
#endif
std::vector<std::any>& tm_wrappers;
// Constructor.
Bounded_error_preprocessing(std::vector<std::any>& tm_wrappers)
: tm_wrappers(tm_wrappers)
{ }
// Split constructor.
Bounded_error_preprocessing(Bounded_error_preprocessing& s, tbb::split)
: tm_wrappers(s.tm_wrappers)
{ }
bool is_tm1_wrapper(const std::any& operand) const { return operand.type() == typeid(TM1Wrapper); }
bool is_tm2_wrapper(const std::any& operand) const { return operand.type() == typeid(TM2Wrapper); }
// TODO: make AABB tree build parallel!
void operator()(const tbb::blocked_range<std::size_t>& range)
{
#ifdef CGAL_HAUSDORFF_DEBUG
Timer timer;
timer.reset();
timer.start();
std::cout.precision(17);
#endif
for(std::size_t i = range.begin(); i != range.end(); ++i)
{
CGAL_assertion(i < tm_wrappers.size());
auto& tm_wrapper = tm_wrappers[i];
if(is_tm1_wrapper(tm_wrapper))
{
TM1Wrapper& object = std::any_cast<TM1Wrapper&>(tm_wrapper);
object.build_tree();
}
else if(is_tm2_wrapper(tm_wrapper))
{
TM2Wrapper& object = std::any_cast<TM2Wrapper&>(tm_wrapper);
object.build_tree();
}
else
{
CGAL_assertion_msg(false, "Error: wrong boost any type!");
}
}
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* time operator() preprocessing (sec.): " << timer.time() << std::endl;
#endif
}
void join(Bounded_error_preprocessing&) { }
};
template <class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2,
class TM1Tree,
class TM2Tree,
class Kernel>
struct Bounded_error_squared_distance_computation
{
using FT = typename Kernel::FT;
#ifdef CGAL_HAUSDORFF_DEBUG
using Timer = CGAL::Real_timer;
#endif
const std::vector<TriangleMesh1>& tm1_parts;
const TriangleMesh2& tm2;
const double error_bound;
const VPM1 vpm1; const VPM2 vpm2;
const FT infinity_value;
const FT sq_initial_bound;
const std::vector<TM1Tree>& tm1_trees;
const TM2Tree& tm2_tree;
FT sq_hdist;
// Constructor.
Bounded_error_squared_distance_computation(const std::vector<TriangleMesh1>& tm1_parts,
const TriangleMesh2& tm2,
const double error_bound,
const VPM1 vpm1, const VPM2 vpm2,
const FT infinity_value,
const FT sq_initial_bound,
const std::vector<TM1Tree>& tm1_trees,
const TM2Tree& tm2_tree)
: tm1_parts(tm1_parts), tm2(tm2),
error_bound(error_bound),
vpm1(vpm1), vpm2(vpm2),
infinity_value(infinity_value), sq_initial_bound(sq_initial_bound),
tm1_trees(tm1_trees), tm2_tree(tm2_tree),
sq_hdist(-1)
{
CGAL_assertion(tm1_parts.size() == tm1_trees.size());
}
// Split constructor.
Bounded_error_squared_distance_computation(Bounded_error_squared_distance_computation& s, tbb::split)
: tm1_parts(s.tm1_parts), tm2(s.tm2),
error_bound(s.error_bound),
vpm1(s.vpm1), vpm2(s.vpm2),
infinity_value(s.infinity_value), sq_initial_bound(s.sq_initial_bound),
tm1_trees(s.tm1_trees), tm2_tree(s.tm2_tree),
sq_hdist(-1)
{
CGAL_assertion(tm1_parts.size() == tm1_trees.size());
}
void operator()(const tbb::blocked_range<std::size_t>& range)
{
#ifdef CGAL_HAUSDORFF_DEBUG
Timer timer;
timer.reset();
timer.start();
std::cout.precision(17);
#endif
FT sq_dist = FT(-1);
auto stub = CGAL::Emptyset_iterator();
for(std::size_t i = range.begin(); i != range.end(); ++i)
{
CGAL_assertion(i < tm1_parts.size());
CGAL_assertion(i < tm1_trees.size());
const auto& tm1 = tm1_parts[i];
const auto& tm1_tree = tm1_trees[i];
// TODO: add distance_bound (now it is FT(-1)) in case we use parallel
// for checking if two meshes are close.
