File: Open_contour_2.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (269 lines) | stat: -rw-r--r-- 7,485 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright (c) 2020 GeometryFactory SARL (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Shape_regularization/include/CGAL/Shape_regularization/internal/Open_contour_2.h $
// $Id: include/CGAL/Shape_regularization/internal/Open_contour_2.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Dmitry Anisimov, Simon Giraudot
//

#ifndef CGAL_SHAPE_REGULARIZATION_OPEN_CONTOUR_2_H
#define CGAL_SHAPE_REGULARIZATION_OPEN_CONTOUR_2_H

#include <CGAL/license/Shape_regularization.h>

// Internal includes.
#include <CGAL/Shape_regularization/internal/Contour_base_2.h>

namespace CGAL {
namespace Shape_regularization {
namespace internal {

  template<
  typename ContourDirections,
  typename GeomTraits>
  class Open_contour_2 {

  public:
    using Contour_directions = ContourDirections;
    using Traits = GeomTraits;

    using FT = typename Traits::FT;
    using Segment_2 = typename Traits::Segment_2;
    using Base = internal::Contour_base_2<Traits>;
    using Segment_wrapper_2 = typename Base::Segment_wrapper_2;

    Open_contour_2(
      const Contour_directions& estimator,
      const FT max_offset_2) :
    m_estimator(estimator),
    m_max_offset_2(max_offset_2)
    { }

    template<
    typename Input_range,
    typename Point_map>
    void initialize(
      const Input_range& input_range, const Point_map point_map) {

      m_base.initialize_open(
        input_range, point_map, m_wraps);
      CGAL_assertion(m_wraps.size() == input_range.size() - 1);
    }

    template<typename OutputIterator>
    OutputIterator regularize(OutputIterator contour) {

      if (m_wraps.size() < 2) return contour;
      CGAL_assertion(m_wraps.size() >= 2);

      rotate_contour(m_wraps);
      if (verbose()) {
        m_base.export_polylines(m_wraps, "rotated");
      }

      bool success = optimize_contour(m_wraps);
      if (!success) return contour;
      if (verbose()) {
        m_base.export_polylines(m_wraps, "optimized");
      }

      success = connect_contour(m_wraps);
      if (!success) return contour;
      if (verbose()) {
        m_base.export_polylines(m_wraps, "connected");
      }

      return update_input(m_wraps, contour);
    }

  private:
    const Contour_directions& m_estimator;
    const FT m_max_offset_2;
    const Base m_base;

    std::vector<Segment_wrapper_2> m_wraps;

    bool verbose() const {
      return m_base.verbose();
    }

    void rotate_contour(
      std::vector<Segment_wrapper_2>& wraps) const {

      for (std::size_t i = 0; i < wraps.size(); ++i) {
        auto& wrap = wraps[i];
        m_estimator.orient(i, wrap.segment);
      }
    }

    bool optimize_contour(
      std::vector<Segment_wrapper_2>& wraps) const {

      // Clean.
      m_base.remove_zero_length_segments(wraps);
      if (wraps.size() < 1) return false; // should be at least a segment
      CGAL_assertion(wraps.size() >= 1);

      // Merge parallel/collinear segments.
      std::vector<Segment_2> segments;
      m_base.create_unique_segments(m_max_offset_2, wraps, segments);
      if (verbose()) {
        std::cout <<
          "* number of segments (merging) = " << segments.size() << std::endl;
      }
      if (wraps.size() < 1) return false;

      // Add orthogonal segments.
      create_orthogonal_segments(segments, wraps);
      if (verbose()) {
        std::cout <<
          "* number of segments (orthogonal) = " << wraps.size() << std::endl;
      }
      if (wraps.size() < 1) return false;

      return true;
    }

    void create_orthogonal_segments(
      const std::vector<Segment_2>& segments,
      std::vector<Segment_wrapper_2>& wraps) const {

