File: manipulatedCameraFrame_impl.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (435 lines) | stat: -rw-r--r-- 14,275 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/****************************************************************************

 Copyright (c) 2018  GeometryFactory Sarl (France).
 Copyright (C) 2002-2014 Gilles Debunne. All rights reserved.

 This file is part of a fork of the QGLViewer library version 2.7.0.

*****************************************************************************/
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/GraphicsView/include/CGAL/Qt/manipulatedCameraFrame_impl.h $
// $Id: include/CGAL/Qt/manipulatedCameraFrame_impl.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-only

#ifdef CGAL_HEADER_ONLY
#define CGAL_INLINE_FUNCTION inline

#include <CGAL/license/GraphicsView.h>

#else
#define CGAL_INLINE_FUNCTION
#endif
#include <CGAL/number_type_config.h>
#include <CGAL/Qt/manipulatedCameraFrame.h>
#include <CGAL/Qt/camera.h>
#include <CGAL/Qt/qglviewer.h>

#include <QMouseEvent>

namespace CGAL{
namespace qglviewer{

/*! Default constructor.

 flySpeed() is set to 0.0 and sceneUpVector() is (0,1,0). The pivotPoint() is
 set to (0,0,0).

  \attention Created object is removeFromMouseGrabberPool(). */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::ManipulatedCameraFrame()
    : driveSpeed_(0.0), sceneUpVector_(0.0, 1.0, 0.0),
      rotatesAroundUpVector_(false), zoomsOnPivotPoint_(false) {
  setFlySpeed(0.0);
  removeFromMouseGrabberPool();
  connect(&flyTimer_, SIGNAL(timeout()), SLOT(flyUpdate()));
}

/*! Equal operator. Calls ManipulatedFrame::operator=() and then copy
 * attributes. */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame &ManipulatedCameraFrame::
operator=(const ManipulatedCameraFrame &mcf) {
  ManipulatedFrame::operator=(mcf);

  setFlySpeed(mcf.flySpeed());
  setSceneUpVector(mcf.sceneUpVector());
  setRotatesAroundUpVector(mcf.rotatesAroundUpVector_);
  setZoomsOnPivotPoint(mcf.zoomsOnPivotPoint_);

  return *this;
}

/*! Copy constructor. Performs a deep copy of all members using operator=(). */
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::ManipulatedCameraFrame(
    const ManipulatedCameraFrame &mcf)
    : ManipulatedFrame(mcf) {
  removeFromMouseGrabberPool();
  connect(&flyTimer_, SIGNAL(timeout()), SLOT(flyUpdate()));
  (*this) = (mcf);
}

////////////////////////////////////////////////////////////////////////////////

/*! Overloading of ManipulatedFrame::spin().

Rotates the ManipulatedCameraFrame around its pivotPoint() instead of its
origin. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::spin() {
  rotateAroundPoint(spinningQuaternion(), pivotPoint());
}

#ifndef DOXYGEN
/*! Called for continuous frame motion in fly mode (see
  MOVE_FORWARD). Emits manipulated(). */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::flyUpdate() {
  static Vec flyDisp(0.0, 0.0, 0.0);
  switch (action_) {
  case MOVE_FORWARD:
    flyDisp.z = -flySpeed();
    translate(localInverseTransformOf(flyDisp));
    break;
  case MOVE_BACKWARD:
    flyDisp.z = flySpeed();
    translate(localInverseTransformOf(flyDisp));
    break;
  case DRIVE:
    flyDisp.z = flySpeed() * driveSpeed_;
    translate(localInverseTransformOf(flyDisp));
    break;
  default:
    break;
  }

  // Needs to be out of the switch since ZOOM/fastDraw()/wheelEvent use this
  // callback to trigger a final draw(). #CONNECTION# wheelEvent.
  Q_EMIT manipulated();
}
#endif

