File: orientation.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (1886 lines) | stat: -rw-r--r-- 77,448 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
// Copyright (c) 2013 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/orientation.h $
// $Id: include/CGAL/Polygon_mesh_processing/orientation.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Sebastien Loriot and Ilker O. Yaz


#ifndef CGAL_ORIENT_POLYGON_MESH_H
#define CGAL_ORIENT_POLYGON_MESH_H

#include <CGAL/license/Polygon_mesh_processing/orientation.h>


#include <algorithm>
#include <CGAL/Polygon_mesh_processing/connected_components.h>
#include <CGAL/Polygon_mesh_processing/stitch_borders.h>
#include <CGAL/Polygon_mesh_processing/compute_normal.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <CGAL/Polygon_mesh_processing/self_intersections.h>
#include <CGAL/Side_of_triangle_mesh.h>
#include <CGAL/Projection_traits_xy_3.h>
#include <CGAL/boost/graph/helpers.h>
#include <CGAL/boost/graph/iterator.h>
#include <CGAL/utility.h>

#include <boost/dynamic_bitset.hpp>
#include <boost/ref.hpp>

#include <unordered_set>
#include <functional>
namespace CGAL {

namespace Polygon_mesh_processing {

namespace internal{

  template <class GT, class VPmap>
  struct Compare_vertex_points_z_3
  {
    VPmap vpmap;
    typename GT::Compare_z_3 compare_z;

    Compare_vertex_points_z_3(VPmap const& vpmap, const GT& gt)
      : vpmap(vpmap)
      , compare_z(gt.compare_z_3_object())
    {}

    typedef bool result_type;
    template <class vertex_descriptor1, class vertex_descriptor2>
    bool operator()(vertex_descriptor1 v1, vertex_descriptor2 v2) const
    {
      return CGAL::SMALLER == compare_z(get(vpmap, v1), get(vpmap, v2));
    }
  };


  template<typename PolygonMesh, typename NamedParameters>
  bool is_outward_oriented(typename boost::graph_traits<PolygonMesh>::vertex_descriptor v_max,
                           const PolygonMesh& pmesh,
                           const NamedParameters& np)
  {
    using parameters::choose_parameter;
    using parameters::get_parameter;

    CGAL_precondition(halfedge(v_max, pmesh)!=boost::graph_traits<PolygonMesh>::null_halfedge());

    //VertexPointMap
    typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::const_type VPMap;
    VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
                                   get_const_property_map(vertex_point, pmesh));
    //Kernel
    typedef typename GetGeomTraits<PolygonMesh, NamedParameters>::type GT;
    GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));

    //among the incoming edges of `v_max`, find one edge `e` with the minimal slope
    typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
    halfedge_descriptor min_slope_he = halfedge(v_max, pmesh);
    CGAL_assertion(v_max == target(min_slope_he, pmesh));

    typename GT::Compare_slope_3 compare_slope = gt.compare_slope_3_object();
    for(halfedge_descriptor he : halfedges_around_target(v_max, pmesh))
    {
      CGAL_assertion(v_max == target(min_slope_he, pmesh));
      CGAL_assertion(v_max == target(he, pmesh));

      if(CGAL::SMALLER == compare_slope(get(vpmap, source(he, pmesh)),
                                        get(vpmap, v_max),
                                        get(vpmap, source(min_slope_he, pmesh)),
                                        get(vpmap, v_max)))
      {
        min_slope_he = he;
      }
    }

    // We compute the orientations of the two triangles incident to the edge
    // of `min_slope_he` projected in the xy-plane. We can conclude using
    // the 2D orientation of the 3D triangle that is the top one along the z-axis
    // in the neighborhood of `min_slope_he`.
    Projection_traits_xy_3<GT> p_gt;
    typename Projection_traits_xy_3<GT>::Orientation_2 orientation_2 = p_gt.orientation_2_object();

    typename boost::property_traits<VPMap>::reference p1 = get(vpmap, source(min_slope_he, pmesh));
    typename boost::property_traits<VPMap>::reference p2 = get(vpmap, target(min_slope_he, pmesh));
    typename boost::property_traits<VPMap>::reference p3 = get(vpmap, target(next(min_slope_he, pmesh), pmesh));
    typename boost::property_traits<VPMap>::reference p4 = get(vpmap, target(next(opposite(min_slope_he, pmesh), pmesh), pmesh));

    Orientation p1p2p3_2d = orientation_2(p1, p2, p3);
    Orientation p2p1p4_2d = orientation_2(p2, p1, p4);

    CGAL_assertion( p1p2p3_2d!=COLLINEAR || p2p1p4_2d!=COLLINEAR ); // no self-intersection

    if ( p1p2p3_2d == COLLINEAR)
      return p2p1p4_2d == LEFT_TURN;
    if (p2p1p4_2d ==COLLINEAR)
      return p1p2p3_2d == LEFT_TURN;

    // if the local dihedral angle is strictly larger that PI/2, we can conclude with any of two triangles
    if (p1p2p3_2d==p2p1p4_2d)
      return p1p2p3_2d == LEFT_TURN;

    typename GT::Orientation_3 orientation_3 = gt.orientation_3_object();

    CGAL_assertion( orientation_3(p1, p2, p3, p4) != COPLANAR ); // same side of min_slope_he and no self-intersection

    // if p1p2p3_2d is left turn, then it must be the top face so that the orientation is outward oriented
    if (p1p2p3_2d == LEFT_TURN)
      return orientation_3(p1, p2, p3, p4) == NEGATIVE;

    // same test with the other face
    CGAL_assertion(p2p1p4_2d == LEFT_TURN);
    return orientation_3(p2, p1, p4, p3) == NEGATIVE;
  }
} // end of namespace internal

/**
 * \ingroup PMP_orientation_grp
 *
 * \brief tests whether a closed triangle mesh has a positive orientation.
 *
 * A closed triangle mesh is considered to have a positive orientation if the normal vectors
 * to all its faces point outside the domain bounded by the triangle mesh.
 * The normal vector to each face is chosen pointing on the side of the face
 * where its sequence of vertices is seen counterclockwise.
 *
 * @pre `CGAL::is_closed(tm)`
 * @pre `CGAL::is_triangle_mesh(tm)`
 * @pre If `tm` contains several connected components, they are oriented consistently.
 *      In other words, the answer to this predicate would be the same for each
 *      isolated connected component.
 *
 * @tparam TriangleMesh a model of `FaceListGraph`
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
 *
 * @param tm the closed triangle mesh free from self-intersections to be tested
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `tm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{geom_traits}
 *     \cgalParamDescription{an instance of a geometric traits class}
 *     \cgalParamType{a class model of `Kernel`}
 *     \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
 *     \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
 *   \cgalParamNEnd
 * \cgalNamedParamsEnd
 *
 * \note This function is only doing an orientation test for one connected component of `tm`.
 *       For performance reasons, it is left to the user to call the function `does_bound_a_volume()`
 *       on a triangulated version of `tm` to ensure the result returned is relevant.
 *       For advanced usages, the function `volume_connected_components()` should be used instead.
 *
 * \sa `CGAL::Polygon_mesh_processing::reverse_face_orientations()`
 */
template<typename TriangleMesh,
         typename NamedParameters = parameters::Default_named_parameters>
bool is_outward_oriented(const TriangleMesh& tm,
                         const NamedParameters& np = parameters::default_values())
{
  CGAL_warning(CGAL::is_closed(tm));
  CGAL_warning(CGAL::is_triangle_mesh(tm));
  CGAL_precondition(CGAL::is_valid_polygon_mesh(tm));

#ifdef CGAL_PMP_DEBUG_CODE
  //check for empty tm
  CGAL_warning(faces(tm).first != faces(tm).second);
#endif

  if (faces(tm).first == faces(tm).second)
    return true;


  using parameters::choose_parameter;
  using parameters::get_parameter;

  //VertexPointMap
  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type VPMap;
  VPMap vpmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
                                 get_const_property_map(vertex_point, tm));
  //Kernel
  typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type GT;
  GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));

  //find the vertex with maximal z coordinate
  internal::Compare_vertex_points_z_3<GT, VPMap> less_z(vpmap, gt);
  typename boost::graph_traits<TriangleMesh>::vertex_descriptor v_max = *(vertices(tm).first);
  for (typename boost::graph_traits<TriangleMesh>::vertex_iterator
          vit=std::next(vertices(tm).first), vit_end = vertices(tm).second;
          vit!=vit_end; ++vit)
  {
    // skip isolated vertices
    if (halfedge(*vit, tm)==boost::graph_traits<TriangleMesh>::null_halfedge())
      continue;
    if( less_z(v_max, *vit) )
      v_max=*vit;
  }