const FT sqd = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
error_bound, sq_initial_bound, FT(-1) /*sq_distance_bound*/, infinity_value,
stub);
if(sqd > sq_dist)
sq_dist = sqd;
}
if(sq_dist > sq_hdist)
sq_hdist = sq_dist;
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* time operator() computation (sec.): " << timer.time() << std::endl;
#endif
}
void join(Bounded_error_squared_distance_computation& rhs)
{
sq_hdist = (CGAL::max)(rhs.sq_hdist, sq_hdist);
}
};
#endif // defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED)
template <class Concurrency_tag,
class Kernel,
class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2,
class NamedParameters1,
class NamedParameters2,
class OutputIterator>
typename Kernel::FT
bounded_error_squared_one_sided_Hausdorff_distance_impl(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const typename Kernel::FT error_bound,
const typename Kernel::FT sq_distance_bound,
const bool compare_meshes,
const VPM1 vpm1,
const VPM2 vpm2,
const NamedParameters1& np1,
const NamedParameters2& np2,
OutputIterator& out)
{
#if !defined(CGAL_LINKED_WITH_TBB) || !defined(CGAL_METIS_ENABLED)
static_assert(!std::is_convertible<Concurrency_tag, CGAL::Parallel_tag>::value,
"Parallel_tag is enabled but at least TBB or METIS is unavailable.");
#endif
using FT = typename Kernel::FT;
using TM1 = TriangleMesh1;
using TM2 = TriangleMesh2;
using TM1_primitive = AABB_face_graph_triangle_primitive<TM1, VPM1>;
using TM2_primitive = AABB_face_graph_triangle_primitive<TM2, VPM2>;
using TM1_traits = AABB_traits_3<Kernel, TM1_primitive>;
using TM2_traits = AABB_traits_3<Kernel, TM2_primitive>;
using TM1_tree = AABB_tree<TM1_traits>;
using TM2_tree = AABB_tree<TM2_traits>;
using Face_handle_1 = typename boost::graph_traits<TM1>::face_descriptor;
using Face_handle_2 = typename boost::graph_traits<TM2>::face_descriptor;
// This is parallel version: we split the tm1 into parts, build trees for all parts, and
// run in parallel all BHD computations. The final distance is obtained by taking the max
// between BHDs computed for these parts with respect to tm2.
// This is off by default because the parallel version does not show much of runtime improvement.
// The slowest part is building AABB trees and this is what should be accelerated in the future.
#if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED) && defined(USE_PARALLEL_BEHD)
using TMF = CGAL::Face_filtered_graph<TM1>;
using TMF_primitive = AABB_face_graph_triangle_primitive<TMF, VPM1>;
using TMF_traits = AABB_traits_3<Kernel, TMF_primitive>;
using TMF_tree = AABB_tree<TMF_traits>;
using TM1_wrapper = Triangle_mesh_wrapper<TMF, VPM1, TMF_tree>;
using TM2_wrapper = Triangle_mesh_wrapper<TM2, VPM2, TM2_tree>;
std::vector<TMF> tm1_parts;
std::vector<TMF_tree> tm1_trees;
std::vector<std::any> tm_wrappers;
#endif // defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED)
#ifdef CGAL_HAUSDORFF_DEBUG
using Timer = CGAL::Real_timer;
Timer timer;
std::cout.precision(17);
#endif
TM1_tree tm1_tree;
TM2_tree tm2_tree;
FT infinity_value = FT(-1);
#if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED) && defined(USE_PARALLEL_BEHD)
// TODO: add to NP!
const int nb_cores = 4;
const std::size_t min_nb_faces_to_split = 100; // TODO: increase this number?