      Segment_wrapper_2 wrap;
      const std::size_t n = segments.size();

      wraps.clear();
      wraps.reserve(n);

      std::size_t count = 0;
      for (std::size_t i = 0; i < n; ++i) {
        const auto& segmenti = segments[i];

        wrap.index = count; ++count;
        wrap.segment = segmenti;
        wraps.push_back(wrap);

        const std::size_t j = (i + 1) % n;
        if (j == 0) break;
        const auto& segmentj = segments[j];

        if (m_base.is_parallel_segment(segmenti, segmentj)) {
          wrap.index = count; ++count;
          m_base.create_average_orth(
            segmenti, segmentj, wrap.segment);
          wraps.push_back(wrap);
        }
      }
      CGAL_assertion(wraps.size() >= segments.size());
    }

    bool connect_contour(
      std::vector<Segment_wrapper_2>& wraps) const {

      CGAL_assertion(wraps.size() >= 1);
      if (wraps.size() < 1) return false;

      intersect_segments(wraps);
      if (wraps.size() < 1) return false;

      // Experimental code.
      // make_segments_collinear(wraps);
      // intersect_segments(wraps);
      // if (wraps.size() < 1) return false;

      return true;
    }

    void intersect_segments(
      std::vector<Segment_wrapper_2>& wraps) const {

      const std::size_t n = wraps.size();
      for (std::size_t i = 0; i < n; ++i) {

        std::size_t im = std::size_t(-1);
        if (i > 0) im = i - 1;
        std::size_t ip = std::size_t(-1);
        if (i < n - 1) ip = i + 1;

        auto& si = wraps[i].segment;

        if (im == std::size_t(-1) && ip == std::size_t(-1)) {
          break;
        }

        if (im == std::size_t(-1) && ip != std::size_t(-1)) {
          const auto& sp = wraps[ip].segment;
          m_base.intersect_segment(si, sp);
          continue;
        }

        if (im != std::size_t(-1) && ip == std::size_t(-1)) {
          const auto& sm = wraps[im].segment;
          m_base.intersect_segment(sm, si);
          continue;
        }

        const auto& sm = wraps[im].segment;
        const auto& sp = wraps[ip].segment;
        m_base.intersect_segment(sm, si, sp);
      }
    }

    // Experimental function.
    void make_segments_collinear(
      std::vector<Segment_wrapper_2>& wraps) const {

      Segment_wrapper_2 wrap;
      std::vector<Segment_wrapper_2> clean, group;

      const std::size_t n = wraps.size();
      const FT sq_max_length = m_max_offset_2 * m_max_offset_2;
      for (std::size_t i = 0; i < n; ++i) {
        group.push_back(wraps[i]);

        const std::size_t j = (i + 1) % n;
        if (j == 0) break;
        const FT sq_length = wraps[j].segment.squared_length();
        if (sq_length < sq_max_length) {
          ++i; continue;
        } else {
          m_base.parallel_segments_to_segment(group, wrap.segment);
          clean.push_back(wrap); group.clear();
        }
      }

      const std::size_t before = wraps.size();
      wraps = clean;
      const std::size_t after = wraps.size();
      CGAL_assertion(after <= before);

      if (verbose()) {
        std::cout <<
          "* segments before/after = " << before << "/" << after << std::endl;
      }
    }

    template<typename OutputIterator>
    OutputIterator update_input(
      const std::vector<Segment_wrapper_2>& wraps,
      OutputIterator contour) const {

      const std::size_t n = wraps.size();
      for (std::size_t i = 0; i < n; ++i) {
        const auto& wrap = wraps[i];
        *(++contour) = wrap.segment.source();
      }
      *(++contour) = wraps[n - 1].segment.target();
      return contour;
    }
  };

} // internal
} // namespace Shape_regularization
} // namespace CGAL

#endif // CGAL_SHAPE_REGULARIZATION_OPEN_CONTOUR_2_H