  // only isolated vertices
  if (halfedge(v_max, tm)==boost::graph_traits<TriangleMesh>::null_halfedge())
    return true;

  return internal::is_outward_oriented(v_max, tm, np);
}

template<typename PolygonMesh>
void reverse_orientation(typename boost::graph_traits<PolygonMesh>::halfedge_descriptor first, PolygonMesh& pmesh)
{
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::vertex_descriptor vertex_descriptor;
    if ( first == halfedge_descriptor())
        return;
    halfedge_descriptor last  = first;
    halfedge_descriptor prev  = first;
    halfedge_descriptor start = first;
    first = next(first, pmesh);
    vertex_descriptor  new_v = target( start, pmesh);
    while (first != last) {
      vertex_descriptor  tmp_v = target( first, pmesh);
      set_target( first, new_v, pmesh);
      set_halfedge(new_v, first, pmesh);
        new_v = tmp_v;
        halfedge_descriptor n = next(first, pmesh);
        set_next(first, prev, pmesh);
        prev  = first;
        first = n;
    }
    set_target( start, new_v, pmesh);
    set_halfedge( new_v, start, pmesh);
    set_next(start, prev,pmesh);
}

/**
* \ingroup PMP_orientation_grp
*
* reverses for each face the order of the vertices along the face boundary.
*
* @tparam PolygonMesh a model of `FaceListGraph` and `MutableFaceGraph`
*
* @sa `is_outward_oriented()`
*/
template<typename PolygonMesh>
void reverse_face_orientations(PolygonMesh& pmesh)
{
  typedef typename boost::graph_traits<PolygonMesh>::face_descriptor face_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
  for(face_descriptor fd : faces(pmesh)){
    reverse_orientation(halfedge(fd,pmesh),pmesh);
  }
  // Note: A border edge is now parallel to its opposite edge.
  // We scan all border edges for this property. If it holds, we
  // reorient the associated hole and search again until no border
  // edge with that property exists any longer. Then, all holes are
  // reoriented.
  for(halfedge_descriptor h : halfedges(pmesh)){
    if ( is_border(h,pmesh) &&
         target(h,pmesh) == target(opposite(h,pmesh),pmesh)){
      reverse_orientation(h, pmesh);
    }
  }
}

// Do the same thing as `reverse_face_orientations()` except that for
// the reversal of the border cycles (last step in the aforementioned function),
// this function guarantees that each cycle is reversed only once. This is
// particularly useful if you mesh contains polylines (i.e. edge which halfedges
// are both border halfedges).
template<typename PolygonMesh>
void reverse_face_orientations_of_mesh_with_polylines(PolygonMesh& pmesh)
{
  typedef typename boost::graph_traits<PolygonMesh>::face_descriptor face_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;

  // reverse the orientation of each face
  for(face_descriptor fd : faces(pmesh))
    reverse_orientation(halfedge(fd,pmesh),pmesh);

  //extract all border cycles
  std::unordered_set<halfedge_descriptor> already_seen;
  std::vector<halfedge_descriptor> border_cycles;
  for(halfedge_descriptor h : halfedges(pmesh))
    if ( is_border(h,pmesh) && already_seen.insert(h).second )
    {
      border_cycles.push_back(h);
      for(halfedge_descriptor h2 : halfedges_around_face(h,pmesh))
        already_seen.insert(h2);
    }

  // now reverse the border cycles
  for(halfedge_descriptor h : border_cycles)
    reverse_orientation(h, pmesh);
}

/**
* \ingroup PMP_orientation_grp
*
* reverses for each face in `face_range` the order of the vertices along the face boundary.
* The function does not perform any control and if the change of orientation of the faces
* makes the polygon mesh invalid, the behavior is undefined.
*
* @tparam PolygonMesh a model of `FaceListGraph` and `MutableFaceGraph`
* @tparam FaceRange range of face descriptors, model of `Range`.
*         Its iterator type is `InputIterator`.
*
* @sa `is_outward_oriented()`
*/
template<typename PolygonMesh, typename FaceRange>
void reverse_face_orientations(const FaceRange& face_range, PolygonMesh& pmesh)
{
  typedef typename boost::graph_traits<PolygonMesh>::face_descriptor face_descriptor;
  typedef typename boost::graph_traits<PolygonMesh>::halfedge_descriptor halfedge_descriptor;
  for(face_descriptor fd : face_range){
    reverse_orientation(halfedge(fd,pmesh),pmesh);
  }

  // Note: A border edge is now parallel to its opposite edge.
  // We scan all border edges for this property. If it holds, we
  // reorient the associated hole and search again until no border
  // edge with that property exists any longer. Then, all holes are
  // reoriented.
  for(face_descriptor fd : face_range)
    for(halfedge_descriptor hd :
                  halfedges_around_face(halfedge(fd, pmesh), pmesh))
    {
      halfedge_descriptor ohd = opposite(hd, pmesh);
      if ( is_border(ohd, pmesh) &&
         target(hd,pmesh) == target(ohd,pmesh))
      {
        reverse_orientation(ohd, pmesh);
      }
    }
}

/**
* \ingroup PMP_orientation_grp
* makes each closed connected component of a triangulated surface mesh
* inward or outward oriented. If a connected component is not closed,
* the orientation may or may not be changed or not is not guaranteed.
*
* @tparam TriangleMesh a model of `FaceListGraph` and `MutableFaceGraph`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters
*
* @param tm a closed triangulated surface mesh
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \pre `CGAL::is_closed(tm)`
*
* \cgalNamedParamsBegin
*   \cgalParamNBegin{vertex_point_map}
*     \cgalParamDescription{a property map associating points to the vertices of `tm`}
*     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
*                    as key type and `%Point_3` as value type}
*     \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
*   \cgalParamNEnd
*
*   \cgalParamNBegin{geom_traits}
*     \cgalParamDescription{an instance of a geometric traits class}
*     \cgalParamType{a class model of `Kernel`}
*     \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
*     \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
*   \cgalParamNEnd
*
*   \cgalParamNBegin{face_index_map}
*     \cgalParamDescription{a property map associating to each face of `tm` a unique index between `0` and `num_faces(tm) - 1`}
*     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
*                    as key type and `std::size_t` as value type}
*     \cgalParamDefault{an automatically indexed internal map}
*   \cgalParamNEnd
*
*   \cgalParamNBegin{outward_orientation}
*     \cgalParamDescription{If `true`, each connected component will be outward oriented (and inward oriented if `false`).}
*     \cgalParamType{Boolean}
*     \cgalParamDefault{`true`}
*   \cgalParamNEnd
* \cgalNamedParamsEnd
*/
template<class TriangleMesh,
         class NamedParameters = parameters::Default_named_parameters>
void orient(TriangleMesh& tm,
            const NamedParameters& np = parameters::default_values())
{
  typedef boost::graph_traits<TriangleMesh>                                        Graph_traits;
  typedef typename Graph_traits::vertex_descriptor                                 vertex_descriptor;
  typedef typename Graph_traits::face_descriptor                                   face_descriptor;
  typedef typename Graph_traits::halfedge_descriptor                               halfedge_descriptor;
  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type    Vpm;
  typedef typename GetInitializedFaceIndexMap<TriangleMesh, NamedParameters>::type FaceIndexMap;

  CGAL_precondition(is_triangle_mesh(tm));
  CGAL_precondition(is_valid_polygon_mesh(tm));

  using parameters::choose_parameter;
  using parameters::get_parameter;

  bool orient_outward = choose_parameter(get_parameter(np, internal_np::outward_orientation),true);

  Vpm vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
                             get_const_property_map(boost::vertex_point, tm));

  FaceIndexMap fid_map = CGAL::get_initialized_face_index_map(tm, np);

  std::vector<std::size_t> face_cc(num_faces(tm), std::size_t(-1));

  // set the connected component id of each face
  std::size_t nb_cc = connected_components(tm,
                                           make_compose_property_map(fid_map,make_property_map(face_cc)),
                                           parameters::face_index_map(fid_map));

  // extract a vertex with max z coordinate for each connected component
  std::vector<vertex_descriptor> xtrm_vertices(nb_cc, Graph_traits::null_vertex());
  for(vertex_descriptor vd : vertices(tm))
  {
    halfedge_descriptor test_hd = halfedge(vd, tm);
    if(test_hd == Graph_traits::null_halfedge())
      continue;
    face_descriptor test_face = face(halfedge(vd, tm), tm);
    if(test_face == Graph_traits::null_face())
      test_face = face(opposite(halfedge(vd, tm), tm), tm);
    CGAL_assertion(test_face != Graph_traits::null_face());
    std::size_t cc_id = face_cc[get(fid_map,test_face )];
    if (xtrm_vertices[cc_id]==Graph_traits::null_vertex())
      xtrm_vertices[cc_id]=vd;
    else
      if (get(vpm, vd).z()>get(vpm,xtrm_vertices[cc_id]).z())
        xtrm_vertices[cc_id]=vd;
  }
  std::vector<std::vector<face_descriptor> > ccs(nb_cc);
  for(face_descriptor fd : faces(tm))
  {
    ccs[face_cc[get(fid_map,fd)]].push_back(fd);
  }

  //orient ccs outward
  for(std::size_t id=0; id<nb_cc; ++id)
  {
    // skip it if the vertex is on the boundary
    bool v_is_border = false;
    for(halfedge_descriptor h : halfedges_around_target(xtrm_vertices[id], tm))
      if (is_border(h, tm))
      {
        v_is_border = true;
        break;
      }

    if(!v_is_border && (internal::is_outward_oriented(xtrm_vertices[id], tm, np)
                        != orient_outward))
    {
      reverse_face_orientations(ccs[id], tm);
    }
  }
}