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "* num cores: " << nb_cores << std::endl;
#endif
if(std::is_convertible<Concurrency_tag, CGAL::Parallel_tag>::value &&
nb_cores > 1 &&
faces(tm1).size() >= min_nb_faces_to_split)
{
// (0) -- Compute infinity value.
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
#endif
const Bbox_3 bbox1 = bbox(tm1);
const Bbox_3 bbox2 = bbox(tm2);
const Bbox_3 bb = bbox1 + bbox2;
const FT sq_dist = square(bb.xmax() - bb.xmin())
+ square(bb.ymax() - bb.ymin())
+ square(bb.zmax() - bb.zmin());
infinity_value = FT(4) * sq_dist;
CGAL_assertion(infinity_value >= FT(0));
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
const double time0 = timer.time();
std::cout << "- computing infinity (sec.): " << time0 << std::endl;
#endif
// (1) -- Create partition of tm1.
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
#endif
using Face_property_tag = CGAL::dynamic_face_property_t<int>;
auto face_pid_map = get(Face_property_tag(), tm1);
CGAL::METIS::partition_graph(tm1, nb_cores, CGAL::parameters::face_partition_id_map(face_pid_map));
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
const double time1 = timer.time();
std::cout << "- computing partition time (sec.): " << time1 << std::endl;
#endif
// (2) -- Create a filtered face graph for each part.
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
#endif
tm1_parts.reserve(nb_cores);
for(int i = 0; i < nb_cores; ++i)
{
tm1_parts.emplace_back(tm1, i, face_pid_map);
// TODO: why is it triggered sometimes?
// CGAL_assertion(tm1_parts.back().is_selection_valid());
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "- part " << i << " size: " << tm1_parts.back().number_of_faces() << std::endl;
#endif
}
CGAL_assertion(tm1_parts.size() == nb_cores);
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
const double time2 = timer.time();
std::cout << "- creating graphs time (sec.): " << time2 << std::endl;
#endif
// (3) -- Preprocess all input data.
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
#endif
tm1_trees.resize(tm1_parts.size());
tm_wrappers.reserve(tm1_parts.size() + 1);
for(std::size_t i = 0; i < tm1_parts.size(); ++i)
tm_wrappers.push_back(TM1_wrapper(tm1_parts[i], vpm1, false, tm1_trees[i]));
tm_wrappers.push_back(TM2_wrapper(tm2, vpm2, true, tm2_tree));
CGAL_assertion(tm_wrappers.size() == tm1_parts.size() + 1);
Bounded_error_preprocessing<TM1_wrapper, TM2_wrapper> bep(tm_wrappers);
tbb::parallel_reduce(tbb::blocked_range<std::size_t>(0, tm_wrappers.size()), bep);
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
const double time3 = timer.time();
std::cout << "- creating trees time (sec.) " << time3 << std::endl;
#endif
#ifdef CGAL_HAUSDORFF_DEBUG
// Final timing
std::cout << "* preprocessing parallel time (sec.) " << time0 + time1 + time2 + time3 << std::endl;
#endif
} else // sequential version
#endif // defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED)
{
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
std::cout << "* preprocessing sequential version " << std::endl;
#endif
bool rebuild = false;
std::vector<Face_handle_1> tm1_only;
std::vector<Face_handle_2> tm2_only;
std::tie(infinity_value, rebuild) =
preprocess_bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm1, tm2, compare_meshes, vpm1, vpm2, true /*is_one_sided_distance*/, np1, np2,
tm1_tree, tm2_tree, tm1_only, tm2_only);
CGAL_assertion(!rebuild);
if(infinity_value >= FT(0))
{
tm1_tree.build();
tm2_tree.build();
tm1_tree.do_not_accelerate_distance_queries();
tm2_tree.accelerate_distance_queries();
}
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* preprocessing sequential time (sec.) " << timer.time() << std::endl;
#endif
}
