1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Shape_regularization/include/CGAL/Shape_regularization/Contours/User_defined_directions_2.h $
// $Id: include/CGAL/Shape_regularization/Contours/User_defined_directions_2.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Dmitry Anisimov, Simon Giraudot
//
#ifndef CGAL_SHAPE_REGULARIZATION_USER_DEFINED_PRINCIPAL_DIRECTIONS_2_H
#define CGAL_SHAPE_REGULARIZATION_USER_DEFINED_PRINCIPAL_DIRECTIONS_2_H
#include <CGAL/license/Shape_regularization.h>
// Internal includes.
#include <CGAL/Shape_regularization/internal/Contour_base_2.h>
namespace CGAL {
namespace Shape_regularization {
namespace Contours {
/*!
\ingroup PkgShapeRegularizationRefContours
\brief Sets multiple user-specified principal directions of the contour.
This algorithm finds the best-fit edges of the contour with respect to the
user-specified principal directions and sets all other necessary data.
\tparam GeomTraits
a model of `Kernel`
\tparam InputRange
a model of `ConstRange` whose iterator type is `RandomAccessIterator`
\tparam PointMap
a model of `ReadablePropertyMap` whose key type is the value type of the input
range and value type is `GeomTraits::Point_2`. The default is
`CGAL::Identity_property_map<typename GeomTraits::Point_2>`.
\cgalModels{ContourDirections}
*/
template<
typename GeomTraits,
typename InputRange,
typename PointMap = CGAL::Identity_property_map<typename GeomTraits::Point_2> >
class User_defined_directions_2 {
public:
/// \cond SKIP_IN_MANUAL
using Traits = GeomTraits;
using Input_range = InputRange;
using Point_map = PointMap;
using FT = typename Traits::FT;
using Segment_2 = typename Traits::Segment_2;
using Direction_2 = typename Traits::Direction_2;
using FT_pair = std::pair<FT, FT>;
using Base = internal::Contour_base_2<Traits>;
using Segment_wrapper_2 = typename Base::Segment_wrapper_2;
/// \endcond
/// \name Initialization
/// @{
/*!
\brief initializes all internal data structures.
\tparam DirectionRange
a model of `ConstRange` whose value type is `GeomTraits::Direction_2`
\tparam NamedParameters
a sequence of \ref bgl_namedparameters "Named Parameters"
\param input_range
a const range of ordered 2D points, which form a contour
\param is_closed
indicates whether the contour is closed or open
\param direction_range
a const range with user-specified principal directions
\param np
an optional sequence of \ref bgl_namedparameters "Named Parameters"
among the ones listed below; this parameter can be omitted,
the default values are then used
\cgalNamedParamsBegin
\cgalParamNBegin{point_map}
\cgalParamDescription{an instance of `PointMap` that maps an item from `input_range`
to `GeomTraits::Point_2`}
\cgalParamDefault{`PointMap()`}
\cgalParamNEnd
\cgalNamedParamsEnd
\pre direction_range.size() >= 1
\pre direction_range.size() == input_range.size() for closed contours
\pre direction_range.size() == input_range.size() - 1 for open contours
\pre input_range.size() >= 3 for closed contours
\pre input_range.size() >= 2 for open contours
*/
template<
typename DirectionRange,
typename NamedParameters = parameters::Default_named_parameters>
User_defined_directions_2(
const InputRange& input_range,
const bool is_closed,
const DirectionRange& direction_range,
const NamedParameters& np = parameters::default_values()) :
m_input_range(input_range),
m_point_map(parameters::choose_parameter(parameters::get_parameter(
np, internal_np::point_map), PointMap())),
m_max_angle_2(FT(5)) {
CGAL_precondition(input_range.size() >= 2);
CGAL_precondition(direction_range.size() >= 1);
if (is_closed) {
estimate_closed(
direction_range, m_bounds, m_directions, m_assigned);
} else {
estimate_open(
direction_range, m_bounds, m_directions, m_assigned);
}
if (verbose()) {
std::cout << "* assigned directions: ";
for (std::size_t direction_index : m_assigned) {
std::cout << direction_index << " ";
}
std::cout << std::endl;
}
}
/// @}
/// \name Directions
/// @{
/*!
\brief orients a given `segment` with the index `query_index` towards the
best-fit user-specified principal direction.
