File: boost_mp_type.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (1027 lines) | stat: -rw-r--r-- 36,406 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
// Copyright (c) 2017
// INRIA Saclay-Ile de France (France),
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Number_types/include/CGAL/boost_mp_type.h $
// $Id: include/CGAL/boost_mp_type.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s)     : Marc Glisse

#ifndef CGAL_BOOST_MP_TYPE_H
#define CGAL_BOOST_MP_TYPE_H

#include <CGAL/config.h>
#include <CGAL/number_utils.h>

// CGAL_USE_BOOST_MP is defined in
// CGAL/Installation/internal/enable_third_party_libraries.h
#if CGAL_USE_BOOST_MP

#include <CGAL/Quotient.h>
#include <CGAL/functional.h> // *ary_function
#include <CGAL/number_type_basic.h>
#include <CGAL/Modular_traits.h>
// We can't just include all Boost.Multiprecision here...
#include <boost/multiprecision/number.hpp>
#include <boost/type_traits/common_type.hpp>
// ... but we kind of have to :-(
#include <boost/multiprecision/cpp_int.hpp>
#ifdef CGAL_USE_GMP
// Same dance as in CGAL/gmp.h
# include <CGAL/disable_warnings.h>
# if defined(BOOST_MSVC)
#  pragma warning(push)
#  pragma warning(disable: 4127 4244 4146 4267) // conversion with loss of data
                                     // warning on - applied on unsigned number
# endif

# include <boost/multiprecision/gmp.hpp>

# if defined(BOOST_MSVC)
#  pragma warning(pop)
# endif

# include <CGAL/enable_warnings.h>
#endif
#ifdef CGAL_USE_MPFR
# include <mpfr.h>
#endif

// TODO: work on the coercions (end of the file)

namespace CGAL {
template<>
struct Needs_parens_as_product<typename boost::multiprecision::cpp_int>{
  bool operator()(const typename boost::multiprecision::cpp_int& x){
    return x < 0;
  }
};

template<>
struct Needs_parens_as_product<typename boost::multiprecision::cpp_rational>{
  bool operator()(const typename boost::multiprecision::cpp_rational& x){
    if (denominator(x) != 1 )
      return true;
    else
      return needs_parens_as_product(numerator(x)) ;
  }

};

#ifdef CGAL_USE_GMP
template<>
struct Needs_parens_as_product<typename boost::multiprecision::mpz_int>{
  bool operator()(const typename boost::multiprecision::mpz_int& x){
    return x < 0;
  }
};

template<>
struct Needs_parens_as_product<typename boost::multiprecision::mpq_rational>{
  bool operator()(const typename boost::multiprecision::mpq_rational& x){
    if (denominator(x) != 1 )
      return true;
    else
      return needs_parens_as_product(numerator(x)) ;
  }
};
#endif



// Algebraic_structure_traits

template <class T, class = boost::mpl::int_<boost::multiprecision::number_category<T>::value> >
struct AST_boost_mp;

template <class NT>
struct AST_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_integer> >
  : Algebraic_structure_traits_base< NT, Euclidean_ring_tag > {
    typedef NT Type;
    typedef Euclidean_ring_tag Algebraic_category;
    typedef Boolean_tag<std::numeric_limits<Type>::is_exact> Is_exact;
    typedef Tag_false Is_numerical_sensitive;

    typedef INTERN_AST::Is_square_per_sqrt< Type > Is_square;

    struct Is_zero: public CGAL::cpp98::unary_function<Type ,bool> {
        bool operator()( const Type& x) const {
            return x.is_zero();
        }
    };

    struct Div:
        public CGAL::cpp98::binary_function<Type ,Type, Type> {
        template <typename T, typename U>
        Type operator()(const T& x, const U& y) const {
            return x / y;
        }
    };

    struct Mod:
        public CGAL::cpp98::binary_function<Type ,Type, Type> {
        template <typename T, typename U>
        Type operator()(const T& x, const U& y) const {
            return x % y;
        }
    };

    struct Gcd : public CGAL::cpp98::binary_function<Type, Type, Type> {
        template <typename T, typename U>
        Type operator()(const T& x, const U& y) const {
            return boost::multiprecision::gcd(x, y);
        }
    };

    struct Sqrt : public CGAL::cpp98::unary_function<Type, Type> {
        template <typename T>
        Type operator()(const T& x) const {
            return boost::multiprecision::sqrt(x);
        }
    };
};