/*!
 * \ingroup PMP_orientation_grp
 * Enumeration type used to indicate the status of a set of faces
 * classified by the function `volume_connected_components()`.
 * The set of faces defines either a volume connected connected component
 * in the case of `VALID_VOLUME` or a surface connected component otherwise.
 */
enum Volume_error_code { VALID_VOLUME, ///< The set of faces bounds a volume
                         SURFACE_WITH_SELF_INTERSECTIONS, ///< The set of faces is self-intersecting
                         VOLUME_INTERSECTION, ///< The set of faces intersects another surface connected component
                         INCOMPATIBLE_ORIENTATION ///< The set of faces is included in a volume but has an incompatible orientation
                       };
namespace internal {

// helper function to copy data
template<class T, class RefToContainer>
void copy_container_content(
  const std::vector<T>& vec,
  RefToContainer ref_wrapper)
{
  ref_wrapper.get().reserve(vec.size());
  for(const T& t : vec)
  {
   ref_wrapper.get().push_back(t);
  }
}

template<class T>
void copy_container_content(
  std::vector<T>& vec,
  std::reference_wrapper<std::vector<T> > ref_wrapper)
{
  vec.swap(ref_wrapper.get());
}

template<class T>
void copy_container_content(
  std::vector<T>& vec,
  boost::reference_wrapper<std::vector<T> > ref_wrapper)
{
  vec.swap(ref_wrapper.get());
}

template<class T>
inline
void copy_container_content(
  std::vector<T>&,
  internal_np::Param_not_found)
{}

template <class RefToContainer>
void copy_nested_parents(
  const std::vector< std::vector<std::size_t> >& nested_parents,
  RefToContainer ref_to_vector)
{
  typedef typename RefToContainer::type Container;
  typedef typename Container::value_type Container_value;

  ref_to_vector.get().reserve(nested_parents.size());
  for(const auto& t : nested_parents)
  {
    Container_value c;
    c.reserve(t.size());
    for(const std::size_t& val : t)
      c.push_back(val);
    ref_to_vector.get().push_back(c);
  }
}

inline
void copy_nested_parents(
  std::vector< std::vector<std::size_t> >& nested_parents,
  std::reference_wrapper<std::vector< std::vector<std::size_t> > > ref_to_vector)
{
  nested_parents.swap(ref_to_vector.get());
}

inline
void copy_nested_parents(
  std::vector< std::vector<std::size_t> >& nested_parents,
  boost::reference_wrapper<std::vector< std::vector<std::size_t> > > ref_to_vector)
{
  nested_parents.swap(ref_to_vector.get());
}

inline
void copy_nested_parents(
  std::vector< std::vector<std::size_t> >&,
  internal_np::Param_not_found)
{}


// helper function for setting id maps
template <class TriangleMesh, class FaceIndexMap, class FaceCCIdMap>
void set_f_cc_id(
  const std::vector<std::size_t>& f_cc,
  FaceIndexMap face_index_map,
  FaceCCIdMap face_cc_map,
  const TriangleMesh& tm)
{
  for(typename boost::graph_traits<TriangleMesh>::face_descriptor fd : faces(tm))
    put(face_cc_map, fd, f_cc[ get(face_index_map, fd) ]);
}

template <class TriangleMesh, class FaceIndexMap>
void set_f_cc_id(
  const std::vector<std::size_t>&,
  FaceIndexMap,
  internal_np::Param_not_found,
  const TriangleMesh&)
{}

template <class RefToVector>
void copy_cc_to_volume_id(
  std::vector<std::size_t>& cc_volume_ids,
  RefToVector ref_to_vector)
{
  ref_to_vector.get().swap( cc_volume_ids );
}

inline
void copy_cc_to_volume_id(
  std::vector<std::size_t>&,
  internal_np::Param_not_found)
{}

template <class RefToVector>
void copy_nesting_levels(
  std::vector<std::size_t>& nesting_levels,
  RefToVector ref_to_vector)
{
  ref_to_vector.get().swap( nesting_levels );
}

inline
void copy_nesting_levels(
  std::vector<std::size_t>&,
  internal_np::Param_not_found)
{}

template <class RefToBitset>
void copy_orientation_bitset(
  const std::vector<bool>& is_cc_outward_oriented,
  RefToBitset ref_to_bs)
{
  ref_to_bs.get() = is_cc_outward_oriented;
}

inline
void copy_orientation_bitset(
  const std::vector<bool>&,
  internal_np::Param_not_found)
{}

template <class OutputIterator>
void set_cc_intersecting_pairs(
  const std::set< std::pair<std::size_t, std::size_t> >& self_intersecting_cc,
  OutputIterator out)
{
  for (const std::pair<std::size_t, std::size_t>& p : self_intersecting_cc)
    *out++=p;
}

inline
void set_cc_intersecting_pairs(
  const std::set< std::pair<std::size_t, std::size_t> >&,
  internal_np::Param_not_found)
{}

} // internal


/*!
 * \ingroup PMP_orientation_grp
 *
 * assigns to each face of `tm` an id corresponding to the volume connected component
 * it contributes to.
 *
 * Using the adjacency relation of two faces along an edge, a triangle mesh can be split
 * into connected components (*surface components* in the following).
 * A surface component without boundary separates the 3D space into an infinite and
 * a finite volume. We say that the finite volume is <i>enclosed</i> by this surface
 * component.
 *
 * The volume connected components (*volume components* in the following) are defined as follows:
 * Each surface component `S` that is outside any volume enclosed by
 * another surface component defines the *outer boundary* of a volume component.
 * Each surface component that is inside the volume enclosed by `S`
 * defines a *hole* if it is included in no other volume enclosed by a surface component
 * but `S`. Ignoring the identified volume component, the same procedure is recursively
 * repeated for all surface components in each hole.
 *
 * There are some special cases:
 * - a non-closed surface component is reported as a volume component ignoring any inclusion test
 * - a self-intersecting surface component is reported as a volume component ignoring any inclusion test
 * - a surface component intersecting another surface component
 *   is reported as a volume component, and so are all the surface components inside its
 *   enclosed volume
 * - if `do_orientation_tests` is set to `true`, if the holes are not all equally oriented
 *   (all inward or all outward) or if the holes and the outer boundary are equally
 *   oriented, each surface component is reported as a volume component,
 *   and so are all the surface components inside the corresponding enclosed volumes
 * - If `do_orientation_tests` is set to `true` and the surface components that are
 *   outside all enclosed volumes are inward oriented, they are then considered as holes
 *   of the unbounded volume (that has no outer boundary)
 *
 * A property map for `CGAL::vertex_point_t` must be either available as an internal property map
 * of `tm` or provided as one of the \ref bgl_namedparameters "Named Parameters".
 *
 * @tparam TriangleMesh a model of `FaceListGraph`
 * @tparam VolumeFaceIndexMap a model of `WritablePropertyMap` with
 *                      `boost::graph_traits<TriangleMesh>::%face_descriptor` as key type and
 *                      `boost::graph_traits<TriangleMesh>::%faces_size_type` as value type.
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
 *
 * @param tm the input triangle mesh
 * @param volume_id_map the property map filled by this function with indices of volume components associated to the faces of `tm`
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * @pre `CGAL::is_closed(tm)`
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `tm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{geom_traits}
 *     \cgalParamDescription{an instance of a geometric traits class}
 *     \cgalParamType{a class model of `Kernel`}
 *     \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
 *     \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{face_index_map}
 *     \cgalParamDescription{a property map associating to each face of `tm` a unique index between `0` and `num_faces(tm) - 1`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
 *                    as key type and `std::size_t` as value type}
 *     \cgalParamDefault{an automatically indexed internal map}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{face_connected_component_map}
 *     \cgalParamDescription{a property map filled by this function and that will contain for each face the id
 *                           of its surface component in the range `[0, number of surface components - 1]`}
 *     \cgalParamType{a class model of `WritablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
 *                    as key type and `std::size_t` as value type}
 *     \cgalParamDefault{an automatically indexed internal map}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{volume_inclusions}
 *     \cgalParamDescription{a container, which contains at position `k` the ids of all the
 *                           surface components that are the first intersected by any ray with source on
 *                           the surface component `k` and directed outside the volume enclosed by the
 *                           surface component `k`. There is only one such id but when some surface components intersect.
 *                           The size of the container is exactly the number of surface components of `tm`.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to an object that must be a model of the `BackInsertionSequence` concept,
 *                    with a value type being a model of `BackInsertionSequence` of `std::size_t`,
 *                    both types having the functions `reserve()` and `push_back()`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{do_orientation_tests}
 *     \cgalParamDescription{If `true`, the orientation of the faces of each surface components
 *                           will be taken into account for the definition of the volume.
 *                           If `false`, the face orientation is ignored and the volumes are defined
 *                           only by the nesting of surface components.}
 *     \cgalParamType{Boolean}
 *     \cgalParamDefault{`true`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{error_codes}
 *     \cgalParamDescription{a container which indicates the status of a volume assigned to a set of faces.
 *                           The description of the value type is given in the documentation of the enumeration type.
 *                           The size of the container is exactly the number of volume components.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to a container that must be a model of the `BackInsertionSequence` concept,
 *                    with value type \link PMP_orientation_grp `Volume_error_code` \endlink}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{do_self_intersection_tests}
 *     \cgalParamDescription{If `false`, it is assumed that `tm` does not contains any self-intersections.
 *                           If `true`, the input might contain some self-intersections and a test is done prior to the volume decomposition.}
 *     \cgalParamType{Boolean}
 *     \cgalParamDefault{`false`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{connected_component_id_to_volume_id}
 *     \cgalParamDescription{For each connected component identified using its id `ccid`, the id
 *                           of the volume it contributes to describe is the value at the position
 *                           `ccid` in the container. The size of the container is exactly the number
 *                           of connected components.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to a container that must be a model of the `BackInsertionSequence` concept,
 *                    with value type `std::size_t`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 *
 *
 *   \cgalParamNBegin{nesting_levels}
 *     \cgalParamDescription{For each connected component identified using its id `ccid`, the container contains the number of
 *                           connected components containing on its bounded side this component.
 *                           The size of the container is exactly the number of connected components.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to a container that must be a model of the `BackInsertionSequence` concept,
 *                    with value type `std::size_t`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{is_cc_outward_oriented}
 *     \cgalParamDescription{For each connected component identified using its id `ccid`, the output of `is_outward_oriented()`
 *                           called on the triangle mesh corresponding to this connected component
 *                           is the value at the position `ccid` in the container.
 *                           The size of the container is exactly the number of connected components.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to a container that must be a model of the `BackInsertionSequence` concept,
 *                    with value type `bool`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{intersecting_volume_pairs_output_iterator}
 *     \cgalParamDescription{Output iterator into which pairs of ids (id must be convertible to `std::size_t`) can be put.
 *                           Each pair of connected components intersecting will be reported using their ids.
 *                           If `do_self_intersection_tests` named parameter is set to `false`, nothing will be reported.}
 *     \cgalParamType{a model of `OutputIterator`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 * \cgalNamedParamsEnd
 *
 * \return the number of volume components defined by `tm`
 */
template <class TriangleMesh, class VolumeFaceIndexMap, class NamedParameters = parameters::Default_named_parameters>
std::size_t
volume_connected_components(const TriangleMesh& tm,
                                  VolumeFaceIndexMap volume_id_map,
                            const NamedParameters& np = parameters::default_values())
{
  CGAL_precondition(is_triangle_mesh(tm));
  CGAL_precondition(is_closed(tm));