/*! This method will be called by the Camera when its orientation is changed, so
that the sceneUpVector (private) is changed accordingly. You should not need to
call this method. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::updateSceneUpVector() {
  sceneUpVector_ = inverseTransformOf(Vec(0.0, 1.0, 0.0));
}


////////////////////////////////////////////////////////////////////////////////
//                 M o u s e    h a n d l i n g                               //
////////////////////////////////////////////////////////////////////////////////

#ifndef DOXYGEN
/*! Protected internal method used to handle mouse events. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::startAction(int ma, bool withConstraint) {
  ManipulatedFrame::startAction(ma, withConstraint);

  switch (action_) {
  case MOVE_FORWARD:
  case MOVE_BACKWARD:
  case DRIVE:
    flyTimer_.setSingleShot(false);
    flyTimer_.start(10);
    break;
  case ROTATE:
    constrainedRotationIsReversed_ = transformOf(sceneUpVector_).y < 0.0;
    break;
  default:
    break;
  }
}

CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::zoom(qreal delta, const Camera *const camera) {
  const qreal sceneRadius = camera->sceneRadius();
  if (zoomsOnPivotPoint_) {
    Vec direction = position() - camera->pivotPoint();
    if (direction.norm() > 0.02 * sceneRadius || delta > 0.0)
      translate(delta * direction);
  } else {
    const qreal coef =
        qMax(fabs((camera->frame()->coordinatesOf(camera->pivotPoint())).z),
             qreal(0.2) * sceneRadius);
    Vec trans(0.0, 0.0, -coef * delta);
    translate(inverseTransformOf(trans));
  }
}

#endif

/*! Overloading of ManipulatedFrame::mouseMoveEvent().

Motion depends on mouse binding (see <a href="../mouse.html">mouse page</a> for
details). The resulting displacements are basically inverted from those of a
ManipulatedFrame. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::mouseMoveEvent(QMouseEvent *const event,
                                            Camera *const camera) {
  // #CONNECTION# mouseMoveEvent does the update().
  switch (action_) {
  case TRANSLATE: {
    const QPoint delta = prevPos_ - event->pos();
    Vec trans(delta.x(), -delta.y(), 0.0);
    // Scale to fit the screen mouse displacement
    switch (camera->type()) {
    case Camera::PERSPECTIVE:
      trans *= 2.0 * tan(camera->fieldOfView() / 2.0) *
               fabs((camera->frame()->coordinatesOf(pivotPoint())).z) /
               camera->screenHeight();
      break;
    case Camera::ORTHOGRAPHIC: {
      GLdouble w, h;
      camera->getOrthoWidthHeight(w, h);
      trans[0] *= 2.0 * w / camera->screenWidth();
      trans[1] *= 2.0 * h / camera->screenHeight();
      break;
    }
    }
    translate(inverseTransformOf(translationSensitivity() * trans));
    break;
  }

  case MOVE_FORWARD: {
    Quaternion rot = pitchYawQuaternion(event->position().x(), event->position().y(), camera);
    rotate(rot);
    //#CONNECTION# wheelEvent MOVE_FORWARD case
    // actual translation is made in flyUpdate().
    // translate(inverseTransformOf(Vec(0.0, 0.0, -flySpeed())));
    break;
  }

  case MOVE_BACKWARD: {
    Quaternion rot = pitchYawQuaternion(event->position().x(), event->position().y(), camera);
    rotate(rot);
    // actual translation is made in flyUpdate().
    // translate(inverseTransformOf(Vec(0.0, 0.0, flySpeed())));
    break;
  }

  case DRIVE: {
    Quaternion rot = turnQuaternion(event->position().x(), camera);
    rotate(rot);
    // actual translation is made in flyUpdate().
    driveSpeed_ = 0.01 * (event->position().y() - pressPos_.y());
    break;
  }

  case ZOOM: {
    zoom(deltaWithPrevPos(event, camera), camera);
    break;
  }

  case LOOK_AROUND: {
    Quaternion rot = pitchYawQuaternion(event->position().x(), event->position().y(), camera);
    rotate(rot);
    break;
  }