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "* infinity_value: " << infinity_value << std::endl;
#endif
if(is_negative(infinity_value))
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "* culling rate: 100%" << std::endl;
#endif
const auto face1 = *(faces(tm1).begin());
const auto face2 = *(faces(tm2).begin());
*out++ = std::make_pair(face1, face2);
*out++ = std::make_pair(face1, face2);
return 0.; // TM1 is part of TM2 so the distance is zero
}
CGAL_assertion(infinity_value > FT(0));
CGAL_assertion(error_bound >= 0.);
const FT sq_initial_bound = square(FT(error_bound));
FT sq_hdist = FT(-1);
#ifdef CGAL_HAUSDORFF_DEBUG
timer.reset();
timer.start();
#endif
#if defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED) && defined(USE_PARALLEL_BEHD)
if(std::is_convertible<Concurrency_tag, CGAL::Parallel_tag>::value &&
nb_cores > 1 &&
faces(tm1).size() >= min_nb_faces_to_split)
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "* executing parallel version " << std::endl;
#endif
using Comp = Bounded_error_squared_distance_computation<TMF, TM2, VPM1, VPM2, TMF_tree, TM2_tree, Kernel>;
Comp bedc(tm1_parts, tm2, error_bound, vpm1, vpm2,
infinity_value, sq_initial_bound, tm1_trees, tm2_tree);
tbb::parallel_reduce(tbb::blocked_range<std::size_t>(0, tm1_parts.size()), bedc);
sq_hdist = bedc.sq_hdist;
}
else // sequential version
#endif // defined(CGAL_LINKED_WITH_TBB) && defined(CGAL_METIS_ENABLED)
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "* executing sequential version" << std::endl;
#endif
sq_hdist = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out);
}
#ifdef CGAL_HAUSDORFF_DEBUG
timer.stop();
std::cout << "* squared distance " << sq_hdist << std::endl;
std::cout << "* distance " << approximate_sqrt(sq_hdist) << std::endl;
std::cout << "* computation time (sec.) " << timer.time() << std::endl;
#endif
CGAL_postcondition(sq_hdist >= FT(0));
return sq_hdist;
}
template <class Concurrency_tag,
class Kernel,
class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2,
class NamedParameters1,
class NamedParameters2,
class OutputIterator1,
class OutputIterator2>
typename Kernel::FT
bounded_error_squared_symmetric_Hausdorff_distance_impl(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const typename Kernel::FT error_bound,
const typename Kernel::FT sq_distance_bound,
const bool compare_meshes,
const VPM1 vpm1,
const VPM2 vpm2,
const NamedParameters1& np1,
const NamedParameters2& np2,
OutputIterator1& out1,
OutputIterator2& out2)
{
#if !defined(CGAL_LINKED_WITH_TBB) || !defined(CGAL_METIS_ENABLED)
static_assert(!std::is_convertible<Concurrency_tag, CGAL::Parallel_tag>::value,
"Parallel_tag is enabled but at least TBB or METIS is unavailable.");
#endif
// Optimized version.
// -- We compare meshes only if it is required.
// -- We first build trees and rebuild them only if it is required.
// -- We provide better initial lower bound in the second call to the Hausdorff distance.
using FT = typename Kernel::FT;
using TM1_primitive = AABB_face_graph_triangle_primitive<TriangleMesh1, VPM1>;
using TM2_primitive = AABB_face_graph_triangle_primitive<TriangleMesh2, VPM2>;
using TM1_traits = AABB_traits_3<Kernel, TM1_primitive>;
using TM2_traits = AABB_traits_3<Kernel, TM2_primitive>;
using TM1_tree = AABB_tree<TM1_traits>;
using TM2_tree = AABB_tree<TM2_traits>;
using Face_handle_1 = typename boost::graph_traits<TriangleMesh1>::face_descriptor;
using Face_handle_2 = typename boost::graph_traits<TriangleMesh2>::face_descriptor;
std::vector<Face_handle_1> tm1_only;
std::vector<Face_handle_2> tm2_only;
const FT sq_error_bound = square(FT(error_bound));
FT infinity_value = FT(-1);
// All trees below are built and/or accelerated lazily.