  typedef boost::graph_traits<TriangleMesh> GT;
  typedef typename GT::vertex_descriptor vertex_descriptor;
  typedef typename GT::face_descriptor face_descriptor;
  typedef typename GT::halfedge_descriptor halfedge_descriptor;
  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type Vpm;
  typedef typename GetInitializedFaceIndexMap<TriangleMesh, NamedParameters>::type FaceIndexMap;
  typedef typename Kernel_traits<typename boost::property_traits<Vpm>::value_type >::Kernel Kernel;

  using parameters::choose_parameter;
  using parameters::get_parameter;

  Vpm vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
                             get_const_property_map(boost::vertex_point, tm));

  FaceIndexMap fid_map = CGAL::get_initialized_face_index_map(tm, np);

  std::vector<std::size_t> face_cc(num_faces(tm), std::size_t(-1));

// set the connected component id of each face
  const std::size_t nb_cc = connected_components(tm,
                              make_compose_property_map(fid_map,make_property_map(face_cc)),
                              parameters::face_index_map(fid_map));

  // contains for each CC the CC that are in its bounded side
  std::vector<std::vector<std::size_t> > nested_cc_per_cc(nb_cc);

  // copy cc-id info
  internal::set_f_cc_id(face_cc, fid_map, get_parameter(np, internal_np::face_connected_component_map), tm);

  const bool do_self_intersection_tests =
    choose_parameter(get_parameter(np, internal_np::do_self_intersection_tests), false);
  const bool ignore_orientation_of_cc =
    ! choose_parameter(get_parameter(np, internal_np::do_orientation_tests), true);

  // indicate if the function is called by does_bound_a_volume
  const bool used_as_a_predicate =
    choose_parameter(get_parameter(np, internal_np::i_used_as_a_predicate), false);

  CGAL_assertion(!used_as_a_predicate || !ignore_orientation_of_cc);

  std::vector<Volume_error_code> error_codes;
  std::vector<bool> is_cc_outward_oriented;
  std::vector<std::size_t> cc_volume_ids(nb_cc, -1);
  std::vector < std::size_t > nesting_levels(nb_cc, 0); // indicates for each CC its nesting level

  boost::dynamic_bitset<> cc_handled(nb_cc, 0);
  std::size_t next_volume_id = 0;

// Handle self-intersecting connected components
  typedef std::pair<face_descriptor, face_descriptor> Face_pair;
  std::vector<Face_pair> si_faces;
  std::set< std::pair<std::size_t, std::size_t> > self_intersecting_cc; // due to self-intersections
  if (do_self_intersection_tests)
    self_intersections(tm, std::back_inserter(si_faces), np);
  std::vector<bool> is_involved_in_self_intersection(nb_cc, false);

  if (!si_faces.empty() && used_as_a_predicate)
    return 0;

  for(const Face_pair& fp : si_faces)
  {
    std::size_t first_cc_id = face_cc[ get(fid_map, fp.first) ];
    std::size_t second_cc_id = face_cc[ get(fid_map, fp.second) ];

    if (first_cc_id==second_cc_id)
    {
      if ( !cc_handled.test(first_cc_id) )
      {
        cc_handled.set(first_cc_id);
        cc_volume_ids[first_cc_id]=next_volume_id++;
        error_codes.push_back(SURFACE_WITH_SELF_INTERSECTIONS);
      }
    }
    else
    {
      is_involved_in_self_intersection[first_cc_id] = true;
      is_involved_in_self_intersection[second_cc_id] = true;
      self_intersecting_cc.insert( make_sorted_pair(first_cc_id, second_cc_id) );
    }
  }

  std::vector< std::vector<std::size_t> > nesting_parents(nb_cc);
  if (!cc_handled.all())
  {
  // extract a vertex with max z coordinate for each connected component
    std::vector<vertex_descriptor> xtrm_vertices(nb_cc, GT::null_vertex());
    for(vertex_descriptor vd : vertices(tm))
    {
      halfedge_descriptor h = halfedge(vd, tm);
      if (is_border(h, tm)) h = opposite(h, tm);
      std::size_t cc_id = face_cc[get(fid_map, face(h, tm))];
      if (cc_handled.test(cc_id)) continue;
      if (xtrm_vertices[cc_id]==GT::null_vertex())
        xtrm_vertices[cc_id]=vd;
      else
        if (get(vpm, vd).z()>get(vpm,xtrm_vertices[cc_id]).z())
          xtrm_vertices[cc_id]=vd;
    }

  // fill orientation vector for each surface CC
    if (!ignore_orientation_of_cc)
    {
      is_cc_outward_oriented.resize(nb_cc);
      for(std::size_t cc_id=0; cc_id<nb_cc; ++cc_id)
      {
        if (cc_handled.test(cc_id)) continue;
        is_cc_outward_oriented[cc_id] = internal::is_outward_oriented(xtrm_vertices[cc_id], tm, np);
      }
    }

  //collect faces per CC
    std::vector< std::vector<face_descriptor> > faces_per_cc(nb_cc);
    std::vector< std::size_t > nb_faces_per_cc(nb_cc, 0);
    for(face_descriptor fd : faces(tm))
    {
      std::size_t cc_id = face_cc[ get(fid_map, fd) ];
      ++nb_faces_per_cc[ cc_id ];
    }
    for (std::size_t i=0; i<nb_cc; ++i)
      if (!cc_handled.test(i))
        faces_per_cc[i].reserve( nb_faces_per_cc[i] );
    for(face_descriptor fd : faces(tm))
    {
      std::size_t cc_id = face_cc[ get(fid_map, fd) ];
      faces_per_cc[ cc_id ].push_back(fd);
    }

  // init the main loop
    // similar as above but exclusively contains cc ids included by more that one CC.
    // The result will be then merged with nested_cc_per_cc but temporarily we need
    // another container to not more than once the inclusion testing (in case a CC is
    // included by more than 2 CC) + associate such CC to only one volume
    std::vector<std::vector<std::size_t> > nested_cc_per_cc_shared(nb_cc);
    std::vector < boost::dynamic_bitset<> > level_k_nestings; // container containing CCs in the same volume (one bitset per volume) at level k
    level_k_nestings.push_back( ~cc_handled );

