1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
// Copyright (c) 2013-06 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Point_set_processing_3/include/CGAL/edge_aware_upsample_point_set.h $
// $Id: include/CGAL/edge_aware_upsample_point_set.h 08b27d3db14 $
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Shihao Wu, Clement Jamin, Pierre Alliez
#ifndef CGAL_UPSAMPLE_POINT_SET_H
#define CGAL_UPSAMPLE_POINT_SET_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/property_map.h>
#include <CGAL/assertions.h>
#include <CGAL/Point_set_processing_3/internal/Rich_grid.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Memory_sizer.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <iterator>
#include <set>
#include <utility>
//#define CGAL_PSP3_VERBOSE
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace upsample_internal{
/// For each query point, select a best "base point" in its neighborhoods.
/// Then, a new point will be interpolated between query point and "base point".
/// This is the key part of the upsample algorithm
///
/// \pre `radius > 0`
///
/// @tparam Kernel Geometric traits class.
///
/// @return local density length
template <typename Kernel>
typename Kernel::FT
base_point_selection(
const rich_grid_internal::Rich_point<Kernel>& query, ///< 3D point to project
const std::vector<rich_grid_internal::Rich_point<Kernel> >&
neighbor_points,///< neighbor sample points
const typename Kernel::FT edge_sensitivity,///< edge sensitivity parameter
unsigned int& output_base_index ///< base point index
)
{
// basic geometric types
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::FT FT;
typedef typename rich_grid_internal::Rich_point<Kernel> Rich_point;
if (neighbor_points.empty())
{
#ifdef CGAL_PSP3_VERBOSE
std::cout << "empty neighborhood" << std::endl;
#endif
output_base_index = query.index;
return 0.0;
}
FT best_dist2 = -10.0;
const Rich_point& v = query;
typename std::vector<Rich_point>::const_iterator iter = neighbor_points.begin();
for (; iter != neighbor_points.end(); ++iter)
{
const Point& t = iter->pt;
const Vector& vm = v.normal;
const Vector& tm = iter->normal;
Vector diff_v_t = t - v.pt;
Point mid_point = v.pt + (diff_v_t * FT(0.5));
FT dot_produce = std::pow((FT(2.0) - vm * tm), edge_sensitivity);
Vector diff_t_mid = mid_point - t;
FT project_t = diff_t_mid * tm;
FT min_dist2 = diff_t_mid.squared_length() - project_t * project_t;
typename std::vector<Rich_point>::const_iterator iter_in = neighbor_points.begin();
for (; iter_in != neighbor_points.end(); ++iter_in)
{
Vector diff_s_mid = mid_point - iter_in->pt;
FT project_s = diff_s_mid * iter_in->normal;
FT proj_min2 = diff_s_mid.squared_length() - project_s * project_s;
if (proj_min2 < min_dist2)
{
min_dist2 = proj_min2;
}
}
min_dist2 *= dot_produce;
if (min_dist2 > best_dist2)
{
best_dist2 = min_dist2;
output_base_index = iter->index;
}
}
return best_dist2;
}
/// For each new inserted point, we need to do the following job
/// 1, get neighbor information from the two "parent points"
/// 2, update position and determine normal by bilateral projection
/// 3, update neighbor information again
///
/// \pre `radius > 0`
///
/// @tparam Kernel Geometric traits class.