TM1_tree tm1_tree;
TM2_tree tm2_tree;
bool rebuild = false;
std::tie(infinity_value, rebuild) = preprocess_bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm1, tm2, compare_meshes, vpm1, vpm2, false /*is_one_sided_distance*/, np1, np2,
tm1_tree, tm2_tree, tm1_only, tm2_only);
if(is_negative(infinity_value))
{
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout.precision(17);
std::cout << "* culling rate: 100%" << std::endl;
#endif
const auto face1 = *(faces(tm1).begin());
const auto face2 = *(faces(tm2).begin());
*out1++ = std::make_pair(face1, face2);
*out1++ = std::make_pair(face1, face2);
*out2++ = std::make_pair(face2, face1);
*out2++ = std::make_pair(face2, face1);
return 0.; // TM1 and TM2 are equal so the distance is zero
}
CGAL_assertion(is_positive(infinity_value));
// Compute the first one-sided distance.
FT sq_initial_bound = sq_error_bound;
FT sq_dista = sq_error_bound;
if(!compare_meshes || (compare_meshes && tm1_only.size() > 0))
{
sq_dista = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm1, tm2, vpm1, vpm2, tm1_tree, tm2_tree,
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out1);
}
// In case this is true, we need to rebuild trees in order to accelerate
// computations for the second call.
if(rebuild)
{
CGAL_assertion(compare_meshes);
tm1_tree.clear();
tm2_tree.clear();
CGAL_assertion(tm2_only.size() > 0);
CGAL_assertion(tm2_only.size() < faces(tm2).size());
tm1_tree.insert(faces(tm1).begin(), faces(tm1).end(), tm1, vpm1);
tm2_tree.insert(tm2_only.begin(), tm2_only.end(), tm2, vpm2);
}
// Compute the second one-sided distance.
sq_initial_bound = sq_dista; // @todo we should better test this optimization!
FT sq_distb = sq_error_bound;
if(!compare_meshes || (compare_meshes && tm2_only.size() > 0))
{
sq_distb = bounded_error_squared_Hausdorff_distance_impl<Kernel>(
tm2, tm1, vpm2, vpm1, tm2_tree, tm1_tree,
error_bound, sq_initial_bound, sq_distance_bound, infinity_value, out2);
}
return (CGAL::max)(sq_dista, sq_distb);
}
template<class Kernel, class TM2_tree>
typename Kernel::FT recursive_hausdorff_subdivision(const typename Kernel::Point_3& p0,
const typename Kernel::Point_3& p1,
const typename Kernel::Point_3& p2,
const TM2_tree& tm2_tree,
const typename Kernel::FT sq_error_bound)
{
using FT = typename Kernel::FT;
using Point_3 = typename Kernel::Point_3;
auto midpoint = Kernel().construct_midpoint_3_object();
auto squared_distance = Kernel().compute_squared_distance_3_object();
// If all edge lengths of the triangle are below the error bound,
// return the maximum of the distances of the three points to TM2 (via TM2_tree).
const FT max_squared_edge_length = (CGAL::max)((CGAL::max)(squared_distance(p0, p1),
squared_distance(p0, p2)),
squared_distance(p1, p2));
if(max_squared_edge_length < sq_error_bound)
{
return (CGAL::max)((CGAL::max)(squared_distance(p0, tm2_tree.closest_point(p0)),
squared_distance(p1, tm2_tree.closest_point(p1))),
squared_distance(p2, tm2_tree.closest_point(p2)));
}
// Else subdivide the triangle and proceed recursively.
