1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
// Copyright (c) 2005-2008 Fernando Luis Cacciola Carballal.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Straight_skeleton_2/include/CGAL/Trisegment_2.h $
// $Id: include/CGAL/Trisegment_2.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Fernando Cacciola <fernando_cacciola@ciudad.com.ar>
//
#ifndef CGAL_SLS_TRISEGMENT_H
#define CGAL_SLS_TRISEGMENT_H
#include <CGAL/license/Straight_skeleton_2.h>
#include <CGAL/Straight_skeleton_2/Straight_skeleton_aux.h>
#include <CGAL/Straight_skeleton_2/debug.h>
#include <CGAL/assertions.h>
#include <limits>
#include <iostream>
namespace CGAL {
enum Trisegment_collinearity
{
TRISEGMENT_COLLINEARITY_NONE
, TRISEGMENT_COLLINEARITY_01
, TRISEGMENT_COLLINEARITY_12
, TRISEGMENT_COLLINEARITY_02
, TRISEGMENT_COLLINEARITY_ALL
} ;
inline char const* trisegment_collinearity_to_string( Trisegment_collinearity c )
{
switch ( c )
{
case TRISEGMENT_COLLINEARITY_NONE : return "<>" ;
case TRISEGMENT_COLLINEARITY_01 : return "<0,1>" ;
case TRISEGMENT_COLLINEARITY_12 : return "<1,2>" ;
case TRISEGMENT_COLLINEARITY_02 : return "<0,2>" ;
case TRISEGMENT_COLLINEARITY_ALL : return "<0,1,2>" ;
}
return "!!UNKNOWN COLLINEARITY!!" ;
}
namespace internal
{
template <>
struct Minmax_traits< Trisegment_collinearity >
{
static const Trisegment_collinearity min = TRISEGMENT_COLLINEARITY_NONE;
static const Trisegment_collinearity max = TRISEGMENT_COLLINEARITY_ALL;
};
} // namespace internal
template <class Trisegment>
using Trisegment_2_ptr = std::shared_ptr<Trisegment>;
template<class K, typename Segment>
class Trisegment_2
{
typedef Trisegment_2<K, Segment> Self;
public:
typedef Trisegment_2_ptr<Self> Self_ptr ;
typedef typename K::FT FT ;
Trisegment_2 ( Segment const& aE0
, FT const& aW0
, Segment const& aE1
, FT const& aW1
, Segment const& aE2
, FT const& aW2
, Trisegment_collinearity aCollinearity
, std::size_t aID
)
: mID(aID)
{
mCollinearity = aCollinearity ;
mE[0] = aE0 ;
mE[1] = aE1 ;
mE[2] = aE2 ;
mW[0] = aW0 ;
mW[1] = aW1 ;
mW[2] = aW2 ;
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
mCSIdx=0; mNCSIdx=2; break ;
case TRISEGMENT_COLLINEARITY_12:
mCSIdx=1; mNCSIdx=0; break ;
case TRISEGMENT_COLLINEARITY_02:
mCSIdx=0; mNCSIdx=1; break ;
case TRISEGMENT_COLLINEARITY_ALL:
mCSIdx = mNCSIdx = (std::numeric_limits<unsigned>::max)(); break ;
case TRISEGMENT_COLLINEARITY_NONE:
mCSIdx = mNCSIdx = (std::numeric_limits<unsigned>::max)(); break ;
}
}
std::size_t& id() { return mID; }
const std::size_t& id() const { return mID; }
static Trisegment_2 null() { return Self_ptr() ; }
Trisegment_collinearity collinearity() const { return mCollinearity ; }
Segment const& e( unsigned idx ) const { CGAL_precondition(idx<3) ; return mE[idx] ; }
Segment const& e0() const { return e(0) ; }
Segment const& e1() const { return e(1) ; }
Segment const& e2() const { return e(2) ; }
FT const& w( unsigned idx ) const { CGAL_precondition(idx<3) ; return mW[idx] ; }
FT const& w0() const { return w(0) ; }
FT const& w1() const { return w(1) ; }
FT const& w2() const { return w(2) ; }
// If 2 out of the 3 edges are collinear they can be reclassified as 1 collinear edge (any of the 2) and 1 non-collinear.
// These methods returns the edges according to that classification.