  case ROTATE: {
    Quaternion rot;
    if (rotatesAroundUpVector_) {
      // Multiply by 2.0 to get on average about the same speed as with the
      // deformed ball
      qreal dx = 2.0 * rotationSensitivity() * (prevPos_.x() - event->position().x()) /
                 camera->screenWidth();
      qreal dy = 2.0 * rotationSensitivity() * (prevPos_.y() - event->position().y()) /
                 camera->screenHeight();
      if (constrainedRotationIsReversed_)
        dx = -dx;
      Vec verticalAxis = transformOf(sceneUpVector_);
      rot = Quaternion(verticalAxis, dx) * Quaternion(Vec(1.0, 0.0, 0.0), dy);
    } else {
      Vec trans = camera->projectedCoordinatesOf(pivotPoint());
      rot = deformedBallQuaternion(event->position().x(), event->position().y(), trans[0], trans[1],
                                   camera);
    }
    //#CONNECTION# These two methods should go together (spinning detection and
    // activation)
    computeMouseSpeed(event);
    setSpinningQuaternion(rot);
    spin();
    break;
  }

  case SCREEN_ROTATE: {
    Vec trans = camera->projectedCoordinatesOf(pivotPoint());

    const qreal angle = atan2(event->position().y() - trans[1], event->position().x() - trans[0]) -
                        atan2(prevPos_.y() - trans[1], prevPos_.x() - trans[0]);

    Quaternion rot(Vec(0.0, 0.0, 1.0), angle);
    //#CONNECTION# These two methods should go together (spinning detection and
    // activation)
    computeMouseSpeed(event);
    setSpinningQuaternion(rot);
    spin();
    updateSceneUpVector();
    break;
  }

  case ROLL: {
    const qreal angle =
      CGAL_PI * (event->position().x() - prevPos_.x()) / camera->screenWidth();
    Quaternion rot(Vec(0.0, 0.0, 1.0), angle);
    rotate(rot);
    setSpinningQuaternion(rot);
    updateSceneUpVector();
    break;
  }

  case SCREEN_TRANSLATE: {
    Vec trans;
    int dir = mouseOriginalDirection(event);
    if (dir == 1)
      trans.setValue(prevPos_.x() - event->position().x(), 0.0, 0.0);
    else if (dir == -1)
      trans.setValue(0.0, event->position().y() - prevPos_.y(), 0.0);

    switch (camera->type()) {
    case Camera::PERSPECTIVE:
      trans *= 2.0 * tan(camera->fieldOfView() / 2.0) *
               fabs((camera->frame()->coordinatesOf(pivotPoint())).z) /
               camera->screenHeight();
      break;
    case Camera::ORTHOGRAPHIC: {
      GLdouble w, h;
      camera->getOrthoWidthHeight(w, h);
      trans[0] *= 2.0 * w / camera->screenWidth();
      trans[1] *= 2.0 * h / camera->screenHeight();
      break;
    }
    }

    translate(inverseTransformOf(translationSensitivity() * trans));
    break;
  }

  default:
    break;
  }

  if (action_ != NO_MOUSE_ACTION) {
    prevPos_ = event->pos();
    if (action_ != ZOOM_ON_REGION)
      // ZOOM_ON_REGION should not emit manipulated().
      // prevPos_ is used to draw rectangle feedback.
      Q_EMIT manipulated();
  }
}

/*! This is an overload of ManipulatedFrame::mouseReleaseEvent(). The
  MouseAction is terminated. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::mouseReleaseEvent(QMouseEvent *const event,
                                               Camera *const camera) {
  if ((action_ == MOVE_FORWARD) ||
      (action_ == MOVE_BACKWARD) || (action_ == DRIVE))
    flyTimer_.stop();

  if (action_ == ZOOM_ON_REGION)
    camera->fitScreenRegion(QRect(pressPos_, event->pos()));

  ManipulatedFrame::mouseReleaseEvent(event, camera);
}

/*! This is an overload of ManipulatedFrame::wheelEvent().