///
template <typename Kernel>
void
update_new_point(
unsigned int new_point_index, ///< new inserted point
unsigned int father_index, ///< father point index
unsigned int mother_index, ///< mother point index
std::vector<rich_grid_internal::Rich_point<Kernel> >& rich_point_set,
///< all rich points
const typename Kernel::FT radius, ///< accept neighborhood radius
const typename Kernel::FT sharpness_bandwidth ///< control sharpness
)
{
// basic geometric types
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::FT FT;
typedef typename rich_grid_internal::Rich_point<Kernel> Rich_point;
CGAL_assertion_code( unsigned int size = static_cast<unsigned int>(rich_point_set.size()) );
CGAL_precondition(father_index < size);
CGAL_precondition(mother_index < size);
// 1, get neighbor information from the two "parent points"
Rich_point& new_v = rich_point_set[new_point_index];
Rich_point& father_v = rich_point_set[father_index];
Rich_point& mother_v = rich_point_set[mother_index];
std::set<int> neighbor_indexes;
std::vector<unsigned int>::iterator iter;
for (iter = father_v.neighbors.begin();
iter != father_v.neighbors.end();
++iter)
{
neighbor_indexes.insert(*iter);
}
for (iter = mother_v.neighbors.begin();
iter != mother_v.neighbors.end();
++iter)
{
neighbor_indexes.insert(*iter);
}
neighbor_indexes.insert(father_v.index);
neighbor_indexes.insert(mother_v.index);
FT radius2 = radius * radius;
new_v.neighbors.clear();
std::set<int>::iterator set_iter;
for (set_iter = neighbor_indexes.begin();
set_iter != neighbor_indexes.end(); ++set_iter)
{
Rich_point& t = rich_point_set[*set_iter];
FT dist2 = CGAL::squared_distance(new_v.pt, t.pt);
if (dist2 < radius2)
{
new_v.neighbors.push_back(t.index);
}
}
// 2, update position and normal by bilateral projection
const unsigned int candidate_num = 2; // we have two normal candidates:
// we say father's is 0
// mother's is 1
std::vector<Vector> normal_cadidate(candidate_num);
normal_cadidate[0] = father_v.normal;
normal_cadidate[1] = mother_v.normal;
std::vector<FT> project_dist_sum(candidate_num, FT(0.0));
std::vector<FT> weight_sum(candidate_num, FT(0.0));
std::vector<Vector> normal_sum(candidate_num, NULL_VECTOR);
FT radius16 = FT(-4.0) / radius2;
for (unsigned int i = 0; i < new_v.neighbors.size(); ++i)
{
const Rich_point& t = rich_point_set[new_v.neighbors[i]];
FT dist2 = CGAL::squared_distance(new_v.pt, t.pt);
FT theta = std::exp(dist2 * radius16);
for (unsigned int j = 0; j < candidate_num; j++)
{
FT psi = std::exp(-CGAL::square(FT(1) - normal_cadidate[j] * t.normal)
/ sharpness_bandwidth);
FT project_diff_t_v = (t.pt - new_v.pt) * t.normal;
FT weight = psi * theta;
project_dist_sum[j] += project_diff_t_v * weight;
normal_sum[j] = normal_sum[j] + t.normal * weight;
weight_sum[j] += weight;
}
}
// select best candidate
FT min_project_dist = (std::numeric_limits<FT>::max)();
unsigned int best = 0;
for (unsigned int i = 0; i < candidate_num; ++i)
{
FT absolute_dist = CGAL::abs(project_dist_sum[i] / weight_sum[i]);
if (absolute_dist < min_project_dist)
{
min_project_dist = absolute_dist;
best = i;
}
}
// update position and normal
Vector update_normal = normal_sum[best] / weight_sum[best];
new_v.normal = update_normal / sqrt(update_normal.squared_length());
FT project_dist = project_dist_sum[best] / weight_sum[best];
new_v.pt = new_v.pt + new_v.normal * project_dist;
// 3, update neighbor information again
new_v.neighbors.clear();
for (set_iter = neighbor_indexes.begin();
set_iter != neighbor_indexes.end(); ++set_iter)
{
Rich_point& t = rich_point_set[*set_iter];
FT dist2 = CGAL::squared_distance(new_v.pt, t.pt);
if (dist2 < radius2)
{
new_v.neighbors.push_back(t.index);
t.neighbors.push_back(new_v.index);
}
}
}
} /* namespace upsample_internal */
/// \endcond
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/**
\ingroup PkgPointSetProcessing3Algorithms
This method progressively upsamples the point set while
approaching the edge singularities (detected by normal variation), which
generates a denser point set from an input point set. This has applications
in point-based rendering, hole filling, and sparse surface reconstruction.
Normals of points are required as input. For more details, please refer to \cgalCite{ear-2013}.
\tparam ConcurrencyTag enables sequential versus parallel versions
of `compute_average_spacing()` (called internally). Possible
values are `Sequential_tag`, `Parallel_tag`, and `Parallel_if_available_tag`.
\tparam PointRange is a model of `ConstRange`. The value type of
its iterator is the key type of the named parameter `point_map`.
\tparam OutputIterator Type of the output iterator.
The type of the objects put in it is
`std::pair<geom_traits::Point_3, geom_traits::Vector_3>`.
Note that the user may use a
<A HREF="https://www.boost.org/libs/iterator/doc/function_output_iterator.html">function_output_iterator</A>
to match specific needs.
\param points input point range
\param output iterator where output points and normals are put.
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
\cgalNamedParamsBegin
\cgalParamNBegin{point_map}
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
\cgalParamNEnd
\cgalParamNBegin{normal_map}
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
\cgalParamNEnd
\cgalParamNBegin{sharpness_angle}
\cgalParamDescription{controls the sharpness of the result}
\cgalParamType{floating scalar value}
\cgalParamDefault{`30.00`}
\cgalParamExtra{The larger the value is, the smoother the result will be.