// PRECONDITION: Exactly 2 out of 3 edges are collinear
Segment const& collinear_edge () const { return e(mCSIdx) ; }
Segment const& non_collinear_edge() const { return e(mNCSIdx) ; }
Segment const& other_collinear_edge() const
{
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
return e(1);
case TRISEGMENT_COLLINEARITY_12:
return e(2);
case TRISEGMENT_COLLINEARITY_02:
return e(2);
default:
CGAL_assertion(false);
return e(0); // arbitrary, meaningless value because a const& is expected
}
}
FT const& collinear_edge_weight() const { return w(mCSIdx) ; }
FT const& non_collinear_edge_weight() const { return w(mNCSIdx) ; }
FT const& other_collinear_edge_weight() const
{
switch ( mCollinearity )
{
case TRISEGMENT_COLLINEARITY_01:
return w(1);
case TRISEGMENT_COLLINEARITY_12:
return w(2);
case TRISEGMENT_COLLINEARITY_02:
return w(2);
default:
CGAL_assertion(false);
return w(0); // arbitrary, meaningless value because a const& is expected
}
}
Self_ptr const& child_l() const { return mChildL ; }
Self_ptr const& child_r() const { return mChildR ; }
Self_ptr const& child_t() const { return mChildT ; }
void set_child_l( Self_ptr const& aChild ) { mChildL = aChild ; }
void set_child_r( Self_ptr const& aChild ) { mChildR = aChild ; }
void set_child_t( Self_ptr const& aChild ) { mChildT = aChild ; }
enum SEED_ID { LEFT, RIGHT, THIRD } ;
// Indicates which of the seeds is collinear for a normal collinearity case.
// PRECONDITION: The collinearity is normal.
SEED_ID degenerate_seed_id() const
{
Trisegment_collinearity c = collinearity();
return c == TRISEGMENT_COLLINEARITY_01 ? LEFT : c == TRISEGMENT_COLLINEARITY_12 ? RIGHT : THIRD ;
}
static void print ( std::ostream& os, Self const& aTri, int aDepth )
{
const std::string lPadding = std::string(2 * aDepth, ' ');
os << lPadding << "[&: " << &aTri << " ID: " << aTri.id() << "\n"
<< lPadding << "\tE" << aTri.e0().mID << " E" << aTri.e1().mID << " E" << aTri.e2().mID << "\n"
<< lPadding << "\t" << s2str(aTri.e0()) << " w = " << n2str(aTri.w0()) << ";" << "\n"
<< lPadding << "\t" << s2str(aTri.e1()) << " w = " << n2str(aTri.w1()) << ";" << "\n"
<< lPadding << "\t" << s2str(aTri.e2()) << " w = " << n2str(aTri.w2()) << ";" << "\n"
<< lPadding << "\tCollinearity: " << trisegment_collinearity_to_string(aTri.collinearity()) << "\n"
<< lPadding << "]\n" << std::flush;
}
static void recursive_print ( std::ostream& os, Self_ptr const& aTriPtr, int aDepth )
{
const std::string lPadding = std::string(2 * aDepth, ' ');
os << "\n" ;
if ( aTriPtr )
{
print(os, *aTriPtr, aDepth);
if ( aTriPtr->child_l() )
{
os << lPadding << "left child:" ;
recursive_print(os,aTriPtr->child_l(),aDepth+1);
}
if ( aTriPtr->child_r() )
{
os << lPadding << "right child:" ;
recursive_print(os,aTriPtr->child_r(),aDepth+1);
}
if ( aTriPtr->child_t() )
{
os << lPadding << "third child:" ;
recursive_print(os,aTriPtr->child_t(),aDepth+1);
}
}
else
{
os << "{null}" ;
}
}
friend std::ostream& operator << ( std::ostream& os, Self const& aTrisegment )
{
print(os, aTrisegment, 0);
return os ;
}
friend std::ostream& operator << ( std::ostream& os, Self_ptr const& aTriPtr )
{
if(aTriPtr)
print(os, *aTriPtr, 0);
else
os << "{null}" ;
return os ;
}
private :
std::size_t mID;
Segment mE[3];
FT mW[3];
Trisegment_collinearity mCollinearity ;
unsigned mCSIdx, mNCSIdx ;
Self_ptr mChildL ;
Self_ptr mChildR ;
// this is the potential child of e2-e0, if it exists. It is used only in the configuration
// of e0 and e2 collinear as the common child gives where the bisector starts (as it is not
// necessarily the middle of the gap between e2 and e0).
Self_ptr mChildT ;
} ;
} // end namespace CGAL
#endif // CGAL_SLS_TRISEGMENT_H
|