template <class NT>
struct AST_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_rational> >
  : public Algebraic_structure_traits_base< NT , Field_tag >  {
  public:
    typedef NT                  Type;
    typedef Field_tag           Algebraic_category;
    typedef Tag_true            Is_exact;
    typedef Tag_false           Is_numerical_sensitive;

    struct Is_zero: public CGAL::cpp98::unary_function<Type ,bool> {
        bool operator()( const Type& x) const {
            return x.is_zero();
        }
    };

    struct Div:
        public CGAL::cpp98::binary_function<Type ,Type, Type> {
        template <typename T, typename U>
        Type operator()(const T& x, const U& y) const {
            return x / y;
        }
    };
};

template <class Backend, boost::multiprecision::expression_template_option Eto>
struct Algebraic_structure_traits<boost::multiprecision::number<Backend, Eto> >
: AST_boost_mp <boost::multiprecision::number<Backend, Eto> > {};
template <class T1,class T2,class T3,class T4,class T5>
struct Algebraic_structure_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Algebraic_structure_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type > {};

// Real_embeddable_traits

namespace Boost_MP_internal {

  // here we know that `intv` contains int64 numbers such that their msb is std::numeric_limits<double>::digits-1
  // TODO: possibly return denormals sometimes...
  inline
  std::pair<double,double> shift_positive_interval( const std::pair<double,double>& intv, const int e ) {
    CGAL_assertion(intv.first > 0.0);
    CGAL_assertion(intv.second > 0.0);

#ifdef CGAL_LITTLE_ENDIAN
    CGAL_assertion_code(
    union {
      struct { uint64_t man:52; uint64_t exp:11; uint64_t sig:1; } s;
      double d;
    } conv;

    conv.d = intv.first;
    )
#else
    //WARNING: untested!
    CGAL_assertion_code(
    union {

      struct { uint64_t sig:1; uint64_t exp:11; uint64_t man:52; } s;
      double d;
    } conv;

    conv.d = intv.first;
    )
#endif
    // Check that the exponent of intv.inf is 52, which corresponds to a 53 bit integer
    CGAL_assertion(conv.s.exp - ((1 << (11 - 1)) - 1) == std::numeric_limits<double>::digits - 1);

    typedef std::numeric_limits<double> limits;

    // warning: min_exponent and max_exponent are 1 more than what the name suggests
    if (e < limits::min_exponent - limits::digits)
      return {0, (limits::min)()};
    if (e > limits::max_exponent - limits::digits)
      return {(limits::max)(), limits::infinity()}; // intv is positive

    const double scale = std::ldexp(1.0, e); // ldexp call is exact
    return { scale * intv.first, scale * intv.second }; // cases that would require a rounding mode have been handled above
  }

  // This function checks if the computed interval is correct and if it is tight.
  template<typename Type>
  bool are_bounds_correct( const double l, const double u, const Type& x ) {
    typedef std::numeric_limits<double> limits;

    const double inf = std::numeric_limits<double>::infinity();
    if ( u!=l && (l==-inf || u==inf
                          || (u==0 && l >=  -(limits::min)())
                          || (l==0 && u <= (limits::min)())) )
    {
      return x >  Type((limits::max)()) ||
             x < Type(-(limits::max)()) ||
             (x > Type(-(limits::min)()) && x < Type((limits::min)()));
    }

    if (!(u == l || u == std::nextafter(l, +inf))) return false;
    //TODO: Type(nextafter(l,inf))>x && Type(nextafter(u,-inf))<x

    const Type lb(l), ub(u);
    const bool are_bounds_respected = (lb <= x && x <= ub);
    return are_bounds_respected;
  }

  // This one returns zero length interval that is inf = sup.
  inline
  std::pair<double, double> get_0ulp_interval( const int shift, const uint64_t p ) {

    const double pp_dbl = static_cast<double>(p);
    const std::pair<double,double> intv(pp_dbl, pp_dbl);

    return shift_positive_interval(intv, -shift);
  }

  // This one returns 1 unit length interval.
  inline
  std::pair<double, double> get_1ulp_interval( const int shift, const uint64_t p ) {

    const double pp_dbl = static_cast<double>(p);
    const double qq_dbl = pp_dbl+1;
    const std::pair<double,double> intv(pp_dbl, qq_dbl);
    return shift_positive_interval(intv, -shift);
  }

  template<typename ET>
  std::pair<double, double> to_interval( ET x, int extra_shift = 0 );

  // This is a version of to_interval that converts a rational type into a
  // double tight interval.
  template<typename Type, typename ET>
  std::pair<double, double> to_interval( ET xnum, ET xden ) {