The wheel behavior depends on the wheel binded action. Current possible actions
are ZOOM, MOVE_FORWARD, MOVE_BACKWARD.
ZOOM speed depends on wheelSensitivity() while
MOVE_FORWARD and MOVE_BACKWARD depend on flySpeed(). See
CGAL::QGLViewer::setWheelBinding() to customize the binding. */
CGAL_INLINE_FUNCTION
void ManipulatedCameraFrame::wheelEvent(QWheelEvent *const event,
                                        Camera *const camera) {
  //#CONNECTION# CGAL::QGLViewer::setWheelBinding, ManipulatedFrame::wheelEvent.
  switch (action_) {
  case ZOOM: {
    zoom(wheelDelta(event), camera);
    Q_EMIT manipulated();
    break;
  }
  case MOVE_FORWARD:
  case MOVE_BACKWARD:
    //#CONNECTION# mouseMoveEvent() MOVE_FORWARD case
    translate(
        inverseTransformOf(Vec(0.0, 0.0, 0.2 * flySpeed() * event->angleDelta().y())));
    Q_EMIT manipulated();
    break;
  case ZOOM_FOV:
  {
    qreal delta = - wheelDelta(event);//- sign to keep the same behavior as for the ZOOM action.
    qreal new_fov = delta/100 + camera->fieldOfView();
    if(new_fov > CGAL_PI/180.0)
    {
      new_fov = delta + camera->fieldOfView();
    }
    if(new_fov > CGAL_PI/4.0)
      new_fov = CGAL_PI/4.0;
    if( new_fov >= 0.0)
    {
      camera->setFieldOfView(new_fov);
    }
    Q_EMIT manipulated();
    break;
  }
  default:
    break;
  }

  // #CONNECTION# startAction should always be called before
  if (previousConstraint_)
    setConstraint(previousConstraint_);

  // The wheel triggers a fastDraw. A final update() is needed after the last
  // wheel event to polish the rendering using draw(). Since the last wheel
  // event does not say its name, we use the flyTimer_ to trigger flyUpdate(),
  // which emits manipulated. Two wheel events separated by more than this delay
  // milliseconds will trigger a draw().
  const int finalDrawAfterWheelEventDelay = 400;

  // Starts (or prolungates) the timer.
  flyTimer_.setSingleShot(true);
  flyTimer_.start(finalDrawAfterWheelEventDelay);

  // This could also be done *before* manipulated is emitted, so that
  // isManipulated() returns false. But then fastDraw would not be used with
  // wheel. Detecting the last wheel event and forcing a final draw() is done
  // using the timer_.
  if(action_ != ZOOM_FOV)
    action_ = NO_MOUSE_ACTION;
  //else done after postDraw().

}

////////////////////////////////////////////////////////////////////////////////

/*! Returns a Quaternion that is a rotation around current camera Y,
 * proportionnal to the horizontal mouse position. */
CGAL_INLINE_FUNCTION
Quaternion ManipulatedCameraFrame::turnQuaternion(int x,
                                                  const Camera *const camera) {
  return Quaternion(Vec(0.0, 1.0, 0.0), rotationSensitivity() *
                                            (prevPos_.x() - x) /
                                            camera->screenWidth());
}

/*! Returns a Quaternion that is the composition of two rotations, inferred from
  the mouse pitch (X axis) and yaw (sceneUpVector() axis). */
Quaternion
CGAL_INLINE_FUNCTION
ManipulatedCameraFrame::pitchYawQuaternion(int x, int y,
                                           const Camera *const camera) {
  const Quaternion rotX(Vec(1.0, 0.0, 0.0), rotationSensitivity() *
                                                (prevPos_.y() - y) /
                                                camera->screenHeight());
  const Quaternion rotY(transformOf(sceneUpVector()),
                        rotationSensitivity() * (prevPos_.x() - x) /
                            camera->screenWidth());
  return rotY * rotX;
}

}}