The range of possible value is `[0, 90]`}
\cgalParamNEnd
\cgalParamNBegin{edge_sensitivity}
\cgalParamDescription{controls the priority of points inserted along sharp features}
\cgalParamType{floating scalar value}
\cgalParamDefault{`1`}
\cgalParamExtra{Larger values of edge-sensitivity give higher priority to inserting points
along sharp features. The range of possible values is `[0, 1]`.
See section \ref Point_set_processing_3Upsample_Parameter1 for an example}
\cgalParamNEnd
\cgalParamNBegin{number_of_output_points}
\cgalParamDescription{the number of output points to generate}
\cgalParamType{unsigned int}
\cgalParamDefault{`1000`}
\cgalParamNEnd
\cgalParamNBegin{neighbor_radius}
\cgalParamDescription{the spherical neighborhood radius}
\cgalParamType{floating scalar value}
\cgalParamDefault{`0` (no limit)}
\cgalParamExtra{If provided, the neighborhood of a query point is computed with a fixed spherical
radius instead of a fixed number of neighbors. In that case, the parameter
`k` is used as a limit on the number of points returned by each spherical
query (to avoid overly large number of points in high density areas).}
\cgalParamNEnd
\cgalParamNBegin{geom_traits}
\cgalParamDescription{an instance of a geometric traits class}
\cgalParamType{a model of `Kernel`}
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
\cgalParamNEnd
\cgalNamedParamsEnd
*/
template <typename ConcurrencyTag,
typename PointRange,
typename OutputIterator,
typename NamedParameters = parameters::Default_named_parameters>
OutputIterator
edge_aware_upsample_point_set(
const PointRange& points,
OutputIterator output,
const NamedParameters& np = parameters::default_values())
{
using parameters::choose_parameter;
using parameters::get_parameter;
// basic geometric types
typedef Point_set_processing_3_np_helper<PointRange, NamedParameters> NP_helper;
typedef typename NP_helper::Const_point_map PointMap;
typedef typename NP_helper::Normal_map NormalMap;
typedef typename NP_helper::Geom_traits Kernel;
CGAL_assertion_msg(NP_helper::has_normal_map(points, np), "Error: no normal map");
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::FT FT;
typedef typename rich_grid_internal::Rich_point<Kernel> Rich_point;
PointMap point_map = NP_helper::get_const_point_map(points, np);
NormalMap normal_map = NP_helper::get_normal_map(points, np);
double sharpness_angle = choose_parameter(get_parameter(np, internal_np::sharpness_angle), 30.);
double edge_sensitivity = choose_parameter(get_parameter(np, internal_np::edge_sensitivity), 1);
double neighbor_radius = choose_parameter(get_parameter(np, internal_np::neighbor_radius), -1);
std::size_t number_of_output_points = choose_parameter(get_parameter(np, internal_np::number_of_output_points), 1000);
// trick in case the output iterator add points to the input container
typename PointRange::const_iterator begin = points.begin();
typename PointRange::const_iterator end = points.end();
// preconditions
CGAL_precondition(begin != end);
CGAL_precondition(sharpness_angle >= 0
&&sharpness_angle <= 90);
CGAL_precondition(edge_sensitivity >= 0
&&edge_sensitivity <= 1);
edge_sensitivity *= 10; // just project [0, 1] to [0, 10].
std::size_t number_of_input = std::distance(begin, end);
CGAL_precondition(number_of_output_points > number_of_input);
const unsigned int nb_neighbors = 6; // 1 ring
FT average_spacing = CGAL::compute_average_spacing<ConcurrencyTag>(
points, nb_neighbors, np);
if (neighbor_radius < average_spacing)
{
neighbor_radius = average_spacing * 3.0f;
#ifdef CGAL_PSP3_VERBOSE
std::cout << "neighbor radius: " << neighbor_radius << std::endl;
#endif
}
Real_timer task_timer;
// copy rich point set
std::vector<Rich_point> rich_point_set(number_of_input);
CGAL::Bbox_3 bbox;
typename PointRange::const_iterator it = begin; // point iterator
for(unsigned int i = 0; it != end; ++it, ++i)
{
rich_point_set[i].pt = get(point_map, *it);
rich_point_set[i].normal = get(normal_map, *it);
rich_point_set[i].index = i;
bbox += rich_point_set[i].pt.bbox();
CGAL_precondition(rich_point_set[i].normal.squared_length() > 1e-10);
}
// compute neighborhood
rich_grid_internal::compute_ball_neighbors_one_self(rich_point_set,
bbox,