const Point_3 p01 = midpoint(p0, p1);
const Point_3 p02 = midpoint(p0, p2);
const Point_3 p12 = midpoint(p1, p2);
return (CGAL::max)(
(CGAL::max)(recursive_hausdorff_subdivision<Kernel>( p0, p01, p02, tm2_tree, sq_error_bound),
recursive_hausdorff_subdivision<Kernel>( p1, p01, p12, tm2_tree, sq_error_bound)),
(CGAL::max)(recursive_hausdorff_subdivision<Kernel>( p2, p02, p12, tm2_tree, sq_error_bound),
recursive_hausdorff_subdivision<Kernel>(p01, p02, p12, tm2_tree, sq_error_bound)));
}
template <class Concurrency_tag,
class Kernel,
class TriangleMesh1,
class TriangleMesh2,
class VPM1,
class VPM2>
typename Kernel::FT
bounded_error_squared_Hausdorff_distance_naive_impl(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const typename Kernel::FT sq_error_bound,
const VPM1 vpm1,
const VPM2 vpm2)
{
using FT = typename Kernel::FT;
using Point_3 = typename Kernel::Point_3;
using Triangle_3 = typename Kernel::Triangle_3;
using TM2_primitive = AABB_face_graph_triangle_primitive<TriangleMesh2, VPM2>;
using TM2_traits = AABB_traits_3<Kernel, TM2_primitive>;
using TM2_tree = AABB_tree<TM2_traits>;
using TM1_face_to_triangle_map = Triangle_from_face_descriptor_map<TriangleMesh1, VPM1>;
FT sq_lower_bound = FT(0);
// Build an AABB tree on tm2.
TM2_tree tm2_tree(faces(tm2).begin(), faces(tm2).end(), tm2, vpm2);
tm2_tree.build();
tm2_tree.accelerate_distance_queries();
// Build a map to obtain actual triangles from the face descriptors of tm1.
const TM1_face_to_triangle_map face_to_triangle_map(&tm1, vpm1);
// Iterate over the faces of TM1.
for(const auto& face : faces(tm1))
{
// Get the vertices of the face and pass them on to a recursive method.
const Triangle_3 triangle = get(face_to_triangle_map, face);
const Point_3& v0 = triangle.vertex(0);
const Point_3& v1 = triangle.vertex(1);
const Point_3& v2 = triangle.vertex(2);
// Recursively process the current triangle to obtain a lower bound on its Hausdorff distance.
const FT sq_triangle_bound = recursive_hausdorff_subdivision<Kernel>(v0, v1, v2, tm2_tree, sq_error_bound);
// Store the largest lower bound.
if(sq_triangle_bound > sq_lower_bound)
sq_lower_bound = sq_triangle_bound;
}
return to_double(approximate_sqrt(sq_lower_bound));
}
} // namespace internal
/**
* \ingroup PMP_distance_grp
*
* returns an estimate on the Hausdorff distance from `tm1` to `tm2` that
* is at most `error_bound` away from the actual Hausdorff distance from `tm1` to `tm2`.
*
* @tparam Concurrency_tag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag` and `Parallel_tag`.
* Currently, the parallel version is not implemented and the
* sequential version is always used whatever tag is chosen!
*
* @tparam TriangleMesh1 a model of the concept `FaceListGraph`
* @tparam TriangleMesh2 a model of the concept `FaceListGraph`
*
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param tm1 a triangle mesh
* @param tm2 another triangle mesh
*
* @param error_bound a maximum bound by which the Hausdorff distance estimate is
* allowed to deviate from the actual Hausdorff distance.
*
* @param np1 an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
* @param np2 an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tmX`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMeshX>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tmX)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMeshX`.}
* \cgalParamNEnd
* \cgalParamNBegin{match_faces}
* \cgalParamDescription{a boolean tag that turns on the preprocessing step that filters out all faces
* which belong to both meshes and hence do not contribute to the final distance}
* \cgalParamType{Boolean}
* \cgalParamDefault{true}
* \cgalParamExtra{Both `np1` and `np2` must have this tag set to `true` in order to activate this preprocessing.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @pre `tm1` and `tm2` are non-empty triangle meshes.