    CGAL_assertion(!CGAL::is_zero(xden));
    CGAL_assertion_code(const Type input(xnum, xden));
    double l = 0.0, u = 0.0;
    if (CGAL::is_zero(xnum)) { // return [0.0, 0.0]
      CGAL_assertion(are_bounds_correct(l, u, input));
      return std::make_pair(l, u);
    }
    CGAL_assertion(!CGAL::is_zero(xnum));

    // Handle signs.
    bool change_sign = false;
    const bool is_num_pos = CGAL::is_positive(xnum);
    const bool is_den_pos = CGAL::is_positive(xden);
    if (!is_num_pos && !is_den_pos) {
      xnum = -xnum;
      xden = -xden;
    } else if (!is_num_pos && is_den_pos) {
      change_sign = true;
      xnum = -xnum;
    } else if (is_num_pos && !is_den_pos) {
      change_sign = true;
      xden = -xden;
    }
    CGAL_assertion(CGAL::is_positive(xnum) && CGAL::is_positive(xden));

    const int64_t num_dbl_digits = std::numeric_limits<double>::digits - 1;
    const int64_t msb_num = static_cast<int64_t>(boost::multiprecision::msb(xnum));
    const int64_t msb_den = static_cast<int64_t>(boost::multiprecision::msb(xden));

#if 0 // Optimization for the case of input that are double
    // An alternative strategy would be to convert numerator and denominator to
    // intervals, then divide. However, this would require setting the rounding
    // mode (and dividing intervals is not completely free). An important
    // special case is when the rational is exactly equal to a double
    // (fit_in_double). Then the denominator is a power of 2, so we can skip
    // the division and it becomes unnecessary to set the rounding mode, we
    // just need to modify the exponent correction for the denominator.
    if(msb_den == static_cast<int64_t>(lsb(xden))) {
      std::tie(l,u)=to_interval(xnum, msb_den);
      if (change_sign) {
        CGAL_assertion(are_bounds_correct(-u, -l, input));
        return {-u, -l};
      }
      CGAL_assertion(are_bounds_correct(l, u, input));
      return {u, l};
    }
#endif

    const int64_t msb_diff = msb_num - msb_den;
    // Shift so the division result has at least 53 (and at most 54) bits
    int shift = static_cast<int>(num_dbl_digits - msb_diff + 1);
    CGAL_assertion(shift == num_dbl_digits - msb_diff + 1);

    if (shift > 0) {
      xnum <<= +shift;
    } else if (shift < 0) {
      xden <<= -shift;
    }
    CGAL_assertion(num_dbl_digits + 1 ==
      static_cast<int64_t>(boost::multiprecision::msb(xnum)) -
      static_cast<int64_t>(boost::multiprecision::msb(xden)));

    ET p, r;
    boost::multiprecision::divide_qr(xnum, xden, p, r);
    uint64_t uip = static_cast<uint64_t>(p);
    const int64_t p_bits = static_cast<int64_t>(boost::multiprecision::msb(p));
    bool exact = r.is_zero();

    if (p_bits > num_dbl_digits) { // case 54 bits
      exact &= ((uip & 1) == 0);
      uip>>=1;
      --shift;
    }
    std::tie(l, u) = exact ? get_0ulp_interval(shift, uip) : get_1ulp_interval(shift, uip);

    if (change_sign) {
      const double t = l;
      l = -u;
      u = -t;
    }

    CGAL_assertion(are_bounds_correct(l, u, input));
    return std::make_pair(l, u);
  }

  // This is a version of to_interval that converts an integer type into a
  // double tight interval.
  template<typename ET>
  std::pair<double, double> to_interval( ET x, int extra_shift) {

    CGAL_assertion_code(const ET input = x);
    double l = 0.0, u = 0.0;
    if (CGAL::is_zero(x)) { // return [0.0, 0.0]
      CGAL_assertion(are_bounds_correct(l, u, input));
      return std::make_pair(l, u);
    }
    CGAL_assertion(!CGAL::is_zero(x));

    bool change_sign = false;
    const bool is_pos = CGAL::is_positive(x);
    if (!is_pos) {
      change_sign = true;
      x = -x;
    }
    CGAL_assertion(CGAL::is_positive(x));

    const int64_t n = static_cast<int64_t>(boost::multiprecision::msb(x)) + 1;
    const int64_t num_dbl_digits = std::numeric_limits<double>::digits;