  // the following loop is exploring the nesting level by level (0 -> max_level)
    std::size_t k = 0;
    while (!level_k_nestings.empty())
    {
      std::vector < boost::dynamic_bitset<> > level_k_plus_1_nestings;
      for(boost::dynamic_bitset<> cc_to_handle : level_k_nestings)
      {
        CGAL_assertion( cc_to_handle.any() );
        while(cc_to_handle.any())
        {
        //extract a vertex with max z amongst all components
          std::size_t xtrm_cc_id=cc_to_handle.find_first();
          for(std::size_t id  = cc_to_handle.find_next(xtrm_cc_id);
                          id != cc_to_handle.npos;
                          id  = cc_to_handle.find_next(id))
          {
            if (get(vpm, xtrm_vertices[id]).z()>get(vpm,xtrm_vertices[xtrm_cc_id]).z())
              xtrm_cc_id=id;
          }
          cc_to_handle.reset(xtrm_cc_id);
          nesting_levels[xtrm_cc_id] = k;

          if(!cc_to_handle.any()) break;

        // collect id inside xtrm_cc_id CC
          typedef Side_of_triangle_mesh<TriangleMesh, Kernel, Vpm> Side_of_tm;
          typename Side_of_tm::AABB_tree aabb_tree(faces_per_cc[xtrm_cc_id].begin(),
                                                   faces_per_cc[xtrm_cc_id].end(),
                                                   tm, vpm);
          Side_of_tm side_of_cc(aabb_tree);

          std::vector<std::size_t> cc_intersecting; // contains id of CC intersecting xtrm_cc_id

          boost::dynamic_bitset<> nested_cc_to_handle(nb_cc, 0);
          for(std::size_t id  = cc_to_handle.find_first();
                          id != cc_to_handle.npos;
                          id  = cc_to_handle.find_next(id))
          {
            if (self_intersecting_cc.count( make_sorted_pair(xtrm_cc_id, id) )!= 0)
            {
              cc_intersecting.push_back(id);
              continue; // to not dot inclusion test for intersecting CCs
            }

            if (side_of_cc(get(vpm,xtrm_vertices[id]))==ON_BOUNDED_SIDE)
            {
              nested_cc_per_cc[xtrm_cc_id].push_back(id);
              // mark nested CC as handle and collect them for the handling of the next level
              nested_cc_to_handle.set(id);
              cc_to_handle.reset(id);
            }
          }

        //for each CC intersecting xtrm_cc_id, find the CCs included in both
          for(std::size_t id : cc_intersecting)
          {
            typename Side_of_tm::AABB_tree aabb_tree(faces_per_cc[id].begin(),
                                                     faces_per_cc[id].end(),
                                                     tm, vpm);
            Side_of_tm side_of_cc(aabb_tree);
            for(std::size_t ncc_id : nested_cc_per_cc[xtrm_cc_id])
            {
              if (self_intersecting_cc.count( make_sorted_pair(ncc_id, id) )!= 0)
                continue;
              if (side_of_cc(get(vpm,xtrm_vertices[ncc_id]))==ON_BOUNDED_SIDE)
                nested_cc_per_cc_shared[id].push_back(ncc_id);
            }
          }

          if ( nested_cc_per_cc[xtrm_cc_id].empty() ) continue;
          level_k_plus_1_nestings.push_back(nested_cc_to_handle);
        }
      }
      ++k;
      level_k_nestings.swap(level_k_plus_1_nestings);
    }

    // early return for orient_to_bound_a_volume
    if (choose_parameter(get_parameter(np, internal_np::i_used_for_volume_orientation),false))
    {
      internal::copy_container_content(nesting_levels, parameters::get_parameter(np, internal_np::nesting_levels));
      internal::copy_container_content(is_cc_outward_oriented, parameters::get_parameter(np, internal_np::is_cc_outward_oriented));
      return 0;
    }

  // detect inconsistencies of the orientation at the level 0
  // and check if all CC at level 0 are in the same volume
    std::size_t ref_cc_id = nb_cc;
    std::size_t FIRST_LEVEL = 0; // used to know if even or odd nesting is the top level
    if(!ignore_orientation_of_cc)
    {
      for(std::size_t cc_id=0; cc_id<nb_cc; ++cc_id)
      {
        if (cc_handled.test(cc_id)) continue;
        if( nesting_levels[cc_id]==0 )
        {
          if(ref_cc_id==nb_cc)
            ref_cc_id=cc_id;
          else
            if( is_cc_outward_oriented[cc_id] != is_cc_outward_oriented[ref_cc_id] )
            {
              if (used_as_a_predicate) return 0;
              // all is indefinite
              for(std::size_t id=0; id<nb_cc; ++id)
              {
                if (cc_handled.test(cc_id)) continue;
                cc_volume_ids[id] = next_volume_id++;
                error_codes.push_back(INCOMPATIBLE_ORIENTATION);
              }
              cc_handled.set();
              break;
            }
        }
      }

      if (!cc_handled.all() && !is_cc_outward_oriented[ref_cc_id])
      {
        // all level 0 CC are in the same volume
        for(std::size_t cc_id=0; cc_id<nb_cc; ++cc_id)
        {
          if (cc_handled.test(cc_id)) continue;
          if( nesting_levels[cc_id]==0 )
          {
            cc_handled.set(cc_id);
            cc_volume_ids[cc_id]=next_volume_id;
          }
        }
        ++next_volume_id;
        error_codes.push_back(VALID_VOLUME);
        FIRST_LEVEL = 1;
      }
    }

  // apply volume classification using level 0 nesting
    for(std::size_t cc_id=0; (!cc_handled.all()) && cc_id<nb_cc; ++cc_id)
    {
      if (cc_handled.test(cc_id)) continue;
      CGAL_assertion( nesting_levels[cc_id]!=0 || ignore_orientation_of_cc || is_cc_outward_oriented[cc_id] );
      if( nesting_levels[cc_id]%2 != FIRST_LEVEL ) continue; // we look for outer boundaries of volume only
      cc_handled.set(cc_id);
      cc_volume_ids[cc_id] = next_volume_id++;

      //if the CC is involved in a self-intersection all nested CC are put in a separate volumes
      if (is_involved_in_self_intersection[cc_id])
      {
        error_codes.push_back(VOLUME_INTERSECTION);
        for(std::size_t ncc_id : nested_cc_per_cc[cc_id])
        {
          cc_handled.set(ncc_id);
          cc_volume_ids[ncc_id] = next_volume_id++;
          error_codes.push_back(VOLUME_INTERSECTION);
        }
        continue;
      }
      else
      {
        if (!ignore_orientation_of_cc && !is_cc_outward_oriented[cc_id])
        {
          // invalid orientation, all children are marked as incorrectly oriented
          if (used_as_a_predicate) return 0;
          cc_handled.set(cc_id);
          cc_volume_ids[cc_id] = next_volume_id++;
          error_codes.push_back(INCOMPATIBLE_ORIENTATION);
          for(std::size_t ncc_id : nested_cc_per_cc[cc_id])
          {
            cc_handled.set(ncc_id);
            cc_volume_ids[ncc_id] = next_volume_id++;
            error_codes.push_back(INCOMPATIBLE_ORIENTATION);
          }
          continue;
        }
        else
          error_codes.push_back(VALID_VOLUME);
      }

      for(std::size_t ncc_id : nested_cc_per_cc[cc_id])
      {
        if (nesting_levels[ncc_id]==nesting_levels[cc_id]+1)
        {
          cc_handled.set(ncc_id);
          if (!ignore_orientation_of_cc)
          {
            if (is_cc_outward_oriented[cc_id]==is_cc_outward_oriented[ncc_id])
            {
              // the surface component has an incorrect orientation wrt to its parent:
              // we dump it and all included surface components as independent volumes.
              cc_volume_ids[ncc_id] = next_volume_id++;
              error_codes.push_back(INCOMPATIBLE_ORIENTATION);
              if (used_as_a_predicate) return 0;
              for(std::size_t nncc_id : nested_cc_per_cc[ncc_id])
              {
                cc_handled.set(nncc_id);
                cc_volume_ids[nncc_id] = next_volume_id++;
                error_codes.push_back(INCOMPATIBLE_ORIENTATION);
              }
              continue;
            }
          }
          if (is_involved_in_self_intersection[ncc_id])
          {
            cc_volume_ids[ncc_id] = next_volume_id++;
            error_codes.push_back(VOLUME_INTERSECTION);
            for(std::size_t nncc_id : nested_cc_per_cc[ncc_id])
            {
              if (cc_handled.test(nncc_id))
              {
                error_codes[ cc_volume_ids[nncc_id] ] = VOLUME_INTERSECTION;
                continue;
              }
              cc_handled.set(nncc_id);
              cc_volume_ids[nncc_id] = next_volume_id++;
              error_codes.push_back(VOLUME_INTERSECTION);
            }
            continue;
          }
          cc_volume_ids[ncc_id] = cc_volume_ids[cc_id];
        }
      }
    }
    if (used_as_a_predicate)
    {
      internal::copy_container_content(is_cc_outward_oriented, parameters::get_parameter(np, internal_np::is_cc_outward_oriented));
      return 1;
    }

  // merge nested_cc_per_cc and nested_cc_per_cc_shared
  // (done after the volume creation to assign a CC to a unique volume)
    for(std::size_t id=0; id<nb_cc; ++id)
    {
      if (!nested_cc_per_cc_shared[id].empty())
        nested_cc_per_cc[id].insert(nested_cc_per_cc[id].end(),
                                    nested_cc_per_cc_shared[id].begin(),
                                    nested_cc_per_cc_shared[id].end());
    }