*
* @return the one-sided Hausdorff distance
*/
template <class Concurrency_tag,
class TriangleMesh1,
class TriangleMesh2,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
double bounded_error_Hausdorff_distance(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const double error_bound = 0.0001,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
using Traits = typename GetGeomTraits<TriangleMesh1, NamedParameters1>::type;
using FT = typename Traits::FT;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(!is_empty(tm1) && is_triangle_mesh(tm1));
CGAL_precondition(!is_empty(tm2) && is_triangle_mesh(tm2));
const auto vpm1 = choose_parameter(get_parameter(np1, internal_np::vertex_point),
get_const_property_map(vertex_point, tm1));
const auto vpm2 = choose_parameter(get_parameter(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2));
const bool match_faces1 = choose_parameter(get_parameter(np1, internal_np::match_faces), true);
const bool match_faces2 = choose_parameter(get_parameter(np2, internal_np::match_faces), true);
const bool match_faces = match_faces1 && match_faces2;
auto out = choose_parameter(get_parameter(np1, internal_np::output_iterator),
CGAL::Emptyset_iterator());
CGAL_precondition(error_bound >= 0.);
const FT sq_hdist = internal::bounded_error_squared_one_sided_Hausdorff_distance_impl<Concurrency_tag, Traits>(
tm1, tm2, error_bound, FT(-1) /*distance threshold*/, match_faces, vpm1, vpm2, np1, np2, out);
return to_double(approximate_sqrt(sq_hdist));
}
/**
* \ingroup PMP_distance_grp
*
* returns the the symmetric Hausdorff distance, that is
* the maximum of `bounded_error_Hausdorff_distance(tm1, tm2, error_bound, np1, np2)`
* and `bounded_error_Hausdorff_distance(tm2, tm1, error_bound, np2, np1)`.
*
* This function optimizes all internal calls to shared data structures in order to
* speed up the computation.
*
* See the function `CGAL::Polygon_mesh_processing::bounded_error_Hausdorff_distance()`
* for a complete description of the parameters and requirements.
*/
template <class Concurrency_tag,
class TriangleMesh1,
class TriangleMesh2,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
double bounded_error_symmetric_Hausdorff_distance(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const double error_bound,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
using Traits = typename GetGeomTraits<TriangleMesh1, NamedParameters1>::type;
using FT = typename Traits::FT;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(!is_empty(tm1) && is_triangle_mesh(tm1));
CGAL_precondition(!is_empty(tm2) && is_triangle_mesh(tm2));
const auto vpm1 = choose_parameter(get_parameter(np1, internal_np::vertex_point),
get_const_property_map(vertex_point, tm1));
const auto vpm2 = choose_parameter(get_parameter(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2));
const bool match_faces1 = choose_parameter(get_parameter(np1, internal_np::match_faces), true);
const bool match_faces2 = choose_parameter(get_parameter(np2, internal_np::match_faces), true);
const bool match_faces = match_faces1 && match_faces2;
// TODO: should we return a union of these realizing triangles?
auto out1 = choose_parameter(get_parameter(np1, internal_np::output_iterator),
CGAL::Emptyset_iterator());
auto out2 = choose_parameter(get_parameter(np2, internal_np::output_iterator),
CGAL::Emptyset_iterator());
CGAL_precondition(error_bound >= 0.);
const FT sq_hdist = internal::bounded_error_squared_symmetric_Hausdorff_distance_impl<Concurrency_tag, Traits>(
tm1, tm2, error_bound, FT(-1) /*distance_threshold*/, match_faces, vpm1, vpm2, np1, np2, out1, out2);
return to_double(approximate_sqrt(sq_hdist));
}
/**
* \ingroup PMP_distance_grp
*
* \brief returns `true` if the Hausdorff distance between two meshes is larger than
* the user-defined max distance, otherwise it returns `false`.
*
* The distance used to compute the proximity of the meshes is the bounded-error Hausdorff distance.
* Instead of computing the full distance and checking it against the user-provided
* value, this function returns early if certain criteria show that the meshes
* do not satisfy the provided `distance_bound`.