    if (n > num_dbl_digits) {
      const int64_t mindig = static_cast<int64_t>(boost::multiprecision::lsb(x));
      int e = static_cast<int>(n - num_dbl_digits);
      x >>= e;
      if (n - mindig > num_dbl_digits)
        std::tie(l, u) = get_1ulp_interval(-e+extra_shift, static_cast<uint64_t>(x));
      else
        std::tie(l, u) = get_0ulp_interval(-e+extra_shift, static_cast<uint64_t>(x));
    } else {
      l = u = extra_shift==0 ? static_cast<double>(static_cast<uint64_t>(x))
                             : std::ldexp(static_cast<double>(static_cast<uint64_t>(x)),-extra_shift);
    }

    if (change_sign) {
      const double t = l;
      l = -u;
      u = -t;
    }

    CGAL_assertion(extra_shift != 0 || are_bounds_correct(l, u, input));
    return std::make_pair(l, u);
  }

} // Boost_MP_internal

template <class NT>
struct RET_boost_mp_base
    : public INTERN_RET::Real_embeddable_traits_base< NT , CGAL::Tag_true > {

    typedef NT Type;

    struct Is_zero: public CGAL::cpp98::unary_function<Type ,bool> {
        bool operator()( const Type& x) const {
            return x.is_zero();
        }
    };

    struct Is_positive: public CGAL::cpp98::unary_function<Type ,bool> {
        bool operator()( const Type& x) const {
            return x.sign() > 0;
        }
    };

    struct Is_negative: public CGAL::cpp98::unary_function<Type ,bool> {
        bool operator()( const Type& x) const {
            return x.sign() < 0;
        }
    };

    struct Abs : public CGAL::cpp98::unary_function<Type, Type> {
        template <typename T>
        Type operator()(const T& x) const {
            return boost::multiprecision::abs(x);
        }
    };

    struct Sgn : public CGAL::cpp98::unary_function<Type, ::CGAL::Sign> {
        ::CGAL::Sign operator()(Type const& x) const {
            return CGAL::sign(x.sign());
        }
    };

    struct Compare
        : public CGAL::cpp98::binary_function<Type, Type, Comparison_result> {
        Comparison_result operator()(const Type& x, const Type& y) const {
            return CGAL::sign(x.compare(y));
        }
    };

    struct To_double
        : public CGAL::cpp98::unary_function<Type, double> {
        double operator()(const Type& x) const {
            return x.template convert_to<double>();
        }
    };

    struct To_interval
        : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {

        std::pair<double, double>
        operator()(const Type& x) const {

          // See if https://github.com/boostorg/multiprecision/issues/108 suggests anything better
          // assume the conversion is within 1 ulp
          // adding IA::smallest() doesn't work because inf-e=inf, even rounded down.

          // We must use to_nearest here.
          double i;
          const double inf = std::numeric_limits<double>::infinity();
          {
            Protect_FPU_rounding<true> P(CGAL_FE_TONEAREST);
            i = static_cast<double>(x);
            if (i == +inf) {
              return std::make_pair((std::numeric_limits<double>::max)(), i);
            } else if (i == -inf) {
              return std::make_pair(i, std::numeric_limits<double>::lowest());
            }
          }
          double s = i;
          CGAL_assertion(CGAL::abs(i) != inf && CGAL::abs(s) != inf);

          // Throws uncaught exception: Cannot convert a non-finite number to an integer.
          // We can catch it earlier by using the CGAL_assertion() one line above.
          const int cmp = x.compare(i);
          if (cmp > 0) {
            s = nextafter(s, +inf);
            CGAL_assertion(x.compare(s) < 0);
          }
          else if (cmp < 0) {
            i = nextafter(i, -inf);
            CGAL_assertion(x.compare(i) > 0);
          }
          return std::pair<double, double>(i, s);
        }
    };
};

template <class T, class = boost::mpl::int_<boost::multiprecision::number_category<T>::value> >
struct RET_boost_mp;

template <class NT>
struct RET_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_integer> >
    : RET_boost_mp_base <NT> {
    typedef NT Type;
    struct To_interval
        : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {

        std::pair<double, double> operator()( const Type& x ) const {
          return Boost_MP_internal::to_interval(x);
        }
    };
};

template <class NT>
struct RET_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_rational> >
    : RET_boost_mp_base <NT> {
    typedef NT Type;
    struct To_interval
        : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {

        std::pair<double, double> operator()( const Type& x ) const {
          return Boost_MP_internal::to_interval<Type>(
            boost::multiprecision::numerator(x), boost::multiprecision::denominator(x));
        }
    };
};