  // extract direct nested parent (more than one in case of self-intersection)
    for(std::size_t cc_id=0; cc_id<nb_cc; ++cc_id)
    {
      for(std::size_t ncc_id : nested_cc_per_cc[cc_id])
      {
        if (nesting_levels[cc_id]+1 == nesting_levels[ncc_id])
          nesting_parents[ncc_id].push_back(cc_id);
      }
    }

  // update volume id map
    for(std::size_t cc_id=0; cc_id<nb_cc; ++cc_id)
    {
      for(face_descriptor fd : faces_per_cc[cc_id])
        put(volume_id_map, fd, cc_volume_ids[cc_id]);
    }
  }
  else
  {
    for(face_descriptor fd : faces(tm))
    {
      std::size_t cc_id = face_cc[ get(fid_map, fd) ];
      put(volume_id_map, fd, cc_volume_ids[cc_id]);
    }
  }

  CGAL_assertion(next_volume_id == error_codes.size());
  internal::copy_container_content(error_codes, parameters::get_parameter(np, internal_np::error_codes));
  internal::copy_nested_parents(nesting_parents, parameters::get_parameter(np, internal_np::volume_inclusions));
  internal::copy_container_content(nesting_levels, parameters::get_parameter(np, internal_np::nesting_levels));
  internal::copy_container_content(cc_volume_ids, parameters::get_parameter(np, internal_np::connected_component_id_to_volume_id));
  internal::copy_container_content(is_cc_outward_oriented, parameters::get_parameter(np, internal_np::is_cc_outward_oriented));
  internal::set_cc_intersecting_pairs(self_intersecting_cc, parameters::get_parameter(np, internal_np::intersecting_volume_pairs_output_iterator));

  return next_volume_id;
}

/** \ingroup PMP_orientation_grp
 *
 * indicates if `tm` bounds a volume.
 * See \ref coref_def_subsec for details.
 *
 * @tparam TriangleMesh a model of `HalfedgeListGraph`, `FaceListGraph`, and `MutableFaceGraph`.
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
 *
 * @param tm a closed triangulated surface mesh
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * @pre `CGAL::is_closed(tm)`
 *
 * @attention if `tm` is self-intersecting the behavior of this function is undefined.
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `tm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{face_index_map}
 *     \cgalParamDescription{a property map associating to each face of `tm` a unique index between `0` and `num_faces(tm) - 1`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
 *                    as key type and `std::size_t` as value type}
 *     \cgalParamDefault{an automatically indexed internal map}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{is_cc_outward_oriented}
 *     \cgalParamDescription{For each connected component identified using its id `ccid`, the output of `is_outward_oriented()`
 *                           called on the triangle mesh corresponding to this connected component
 *                           is the value at the position `ccid` in the container.
 *                           The size of the container is exactly the number of connected components.}
 *     \cgalParamType{a `reference_wrapper` (either from `boost` or the standard library) containing
 *                    a reference to a container that must be a model of the `BackInsertionSequence` concept,
 *                    with value type `bool`}
 *     \cgalParamDefault{unused}
 *   \cgalParamNEnd
 * \cgalNamedParamsEnd
 *
 * \see `CGAL::Polygon_mesh_processing::orient_to_bound_a_volume()`
 */
template <class TriangleMesh, class NamedParameters = parameters::Default_named_parameters>
bool does_bound_a_volume(const TriangleMesh& tm, const NamedParameters& np = parameters::default_values())
{
  typedef boost::graph_traits<TriangleMesh> GT;
  typedef typename GT::face_descriptor face_descriptor;

  CGAL_precondition(is_closed(tm));
  CGAL_precondition(is_triangle_mesh(tm));

  Constant_property_map<face_descriptor, std::size_t> vidmap(0); // dummy map not used
  std::size_t res =
    volume_connected_components(tm, vidmap, np.do_orientation_tests(true)
                                              .i_used_as_a_predicate(true));
  CGAL_assertion(res==0 || res==1);

  return res!=0;
}

/*!
 * \ingroup PMP_orientation_grp
 *
 * orients the connected components of `tm` to make it bound a volume.
 * See \ref coref_def_subsec for a precise definition.
 *
 * @tparam TriangleMesh a model of `HalfedgeListGraph`, `FaceListGraph`, and `MutableFaceGraph`.
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters
 *
 * @param tm a closed triangulated surface mesh
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * @pre `CGAL::is_closed(tm)`
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{outward_orientation}
 *     \cgalParamDescription{If `true`, each connected component will be outward oriented (and inward oriented if `false`).}
 *     \cgalParamType{Boolean}
 *     \cgalParamDefault{`true`}
 *     \cgalParamExtra{If the outer connected components are inward oriented,
 *                     it means that the infinity will be considered as part of the volume bounded by `tm`.}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `tm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{geom_traits}
 *     \cgalParamDescription{an instance of a geometric traits class}
 *     \cgalParamType{a class model of `Kernel`}
 *     \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
 *     \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{face_index_map}
 *     \cgalParamDescription{a property map associating to each face of `tm` a unique index between `0` and `num_faces(tm) - 1`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%face_descriptor`
 *                    as key type and `std::size_t` as value type}
 *     \cgalParamDefault{an automatically indexed internal map}
 *   \cgalParamNEnd
 *
 * \cgalNamedParamsEnd
 *
 * \see `CGAL::Polygon_mesh_processing::does_bound_a_volume()`
 */
template <class TriangleMesh, class NamedParameters = parameters::Default_named_parameters>
void orient_to_bound_a_volume(TriangleMesh& tm,
                              const NamedParameters& np = parameters::default_values())
{
  typedef boost::graph_traits<TriangleMesh>                                        Graph_traits;
  typedef typename Graph_traits::face_descriptor                                   face_descriptor;

  typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type    Vpm;
  typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type              GT;
  typedef typename GetInitializedFaceIndexMap<TriangleMesh, NamedParameters>::type FaceIndexMap;

  if (is_empty(tm)) return;

  CGAL_precondition(is_closed(tm));
  CGAL_precondition(is_triangle_mesh(tm));

  using parameters::choose_parameter;
  using parameters::get_parameter;

  bool orient_outward = choose_parameter(get_parameter(np, internal_np::outward_orientation),true);

  Vpm vpm = choose_parameter(get_parameter(np, internal_np::vertex_point),
                             get_const_property_map(boost::vertex_point, tm));
  GT gt = choose_parameter<GT>(get_parameter(np, internal_np::geom_traits));
  FaceIndexMap fid_map = CGAL::get_initialized_face_index_map(tm, np);

  std::vector<std::size_t> face_cc(num_faces(tm), std::size_t(-1));
  std::vector<std::size_t> nesting_levels;
  std::vector<bool> is_cc_outward_oriented;
  Constant_property_map<face_descriptor, std::size_t> vidmap(0); // dummy map not used

  volume_connected_components(tm, vidmap,
                              parameters::vertex_point_map(vpm)
                                          .geom_traits(gt)
                                          .nesting_levels(boost::ref(nesting_levels))
                                          .face_connected_component_map(make_compose_property_map(fid_map,make_property_map(face_cc)))
                                          .i_used_for_volume_orientation(true)
                                          .do_orientation_tests(true)
                                          .is_cc_outward_oriented(boost::ref(is_cc_outward_oriented))
                                          );

  // set the connected component id of each face


  if (nesting_levels.empty()) //case 1 cc
  {
    if( orient_outward != is_cc_outward_oriented[0])
      reverse_face_orientations(faces(tm), tm);
    return ;
  }
  std::size_t nb_cc = nesting_levels.size();
  boost::dynamic_bitset<> cc_to_reverse(nb_cc, 0);
  for(std::size_t i=0; i<nb_cc; ++i)
  {
    if ( ((nesting_levels[i]%2==0) == orient_outward) != is_cc_outward_oriented[i] )
    {
      cc_to_reverse.set(i);
    }
  }

  std::vector<face_descriptor> faces_to_reverse;
  for (face_descriptor f : faces(tm))
    if ( cc_to_reverse.test( face_cc[get(fid_map, f)] ) )
      faces_to_reverse.push_back(f);

  reverse_face_orientations(faces_to_reverse, tm);
}

/*!
 * \ingroup PMP_orientation_grp
 *
 * reverses the connected components of `tm` having compatible boundary cycles
 * that could be merged if their orientation were made compatible, and stitches them.
 * Connected components are examined by increasing number of faces.
 *
 * @tparam PolygonMesh a model of `HalfedgeListGraph`, `FaceListGraph`, and `MutableFaceGraph`.
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters
 *
 * @param pm a surface mesh
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `pm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<PolygonMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, pm)`}
 *     \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
 *                     should be available for the vertices of `pm`.}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{face_index_map}
 *     \cgalParamDescription{a property map associating to each face of `pm` a unique index
 *                           between `0` and `num_faces(pm) - 1`)}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<PolygonMesh>::%face_descriptor`
 *                    as key type and `std::size_t` as value type}
 *     \cgalParamDefault{an automatically indexed internal map}
 *   \cgalParamNEnd
 *
 *   \cgalParamNBegin{maximum_number_of_faces}
 *     \cgalParamDescription{If not `0`, a connected component is considered reversible only
 *                           if it has no more faces than the value given.
 *                           Otherwise, it is always considered reversible.}
 *     \cgalParamType{`std::size_t`}
 *     \cgalParamDefault{`0`}
 *   \cgalParamNEnd
 * \cgalNamedParamsEnd
 */
template <class PolygonMesh,
          class NamedParameters = parameters::Default_named_parameters>
void merge_reversible_connected_components(PolygonMesh& pm,
                                           const NamedParameters& np = parameters::default_values())
{
  typedef boost::graph_traits<PolygonMesh> GrT;
  typedef typename GrT::face_descriptor face_descriptor;
  typedef typename GrT::halfedge_descriptor halfedge_descriptor;

  typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::const_type Vpm;

  typedef typename boost::property_traits<Vpm>::value_type Point_3;
  Vpm vpm = parameters::choose_parameter(parameters::get_parameter(np, internal_np::vertex_point),
                                         get_const_property_map(vertex_point, pm));

  typedef std::size_t F_cc_id;
  typedef std::size_t B_cc_id;


  typedef typename CGAL::GetInitializedFaceIndexMap<PolygonMesh, NamedParameters>::const_type Fidmap;
  Fidmap fim = CGAL::get_initialized_face_index_map(pm, np);

  typedef dynamic_face_property_t<F_cc_id>                   Face_property_tag;
  typedef typename boost::property_map<PolygonMesh, Face_property_tag>::type   Face_cc_map;
  Face_cc_map f_cc_ids  = get(Face_property_tag(), pm);
  F_cc_id nb_cc = connected_components(pm, f_cc_ids, parameters::face_index_map(fim));

  std::vector<std::size_t> nb_faces_per_cc(nb_cc, 0);
  for (face_descriptor f : faces(pm))
    nb_faces_per_cc[ get(f_cc_ids, f) ]+=1;

  std::map< std::pair<Point_3, Point_3>, std::vector<halfedge_descriptor> > border_hedges_map;
  std::vector<halfedge_descriptor> border_hedges;
  typedef typename boost::property_map<PolygonMesh, dynamic_halfedge_property_t<B_cc_id> >::type H_to_bcc_id;
  H_to_bcc_id h_bcc_ids = get(dynamic_halfedge_property_t<B_cc_id>(), pm);
  const B_cc_id base_value(-1);
  const B_cc_id FILTERED_OUT(-2);

  // collect border halfedges
  for (halfedge_descriptor h : halfedges(pm))
    if ( is_border(h, pm) )
    {
      put(h_bcc_ids, h, base_value);
      border_hedges.push_back(h);
    }

  // compute the border cc id of all halfedges and mark those duplicated in their own cycle
  B_cc_id bcc_id=0;
  for (halfedge_descriptor h : border_hedges)
  {
    if (get(h_bcc_ids,h) == base_value)
    {
      typedef std::map< std::pair<Point_3, Point_3>, halfedge_descriptor> Hmap;
      Hmap hmap;
      for (halfedge_descriptor hh : halfedges_around_face(h, pm))
      {
        std::pair< typename Hmap::iterator, bool > insert_res =
            hmap.insert(
              std::make_pair(
                make_sorted_pair(get(vpm, source(hh, pm)),
                                 get(vpm, target(hh,pm))), hh) );
        if (insert_res.second)
          put(h_bcc_ids, hh, bcc_id);
        else
        {
          put(h_bcc_ids, hh, FILTERED_OUT);
          put(h_bcc_ids, insert_res.first->second, FILTERED_OUT);
        }
      }
      ++bcc_id;
    }
  }

  // fill endpoints -> hedges
  for (halfedge_descriptor h : border_hedges)
  {
    if ( get(h_bcc_ids, h) != FILTERED_OUT)
      border_hedges_map[std::make_pair(get(vpm, source(h, pm)), get(vpm, target(h, pm)))].push_back(h);
  }

  // max nb of faces for a CC to be reversed
  const std::size_t threshold =
    parameters::choose_parameter( parameters::get_parameter(np, internal_np::maximum_number_of_faces), 0);

  std::vector<bool> border_cycle_to_ignore(bcc_id, false);
  std::vector<F_cc_id> cycle_f_cc_id(bcc_id);
  std::vector< std::vector<F_cc_id> > patch_neighbors(nb_cc);

  for (const auto& p : border_hedges_map)
  {
    const std::vector<halfedge_descriptor>& hedges = p.second;
    switch(hedges.size())
    {
      case 1:
        // isolated border hedge nothing to do
      break;
      case 2:
      {
        F_cc_id cc_id_0 = get(f_cc_ids, face(opposite(hedges[0], pm), pm)),
                cc_id_1 = get(f_cc_ids, face(opposite(hedges[1], pm), pm));

        if (cc_id_0!=cc_id_1)
        {
          cycle_f_cc_id[ get(h_bcc_ids, hedges[0]) ] = cc_id_0;
          cycle_f_cc_id[ get(h_bcc_ids, hedges[1]) ] = cc_id_1;
          // WARNING: we might have duplicates here but it is not important for our usage
          patch_neighbors[cc_id_0].push_back(cc_id_1);
          patch_neighbors[cc_id_1].push_back(cc_id_0);
          break;
        }
        CGAL_FALLTHROUGH;
      }
      default:
        for (halfedge_descriptor h : hedges)
          border_cycle_to_ignore[get(h_bcc_ids, h)]=true;
    }
  }

  // sort the connected components with potential matches using their number
  // of faces (sorted by decreasing number of faces)
  std::set<F_cc_id> ccs_to_reverse;
  std::vector<bool> reversible(nb_cc, false);
  std::set< F_cc_id, std::function<bool(F_cc_id,F_cc_id)> > queue(
    [&nb_faces_per_cc](F_cc_id i, F_cc_id j)
    {return nb_faces_per_cc[i]==nb_faces_per_cc[j] ? i<j : nb_faces_per_cc[i]>nb_faces_per_cc[j];}
  );

  for (B_cc_id i=0; i<bcc_id; ++i)
  {
    if ( !border_cycle_to_ignore[i] )
    {
      reversible[ cycle_f_cc_id[i] ] = true;
      queue.insert(cycle_f_cc_id[i]);
    }
  }

  // consider largest CC selected and reverse the neighbor patches if
  // not already reversed or not marked as reversible
  while( !queue.empty() )
  {
    F_cc_id f_cc_id = *queue.begin();
    queue.erase( queue.begin() );
    CGAL_assertion( reversible[f_cc_id] );
    for (F_cc_id id : patch_neighbors[f_cc_id])
    {
      if (reversible[id] && (threshold==0 || threshold >= nb_faces_per_cc[id]))
      {
        CGAL_assertion( nb_faces_per_cc[f_cc_id] >= nb_faces_per_cc[id] );
        ccs_to_reverse.insert(id);
        reversible[id]=false;
        queue.erase(id);
      }
    }
  }

  // reverse ccs and stitches boundaries
  std::vector<face_descriptor> faces_to_reverse;
  for (face_descriptor f : faces(pm))
    if ( ccs_to_reverse.count( get(f_cc_ids, f) ) != 0 )
      faces_to_reverse.push_back(f);

  if ( !faces_to_reverse.empty() )
  {
    reverse_face_orientations(faces_to_reverse, pm);
    stitch_borders(pm, np);
  }
}


/*!
 * \ingroup PMP_orientation_grp
 *
 * identifies faces whose orientation must be reversed in order to enable stitching of connected components.
 * Each face is assigned a bit (`false` or `true`)
 * such that two faces have compatible orientations iff they are assigned the same bits.
 * If `pm` features several connected components (ignoring edge orientations), the property map passed
 * to the named parameter `face_partition_id_map` will indicate for each face to which connected component it belongs.
 * Note that two faces in different connected components are not impacting each others' orientations,
 * so comparing their associated bits in `face_bit_map` is irrelevant.
 *
 * @tparam PolygonMesh a model of `HalfedgeListGraph`, `FaceGraph`.
 * @tparam FaceBitMap a model of `WritablePropertyMap` with `face_descriptor` as key and `bool` as value_type
 * @tparam NamedParameters a sequence of \ref bgl_namedparameters
 *
 * @param pm a surface mesh
 * @param fbm face bit map indicating if a face orientation should be reversed to be stitchable
 *        (see `CGAL::Polygon_mesh_processing::stitch_borders()`) with another face. If `false` is
 *        returned, the map will not be filled.
 * @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
 *
 * @return `true` if `pm` can be reoriented and `false` otherwise.
 *
 * \cgalNamedParamsBegin
 *   \cgalParamNBegin{vertex_point_map}
 *     \cgalParamDescription{a property map associating points to the vertices of `pm`}
 *     \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<PolygonMesh>::%vertex_descriptor`
 *                    as key type and `%Point_3` as value type}
 *     \cgalParamDefault{`boost::get(CGAL::vertex_point, pm)`}
 *     \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
 *                     should be available for the vertices of `pm`.}
 *   \cgalParamNEnd
 *   \cgalParamNBegin{face_partition_id_map}
 *     \cgalParamDescription{a property map filled by this function and that will contain for each face
 *                           the id of its surface component after reversal and stitching in the range `[0, n - 1]`,
 *                           with `n` the number of such components.}
 *     \cgalParamType{a class model of `WritablePropertyMap` with `boost::graph_traits<PolygonMesh>::%face_descriptor` as key type and `std::size_t` as value type}
 *   \cgalParamNEnd
 * \cgalNamedParamsEnd
 *
 * \sa reverse_face_orientations()
 * \sa stitch_borders()
 *
 */
template <class PolygonMesh, class FaceBitMap, class NamedParameters = parameters::Default_named_parameters>
bool compatible_orientations(const PolygonMesh& pm,
                             FaceBitMap fbm,
                             const NamedParameters& np = parameters::default_values())
{
  typedef boost::graph_traits<PolygonMesh> GrT;
  typedef typename GrT::face_descriptor face_descriptor;
  typedef typename GrT::halfedge_descriptor halfedge_descriptor;