*
* See the function `CGAL::Polygon_mesh_processing::bounded_error_Hausdorff_distance()`
* for a complete description of the parameters and requirements. The following extra named parameter
* is available for `np1`:
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{use_one_sided_hausdorff}
* \cgalParamDescription{a boolean tag indicating if the one-sided Hausdorff distance should be used.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamExtra{If this tag is set to `false`, the symmetric Hausdorff distance is used.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*/
template< class Concurrency_tag,
class TriangleMesh1,
class TriangleMesh2,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
bool is_Hausdorff_distance_larger(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const double distance_bound,
const double error_bound,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
using Traits = typename GetGeomTraits<TriangleMesh1, NamedParameters1>::type;
using FT = typename Traits::FT;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(!is_empty(tm1) && is_triangle_mesh(tm1));
CGAL_precondition(!is_empty(tm2) && is_triangle_mesh(tm2));
if(distance_bound <= 0.)
return true;
const auto vpm1 = choose_parameter(get_parameter(np1, internal_np::vertex_point),
get_const_property_map(vertex_point, tm1));
const auto vpm2 = choose_parameter(get_parameter(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2));
const bool match_faces1 = choose_parameter(get_parameter(np1, internal_np::match_faces), true);
const bool match_faces2 = choose_parameter(get_parameter(np2, internal_np::match_faces), true);
const bool match_faces = match_faces1 && match_faces2;
const bool use_one_sided = choose_parameter(get_parameter(np1, internal_np::use_one_sided_hausdorff), true);
CGAL_precondition(error_bound >= 0.);
CGAL_precondition(distance_bound > 0.);
const FT sq_distance_bound = square(FT(distance_bound));
auto stub = CGAL::Emptyset_iterator();
FT sq_hdist = FT(-1);
if(use_one_sided)
{
sq_hdist = internal::bounded_error_squared_one_sided_Hausdorff_distance_impl<Concurrency_tag, Traits>(
tm1, tm2, error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub);
}
else
{
sq_hdist = internal::bounded_error_squared_symmetric_Hausdorff_distance_impl<Concurrency_tag, Traits>(
tm1, tm2, error_bound, sq_distance_bound, match_faces, vpm1, vpm2, np1, np2, stub, stub);
}
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout.precision(17);
std::cout << "- fin distance: " << approximate_sqrt(sq_hdist) << std::endl;
std::cout << "- max distance: " << distance_bound << std::endl;
#endif
return (sq_hdist > sq_distance_bound);
}
// Implementation of the naive Bounded Error Hausdorff distance.
template <class Concurrency_tag,
class TriangleMesh1,
class TriangleMesh2,
class NamedParameters1 = parameters::Default_named_parameters,
class NamedParameters2 = parameters::Default_named_parameters>
double bounded_error_Hausdorff_distance_naive(const TriangleMesh1& tm1,
const TriangleMesh2& tm2,
const double error_bound,
const NamedParameters1& np1 = parameters::default_values(),
const NamedParameters2& np2 = parameters::default_values())
{
using Traits = typename GetGeomTraits<TriangleMesh1, NamedParameters1>::type;
using FT = typename Traits::FT;
using parameters::choose_parameter;
using parameters::get_parameter;
CGAL_precondition(!is_empty(tm1) && is_triangle_mesh(tm1));
CGAL_precondition(!is_empty(tm2) && is_triangle_mesh(tm2));
const auto vpm1 = choose_parameter(get_parameter(np1, internal_np::vertex_point),
get_const_property_map(vertex_point, tm1));
const auto vpm2 = choose_parameter(get_parameter(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2));
CGAL_precondition(error_bound >= 0.);
const FT sq_hdist = internal::bounded_error_squared_Hausdorff_distance_naive_impl<Concurrency_tag, Traits>(
tm1, tm2, error_bound, vpm1, vpm2);
return to_double(approximate_sqrt(sq_hdist));
}
} // namespace Polygon_mesh_processing
} // namespace CGAL
#endif //CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
|