#ifdef CGAL_USE_MPFR
// Because of these full specializations, things get instantiated more eagerly. Make them artificially partial if necessary.
template <>
struct RET_boost_mp <boost::multiprecision::mpz_int>
    : RET_boost_mp_base <boost::multiprecision::mpz_int> {
    typedef boost::multiprecision::mpz_int Type;
    struct To_interval
        : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
        std::pair<double, double>
        operator()(const Type& x) const {
#if MPFR_VERSION_MAJOR >= 3
          MPFR_DECL_INIT (y, 53); /* Assume IEEE-754 */
          int r = mpfr_set_z (y, x.backend().data(), MPFR_RNDA);
          double i = mpfr_get_d (y, MPFR_RNDA); /* EXACT but can overflow */
          if (r == 0 && is_finite (i))
            return std::pair<double, double>(i, i);
          else
          {
            double s = nextafter (i, 0);
            if (i < 0)
              return std::pair<double, double>(i, s);
            else
              return std::pair<double, double>(s, i);
          }
#else
          mpfr_t y;
          mpfr_init2 (y, 53); /* Assume IEEE-754 */
          mpfr_set_z (y, x.backend().data(), GMP_RNDD);
          double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
          mpfr_set_z (y, x.backend().data(), GMP_RNDU);
          double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
          mpfr_clear (y);
          return std::pair<double, double>(i, s);
#endif
        }
    };
};
template <>
struct RET_boost_mp <boost::multiprecision::mpq_rational>
    : RET_boost_mp_base <boost::multiprecision::mpq_rational> {
    typedef boost::multiprecision::mpq_rational Type;
    struct To_interval
        : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
        std::pair<double, double>
        operator()(const Type& x) const {
# if MPFR_VERSION_MAJOR >= 3
            mpfr_exp_t emin = mpfr_get_emin();
            mpfr_set_emin(-1073);
            MPFR_DECL_INIT (y, 53); /* Assume IEEE-754 */
            int r = mpfr_set_q (y, x.backend().data(), MPFR_RNDA);
            r = mpfr_subnormalize (y, r, MPFR_RNDA); /* Round subnormals */
            double i = mpfr_get_d (y, MPFR_RNDA); /* EXACT but can overflow */
            mpfr_set_emin(emin); /* Restore old value, users may care */
            // With mpfr_set_emax(1024) we could drop the is_finite test
            if (r == 0 && is_finite (i))
              return std::pair<double, double>(i, i);
            else
            {
              double s = nextafter (i, 0);
              if (i < 0)
                return std::pair<double, double>(i, s);
              else
                return std::pair<double, double>(s, i);
            }
# else
            mpfr_t y;
            mpfr_init2 (y, 53); /* Assume IEEE-754 */
            mpfr_set_q (y, x.backend().data(), GMP_RNDD);
            double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
            mpfr_set_q (y, x.backend().data(), GMP_RNDU);
            double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
            mpfr_clear (y);
            return std::pair<double, double>(i, s);
# endif
        }
    };
};
#endif

template <class Backend, boost::multiprecision::expression_template_option Eto>
struct Real_embeddable_traits<boost::multiprecision::number<Backend, Eto> >
: RET_boost_mp <boost::multiprecision::number<Backend, Eto> > {};
template <class T1,class T2,class T3,class T4,class T5>
struct Real_embeddable_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Real_embeddable_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type > {};

// Modular_traits

template <class T, class = boost::mpl::int_<boost::multiprecision::number_category<T>::value> >
struct MT_boost_mp {
  typedef T NT;
  typedef ::CGAL::Tag_false Is_modularizable;
  typedef ::CGAL::Null_functor Residue_type;
  typedef ::CGAL::Null_functor Modular_image;
  typedef ::CGAL::Null_functor Modular_image_representative;
};

template <class T>
struct MT_boost_mp <T, boost::mpl::int_<boost::multiprecision::number_kind_integer> > {
  typedef T NT;
  typedef CGAL::Tag_true Is_modularizable;
  typedef Residue Residue_type;

  struct Modular_image{
    Residue_type operator()(const NT& a){
      NT tmp(CGAL::mod(a,NT(Residue::get_current_prime())));
      return CGAL::Residue(tmp.template convert_to<int>());
    }
  };
  struct Modular_image_representative{
    NT operator()(const Residue_type& x){
      return NT(x.get_value());
    }
  };
};

template <class Backend, boost::multiprecision::expression_template_option Eto>
struct Modular_traits<boost::multiprecision::number<Backend, Eto> >
: MT_boost_mp <boost::multiprecision::number<Backend, Eto> > {};
template <class T1,class T2,class T3,class T4,class T5>
struct Modular_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Modular_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type > {};