FT(neighbor_radius));
//
FT cos_sigma = static_cast<FT>(std::cos(FT(CGAL::to_double(sharpness_angle))
/ FT(180) * FT(CGAL_PI)));
FT sharpness_bandwidth = CGAL::square((CGAL::max)((FT)1e-8, (FT)1.0 - cos_sigma));
FT sum_density = 0.0;
unsigned int count_density = 1;
double max_iter_time = 20;
FT current_radius = FT(neighbor_radius);
FT density_pass_threshold = 0.0;
for (unsigned int iter_time = 0; iter_time < max_iter_time; ++iter_time)
{
#ifdef CGAL_PSP3_VERBOSE
std::cout << std::endl << "iter_time: " << iter_time + 1 << std::endl;
#endif
if (iter_time > 0)
{
current_radius *= 0.75;
if (current_radius < density_pass_threshold * 3) //3 ring
{
current_radius = density_pass_threshold * 3;
}
rich_grid_internal::compute_ball_neighbors_one_self(rich_point_set,
bbox,
current_radius);
}
#ifdef CGAL_PSP3_VERBOSE
std::cout << "current radius: " << current_radius << std::endl;
#endif
std::size_t current_size = rich_point_set.size();
std::vector<bool> is_pass_threshold(current_size, false);
if (iter_time == 0)
{
//estimate density threshold for the first time
for (unsigned int i = 0; i < rich_point_set.size() * 0.05; ++i)
{
const Rich_point& v = rich_point_set[i];
if (v.neighbors.empty())
continue;
// extract neighbor rich points by index
std::vector<Rich_point> neighbor_rich_points(v.neighbors.size());
for (unsigned int n = 0; n < v.neighbors.size(); n++)
{
neighbor_rich_points[n] = rich_point_set[v.neighbors[n]];
}
unsigned int base_index = 0;
FT density2 = upsample_internal::
base_point_selection(v,
neighbor_rich_points,
FT(edge_sensitivity),
base_index);
if (density2 < 0)
{
continue;
}
sum_density += density2;
count_density++;
}
}
density_pass_threshold = static_cast<FT>(sqrt(sum_density / count_density) * FT(0.65));
sum_density = 0.;
count_density = 1;
FT density_pass_threshold2 = density_pass_threshold *
density_pass_threshold;
#ifdef CGAL_PSP3_VERBOSE
std::cout << "pass_threshold: " << density_pass_threshold << std::endl;
#endif
// insert new points until all the points' density pass the threshold
unsigned int max_loop_time = 3;
unsigned int loop = 0;
while (true)
{
#ifdef CGAL_PSP3_VERBOSE
std::cout << "loop_time: " << loop + 1 << std::endl;
#endif
unsigned int count_not_pass = 0;
loop++;
for (unsigned int i = 0; i < rich_point_set.size(); ++i)
{
if (is_pass_threshold[i])
{
continue;
}
const Rich_point& v = rich_point_set[i];
if (v.neighbors.empty())
continue;
// extract neighbor rich points by index
std::vector<Rich_point> neighbor_rich_points(v.neighbors.size());
for (unsigned int n = 0; n < v.neighbors.size(); ++n)
{
neighbor_rich_points[n] = rich_point_set[v.neighbors[n]];
}
// select base point
unsigned int base_index = 0;
FT density2 = upsample_internal::
base_point_selection(v,
neighbor_rich_points,
FT(edge_sensitivity),
base_index);
// test if it pass the density threshold
if (density2 < density_pass_threshold2)
{
is_pass_threshold[i] = true;
continue;
}
count_not_pass++;
sum_density += density2;
count_density++;
// insert a new rich point
unsigned int father_index = v.index;
unsigned int mother_index = base_index;
Rich_point new_v;
Rich_point& base = rich_point_set[mother_index];
Vector diff_v_base = base.pt - v.pt;
new_v.pt = v.pt + (diff_v_base * FT(0.5));
new_v.index = static_cast<unsigned int>(rich_point_set.size());
unsigned int new_point_index = new_v.index;
rich_point_set.push_back(new_v);
is_pass_threshold.push_back(false);
//update new rich point
upsample_internal::update_new_point(new_point_index,
father_index,
mother_index,
rich_point_set,
current_radius,
sharpness_bandwidth);
if (rich_point_set.size() >= number_of_output_points)
{
break;
}
}
#ifdef CGAL_PSP3_VERBOSE
std::cout << "current size: " << rich_point_set.size() << std::endl;
#endif
if (count_not_pass == 0 ||
loop >= max_loop_time ||
rich_point_set.size() >= number_of_output_points)
{
break;
}
}
if (rich_point_set.size() >= number_of_output_points)
{
break;
}
}
for (std::size_t i = number_of_input; i < rich_point_set.size(); ++i)
{
const Rich_point& v = rich_point_set[i];
Point point = v.pt;
Vector normal = v.normal;
*output++ = std::make_pair(point, normal);
}
return output;
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_UPSAMPLE_POINT_SET_H
|