\param query_index
an index of the contour vertex that emits the contour edge being `segment`
\param segment
a segment to be rotated
\pre query_index >= 0 && query_index < input_range.size() for closed contours
\pre query_index >= 0 && query_index < input_range.size() - 1 for open contours
*/
void orient(
const std::size_t query_index,
Segment_2& segment) const {
m_base.apply_rotation_to_segment(
m_bounds, m_directions, m_assigned,
query_index, segment);
}
/// @}
/// \name Miscellaneous
/// @{
/*!
\brief returns the number of principal directions of the contour.
The returned number equals to the number of the user-specified directions.
*/
std::size_t number_of_directions() const {
return m_directions.size();
}
/// @}
// EXTRA METHODS TO TEST THE CLASS!
/// \cond SKIP_IN_MANUAL
const std::vector<Direction_2>& get_directions() const {
return m_directions;
}
/// \endcond
private:
const Input_range& m_input_range;
const Point_map m_point_map;
const Base m_base;
const FT m_max_angle_2;
std::vector<FT_pair> m_bounds;
std::vector<Direction_2> m_directions;
std::vector<std::size_t> m_assigned;
bool verbose() const {
return m_base.verbose();
}
template<typename DirectionRange>
void estimate_closed(
const DirectionRange& direction_range,
std::vector<FT_pair>& bounds,
std::vector<Direction_2>& directions,
std::vector<std::size_t>& assigned) const {
CGAL_precondition(direction_range.size() >= 1);
if (direction_range.size() == 0) return;
std::vector<Segment_wrapper_2> wraps;
m_base.initialize_closed(
m_input_range, m_point_map, wraps);
initialize_directions(direction_range, directions);
bounds.clear(); bounds.reserve(directions.size());
for (std::size_t i = 0; i < directions.size(); ++i) {
bounds.push_back(std::make_pair(FT(45), FT(45)));
}
assigned.clear(); assigned.resize(wraps.size());
set_directions(directions, wraps, assigned);
m_base.unify_along_contours_closed(wraps, assigned);
m_base.correct_directions_closed(wraps, assigned);
}
template<typename DirectionRange>
void estimate_open(
const DirectionRange& direction_range,
std::vector<FT_pair>& bounds,
std::vector<Direction_2>& directions,
std::vector<std::size_t>& assigned) const {
CGAL_precondition(direction_range.size() >= 1);
if (direction_range.size() == 0) return;
std::vector<Segment_wrapper_2> wraps;
m_base.initialize_open(
m_input_range, m_point_map, wraps);
initialize_directions(direction_range, directions);
bounds.clear(); bounds.reserve(directions.size());
for (std::size_t i = 0; i < directions.size(); ++i) {
bounds.push_back(std::make_pair(FT(45), FT(45)));
}
assigned.clear(); assigned.resize(wraps.size());
set_directions(directions, wraps, assigned);
m_base.unify_along_contours_open(wraps, assigned);
m_base.correct_directions_open(wraps, assigned);
}
template<typename DirectionRange>
void initialize_directions(
const DirectionRange& direction_range,
std::vector<Direction_2>& directions) const {
directions.clear();
directions.reserve(direction_range.size());
for (const auto& direction : direction_range) {
auto v = direction.to_vector();
internal::normalize_vector(v);
directions.push_back(Direction_2(v.x(), v.y()));
}
CGAL_assertion(directions.size() == direction_range.size());
}
void set_directions(
const std::vector<Direction_2>& directions,
std::vector<Segment_wrapper_2>& wraps,
std::vector<std::size_t>& assigned) const {
for (auto& wrap : wraps) {
for (std::size_t i = 0; i < directions.size(); ++i) {
if (does_satisify_angle_conditions(
directions[i], wrap.direction)) {
assigned[wrap.index] = i;
wrap.is_used = true; break;
}
}
}
}
bool does_satisify_angle_conditions(
const Direction_2& longest,
const Direction_2& segment) const {
CGAL_precondition(
m_max_angle_2 >= FT(0) && m_max_angle_2 <= FT(90));
const FT bound_min = m_max_angle_2;
const FT bound_max = FT(90) - bound_min;
const FT angle_2 = internal::angle_2(longest, segment);
return (angle_2 <= bound_min) || (angle_2 >= bound_max);
}
};
} // namespace Contours
} // namespace Shape_regularization
} // namespace CGAL
#endif // CGAL_SHAPE_REGULARIZATION_USER_DEFINED_PRINCIPAL_DIRECTIONS_2_H
|