// Split_double

template <class NT, class = boost::mpl::int_<boost::multiprecision::number_category<NT>::value> >
struct SD_boost_mp {
  void operator()(double d, NT &num, NT &den) const
  {
    num = d;
    den = 1;
  }
};

template <class NT>
struct SD_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_integer> >
{
  void operator()(double d, NT &num, NT &den) const
  {
    std::pair<double, double> p = split_numerator_denominator(d);
    num = NT(p.first);
    den = NT(p.second);
  }
};

template <class Backend, boost::multiprecision::expression_template_option Eto>
struct Split_double<boost::multiprecision::number<Backend, Eto> >
: SD_boost_mp <boost::multiprecision::number<Backend, Eto> > {};
template <class T1,class T2,class T3,class T4,class T5>
struct Split_double<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Split_double<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type > {};


// Fraction_traits

template <class T, class = boost::mpl::int_<boost::multiprecision::number_category<T>::value> >
struct FT_boost_mp {
  typedef T Type;
  typedef Tag_false Is_fraction;
  typedef Null_tag Numerator_type;
  typedef Null_tag Denominator_type;
  typedef Null_functor Common_factor;
  typedef Null_functor Decompose;
  typedef Null_functor Compose;
};

template <class NT>
struct FT_boost_mp <NT, boost::mpl::int_<boost::multiprecision::number_kind_rational> > {
    typedef NT Type;

    typedef ::CGAL::Tag_true Is_fraction;
    typedef typename boost::multiprecision::component_type<NT>::type Numerator_type;
    typedef Numerator_type Denominator_type;

    typedef typename Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;

    class Decompose {
    public:
        typedef Type first_argument_type;
        typedef Numerator_type& second_argument_type;
        typedef Denominator_type& third_argument_type;
        void operator () (
                const Type& rat,
                Numerator_type& num,
                Denominator_type& den) {
            num = numerator(rat);
            den = denominator(rat);
        }
    };

    class Compose {
    public:
        typedef Numerator_type first_argument_type;
        typedef Denominator_type second_argument_type;
        typedef Type result_type;
        Type operator ()(
                const Numerator_type& num ,
                const Denominator_type& den ) {
            return Type(num, den);
        }
    };
};

template <class Backend, boost::multiprecision::expression_template_option Eto>
struct Fraction_traits<boost::multiprecision::number<Backend, Eto> >
: FT_boost_mp <boost::multiprecision::number<Backend, Eto> > {};
template <class T1,class T2,class T3,class T4,class T5>
struct Fraction_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Fraction_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type > {};


// Coercions

namespace internal { namespace boost_mp { BOOST_MPL_HAS_XXX_TRAIT_DEF(type) } }

template <class B1, boost::multiprecision::expression_template_option E1, class B2, boost::multiprecision::expression_template_option E2>
struct Coercion_traits<boost::multiprecision::number<B1, E1>, boost::multiprecision::number<B2, E2> >
{
  typedef boost::common_type<boost::multiprecision::number<B1, E1>, boost::multiprecision::number<B2, E2> > CT;
  typedef Boolean_tag<internal::boost_mp::has_type<CT>::value> Are_implicit_interoperable;
  // FIXME: the implicit/explicit answers shouldn't be the same...
  typedef Are_implicit_interoperable Are_explicit_interoperable;
  // FIXME: won't compile when they are not interoperable.
  typedef typename CT::type Type;
  struct Cast{
    typedef Type result_type;
    template <class U>
      Type operator()(const U& x) const {
        return Type(x);
      }
  };
};
// Avoid ambiguity with the specialization for <A,A> ...
template <class B1, boost::multiprecision::expression_template_option E1>
struct Coercion_traits<boost::multiprecision::number<B1, E1>, boost::multiprecision::number<B1, E1> >
{
  typedef boost::multiprecision::number<B1, E1> Type;
  typedef Tag_true Are_implicit_interoperable;
  typedef Tag_true Are_explicit_interoperable;
  struct Cast{
    typedef Type result_type;
    template <class U>
      Type operator()(const U& x) const {
        return Type(x);
      }
  };
};