  typedef typename GetVertexPointMap<PolygonMesh, NamedParameters>::const_type Vpm;

  typedef typename boost::property_traits<Vpm>::value_type Point_3;
  Vpm vpm = parameters::choose_parameter(parameters::get_parameter(np, internal_np::vertex_point),
                                         get_const_property_map(vertex_point, pm));

  typedef typename internal_np::Lookup_named_param_def <
    internal_np::face_partition_id_t,
    NamedParameters,
    Constant_property_map<face_descriptor, std::size_t> // default
  >::type Partition_map;

  // cc id map if compatible edges were stitched
  Partition_map partition_map = parameters::choose_parameter<Partition_map>(parameters::get_parameter(np, internal_np::face_partition_id));

  typedef std::size_t F_cc_id; // Face cc-id
  typedef std::size_t E_id; // Edge id

  typedef dynamic_face_property_t<F_cc_id>                   Face_property_tag;
  typedef typename boost::property_map<PolygonMesh, Face_property_tag>::const_type   Face_cc_map;
  Face_cc_map f_cc_ids  = get(Face_property_tag(), pm);
  F_cc_id nb_cc = connected_components(pm, f_cc_ids);

  std::vector<std::size_t> nb_faces_per_cc(nb_cc, 0);
  for (face_descriptor f : faces(pm))
    nb_faces_per_cc[ get(f_cc_ids, f) ]+=1;

  // collect border halfedges
  std::vector<halfedge_descriptor> border_hedges;
  for (halfedge_descriptor h : halfedges(pm))
    if ( is_border(h, pm) )
      border_hedges.push_back(h);
  std::size_t nb_bh=border_hedges.size();

  // compute the edge id of all border halfedges
  typedef std::map< std::pair<Point_3, Point_3>, E_id> E_id_map;
  E_id_map e_id_map;
  E_id e_id = 0;

  std::vector<E_id> eids;
  eids.reserve(nb_bh);
  for (halfedge_descriptor h : border_hedges)
  {
    std::pair< typename E_id_map::iterator, bool > insert_res =
        e_id_map.insert(
          std::make_pair(
            make_sorted_pair(get(vpm, source(h, pm)),
                             get(vpm, target(h,pm))), e_id) );
    if (insert_res.second)
      ++e_id;
    eids.push_back(insert_res.first->second);
  }

  // fill incidence per edge
  std::vector< std::vector<halfedge_descriptor> > incident_ccs_per_edge(e_id);
  for (std::size_t i=0; i<nb_bh; ++i)
    incident_ccs_per_edge[ eids[i] ].push_back(border_hedges[i]);

  std::vector< std::vector<F_cc_id> > compatible_patches(nb_cc);
  std::vector< std::vector<F_cc_id> > incompatible_patches(nb_cc);

  for (std::vector<halfedge_descriptor>& v : incident_ccs_per_edge)
  {
    // ignore non-manifold edges
    if (v.size()!=2) continue;
    F_cc_id front_id=get(f_cc_ids, face(opposite(v.front(), pm), pm));
    F_cc_id back_id=get(f_cc_ids, face(opposite(v.back(), pm), pm));

    if (front_id==back_id) continue;

    if (get(vpm, source(v.front(), pm))==get(vpm, target(v.back(), pm)))
    {
      compatible_patches[front_id].push_back(back_id);
      compatible_patches[back_id].push_back(front_id);
    }
    else
    {
      incompatible_patches[front_id].push_back(back_id);
      incompatible_patches[back_id].push_back(front_id);
    }
  }

  for(F_cc_id cc_id=0; cc_id<nb_cc; ++cc_id)
  {
    std::sort(compatible_patches[cc_id].begin(), compatible_patches[cc_id].end());
    std::sort(incompatible_patches[cc_id].begin(), incompatible_patches[cc_id].end());
  }

  // sort the connected components with potential matches using their number
  // of faces (sorted by decreasing number of faces)
  std::vector<bool> cc_bits(nb_cc, false);
  std::vector<bool> cc_handled(nb_cc, false);

  std::set< F_cc_id, std::function<bool(F_cc_id,F_cc_id)> > sorted_ids(
    [&nb_faces_per_cc](F_cc_id i, F_cc_id j)
    {return nb_faces_per_cc[i]==nb_faces_per_cc[j] ? i<j : nb_faces_per_cc[i]>nb_faces_per_cc[j];}
  );
  for(F_cc_id cc_id=0; cc_id<nb_cc; ++cc_id)
    sorted_ids.insert(cc_id);

  // consider largest CC first, default and set its bit to 0
  std::size_t partition_id = 0;
  std::vector<std::size_t> partition_ids(nb_cc);
  for(F_cc_id cc_id : sorted_ids)
  {
    if (cc_handled[cc_id]) continue;

    // extract compatible components
    std::set<F_cc_id> bit_0_cc_set;
    std::set<F_cc_id> bit_1_cc_set;
    bit_0_cc_set.insert(cc_id);
    std::vector<F_cc_id> stack_0=compatible_patches[cc_id];
    std::vector<F_cc_id> stack_1=incompatible_patches[cc_id];

    while( !stack_0.empty() || !stack_1.empty())
    {
      // increase the set of patches for bit 0 using compatible_patches
      while( !stack_0.empty() )
      {
        F_cc_id back=stack_0.back();
        stack_0.pop_back();
        if (!bit_0_cc_set.insert(back).second) continue;
        stack_0.insert(stack_0.end(), compatible_patches[back].begin(), compatible_patches[back].end());
      }

      // extract incompatible components
      for (F_cc_id cid : bit_0_cc_set)
        stack_1.insert(stack_1.end(), incompatible_patches[cid].begin(), incompatible_patches[cid].end());
      // increase the set of patches for bit 1 using compatible_patches
      while( !stack_1.empty() )
      {
        F_cc_id back=stack_1.back();
        stack_1.pop_back();
        if (!bit_1_cc_set.insert(back).second) continue;
        stack_1.insert(stack_1.end(), compatible_patches[back].begin(), compatible_patches[back].end());
      }
      for (F_cc_id cid1 : bit_1_cc_set)
        for (F_cc_id cid0 : incompatible_patches[cid1])
          if( bit_0_cc_set.count(cid0)==0 )
            stack_0.push_back(cid0);
    }

    // set intersection should be empty
    std::vector<F_cc_id> inter;
    std::set_intersection( bit_0_cc_set.begin(), bit_0_cc_set.end(),
                           bit_1_cc_set.begin(), bit_1_cc_set.end(),
                           std::back_inserter(inter));
    if (!inter.empty())
    {
#ifdef CGAL_PMP_DEBUG_ORIENTATION
      std::cout << "DEBUG: Set intersection is not empty\n";
#endif
      return false;
    }

    // set bit of compatible patches
    for (F_cc_id id : bit_0_cc_set)
    {
      if (cc_handled[id])
      {
        if(cc_bits[id] == true)
        {
#ifdef CGAL_PMP_DEBUG_ORIENTATION
          std::cout << "DEBUG: orientation bit already set to 1, incompatible with 0\n";
#endif
          return false;
        }
        else
          continue;
      }
      cc_handled[id]=true;
      CGAL_assertion(cc_bits[id]==false);
      partition_ids[id] = partition_id;
    }

    // set bit of incompatible patches
    for (F_cc_id id : bit_1_cc_set)
    {
      if (cc_handled[id])
      {
        if(cc_bits[id] == false)
        {
#ifdef CGAL_PMP_DEBUG_ORIENTATION
          std::cout << "DEBUG: orientation bit already set to 0, incompatible with 1\n";
#endif
          return false;
        }
        else
          continue;
      }
      cc_handled[id]=true;
      partition_ids[id] = partition_id;
      cc_bits[id]=true;
    }
    ++partition_id;
  }

  // set the bit per face
  for (face_descriptor f : faces(pm))
  {
    std::size_t f_cc_id = get(f_cc_ids,f);
    put(fbm, f, cc_bits[f_cc_id]);
    put(partition_map, f, partition_ids[f_cc_id]);
  }

  return true;
}

} // namespace Polygon_mesh_processing
} // namespace CGAL
#endif // CGAL_ORIENT_POLYGON_MESH_H