template <class T1, class T2, class T3, class T4, class T5, class U1, class U2, class U3, class U4, class U5>
struct Coercion_traits <
boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>,
boost::multiprecision::detail::expression<U1,U2,U3,U4,U5> >
: Coercion_traits <
typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type,
typename boost::multiprecision::detail::expression<U1,U2,U3,U4,U5>::result_type>
{ };
// Avoid ambiguity with the specialization for <A,A> ...
template <class T1, class T2, class T3, class T4, class T5>
struct Coercion_traits <
boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>,
boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Coercion_traits <
typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type,
typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type>
{ };

template <class B, boost::multiprecision::expression_template_option E, class T1, class T2, class T3, class T4, class T5>
struct Coercion_traits<boost::multiprecision::number<B, E>, boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> >
: Coercion_traits <
boost::multiprecision::number<B, E>,
typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type>
{ };

template <class B, boost::multiprecision::expression_template_option E, class T1, class T2, class T3, class T4, class T5>
struct Coercion_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>, boost::multiprecision::number<B, E> >
: Coercion_traits <
typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type,
boost::multiprecision::number<B, E> >
{ };

// TODO: fix existing coercions
// (double -> rational is implicit only for 1.56+, see ticket #10082)
// The real solution would be to avoid specializing Coercion_traits for all pairs of number types and let it auto-detect what works, so only broken types need an explicit specialization.

// Ignore types smaller than long
#define CGAL_COERCE_INT(int) \
template <class B1, boost::multiprecision::expression_template_option E1> \
struct Coercion_traits<boost::multiprecision::number<B1, E1>, int> { \
  typedef boost::multiprecision::number<B1, E1> Type; \
  typedef Tag_true Are_implicit_interoperable; \
  typedef Tag_true Are_explicit_interoperable; \
  struct Cast{ \
    typedef Type result_type; \
    template <class U> Type operator()(const U& x) const { return Type(x); } \
  }; \
}; \
template <class B1, boost::multiprecision::expression_template_option E1> \
struct Coercion_traits<int, boost::multiprecision::number<B1, E1> > \
: Coercion_traits<boost::multiprecision::number<B1, E1>, int> {}; \
template <class T1, class T2, class T3, class T4, class T5> \
struct Coercion_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>, int> \
: Coercion_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type, int>{}; \
template <class T1, class T2, class T3, class T4, class T5> \
struct Coercion_traits<int, boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> > \
: Coercion_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type, int>{}

CGAL_COERCE_INT(short);
CGAL_COERCE_INT(int);
CGAL_COERCE_INT(long);
#undef CGAL_COERCE_INT

// Ignore bounded-precision rationals
#define CGAL_COERCE_FLOAT(float) \
template <class B1, boost::multiprecision::expression_template_option E1> \
struct Coercion_traits<boost::multiprecision::number<B1, E1>, float> { \
  typedef boost::multiprecision::number<B1, E1> Type; \
  typedef Boolean_tag<boost::multiprecision::number_category<Type>::value != boost::multiprecision::number_kind_integer> Are_implicit_interoperable; \
  typedef Are_implicit_interoperable Are_explicit_interoperable; \
  struct Cast{ \
    typedef Type result_type; \
    template <class U> Type operator()(const U& x) const { return Type(x); } \
  }; \
}; \
template <class B1, boost::multiprecision::expression_template_option E1> \
struct Coercion_traits<float, boost::multiprecision::number<B1, E1> > \
: Coercion_traits<boost::multiprecision::number<B1, E1>, float> {}; \
template <class T1, class T2, class T3, class T4, class T5> \
struct Coercion_traits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>, float> \
: Coercion_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type, float>{}; \
template <class T1, class T2, class T3, class T4, class T5> \
struct Coercion_traits<float, boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> > \
: Coercion_traits<typename boost::multiprecision::detail::expression<T1,T2,T3,T4,T5>::result_type, float>{}

CGAL_COERCE_FLOAT(float);
CGAL_COERCE_FLOAT(double);
#undef CGAL_COERCE_FLOAT

// Because of https://github.com/boostorg/multiprecision/issues/29 , this is not perfect and fails to read some KDS files.

template <>
class Input_rep<boost::multiprecision::cpp_rational> : public IO_rep_is_specialized {
    boost::multiprecision::cpp_rational& q;
public:
    Input_rep(boost::multiprecision::cpp_rational& qq) : q(qq) {}
    std::istream& operator()(std::istream& in) const {
      internal::read_float_or_quotient<boost::multiprecision::cpp_int,boost::multiprecision::cpp_rational>(in, q);
      return in;
    }
};
#ifdef CGAL_USE_GMP
template <>
class Input_rep<boost::multiprecision::mpq_rational> : public IO_rep_is_specialized {
    boost::multiprecision::mpq_rational& q;
public:
    Input_rep(boost::multiprecision::mpq_rational& qq) : q(qq) {}
    std::istream& operator()(std::istream& in) const {
      internal::read_float_or_quotient<boost::multiprecision::mpz_int,boost::multiprecision::mpq_rational>(in, q);
      return in;
    }
};
#endif

// Copied from leda_rational.h
namespace internal {
  // See: Stream_support/include/CGAL/IO/io.h
  template <typename ET>
  void read_float_or_quotient(std::istream & is, ET& et);

  template <>
  inline void read_float_or_quotient(std::istream & is, boost::multiprecision::cpp_rational& et)
  {
    internal::read_float_or_quotient<boost::multiprecision::cpp_int,boost::multiprecision::cpp_rational>(is, et);
  }
#ifdef CGAL_USE_GMP
  template <>
  inline void read_float_or_quotient(std::istream & is, boost::multiprecision::mpq_rational& et)
  {
    internal::read_float_or_quotient<boost::multiprecision::mpz_int,boost::multiprecision::mpq_rational>(is, et);
  }
#endif
} // namespace internal

#ifdef CGAL_USE_BOOST_MP

template< > class Real_embeddable_traits< Quotient<boost::multiprecision::cpp_int> >
    : public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base< Quotient<boost::multiprecision::cpp_int> > {

  public:
    typedef Quotient<boost::multiprecision::cpp_int> Type;

    class To_interval
      : public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
      public:
        std::pair<double, double> operator()( const Type& x ) const {
          return Boost_MP_internal::to_interval<Type>(x.num, x.den);
        }
    };
};

#endif // CGAL_USE_BOOST_MP

} //namespace CGAL

namespace Eigen {
  template<class> struct NumTraits;
  template<> struct NumTraits<boost::multiprecision::cpp_int>
  {
    typedef boost::multiprecision::cpp_int Real;
    typedef boost::multiprecision::cpp_rational NonInteger;
    typedef boost::multiprecision::cpp_int Nested;
    typedef boost::multiprecision::cpp_int Literal;

    static inline Real epsilon() { return 0; }
    static inline Real dummy_precision() { return 0; }

    enum {
      IsInteger = 1,
      IsSigned = 1,
      IsComplex = 0,
      RequireInitialization = 1,
      ReadCost = 6,
      AddCost = 30,
      MulCost = 50
    };
  };

  template<> struct NumTraits<boost::multiprecision::cpp_rational>
  {
    typedef boost::multiprecision::cpp_rational Real;
    typedef boost::multiprecision::cpp_rational NonInteger;
    typedef boost::multiprecision::cpp_rational Nested;
    typedef boost::multiprecision::cpp_rational Literal;

    static inline Real epsilon() { return 0; }
    static inline Real dummy_precision() { return 0; }

    enum {
      IsInteger = 0,
      IsSigned = 1,
      IsComplex = 0,
      RequireInitialization = 1,
      ReadCost = 6,
      AddCost = 150,
      MulCost = 100
    };
  };

#ifdef CGAL_USE_GMP

  template<> struct NumTraits<boost::multiprecision::mpz_int>
  {
    typedef boost::multiprecision::mpz_int Real;
    typedef boost::multiprecision::mpq_rational NonInteger;
    typedef boost::multiprecision::mpz_int Nested;
    typedef boost::multiprecision::mpz_int Literal;

    static inline Real epsilon() { return 0; }
    static inline Real dummy_precision() { return 0; }

    enum {
      IsInteger = 1,
      IsSigned = 1,
      IsComplex = 0,
      RequireInitialization = 1,
      ReadCost = 6,
      AddCost = 30,
      MulCost = 50
    };
  };

  template<> struct NumTraits<boost::multiprecision::mpq_rational>
  {
    typedef boost::multiprecision::mpq_rational Real;
    typedef boost::multiprecision::mpq_rational NonInteger;
    typedef boost::multiprecision::mpq_rational Nested;
    typedef boost::multiprecision::mpq_rational Literal;

    static inline Real epsilon() { return 0; }
    static inline Real dummy_precision() { return 0; }

    enum {
      IsInteger = 0,
      IsSigned = 1,
      IsComplex = 0,
      RequireInitialization = 1,
      ReadCost = 6,
      AddCost = 150,
      MulCost = 100
    };
  };
#endif // CGAL_USE_GMP


} // namespace Eigen

#endif // BOOST_VERSION
#endif