1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// Copyright (c) 2002,2003
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Number_types/include/CGAL/mpq_class.h $
// $Id: include/CGAL/mpq_class.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Sylvain Pion, Michael Hemmer
#ifndef CGAL_MPQ_CLASS_H
#define CGAL_MPQ_CLASS_H
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
#include <CGAL/number_utils.h>
#include <CGAL/double.h>
#include <CGAL/IO/io.h>
#include <mpfr.h>
#include <gmpxx.h>
// This file gathers the necessary adaptors so that the following
// C++ number types that come with GMP can be used by CGAL :
// - mpq_class
// Note that GMP++ use the expression template mechanism, which makes things
// a little bit complicated in order to make square(x+y) work for example.
// Reading gmpxx.h shows that ::__gmp_expr<T, T> is the mp[zqf]_class proper,
// while ::__gmp_expr<T, U> is the others "expressions".
#define CGAL_CHECK_GMP_EXPR_MPQ_CLASS \
static_assert( \
(::std::is_same< ::__gmp_expr< T , T >,Type>::value ));
namespace CGAL {
// AST for mpq_class
template<>
class Algebraic_structure_traits< mpq_class >
: public Algebraic_structure_traits_base< mpq_class , Field_tag > {
public:
typedef mpq_class Type;
typedef Field_tag Algebraic_category;
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
struct Is_zero: public CGAL::cpp98::unary_function< mpq_class , bool > {
template <class T, class U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return ::sgn(x) == 0;
}
};
struct Is_one: public CGAL::cpp98::unary_function< mpq_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return x == 1;
}
};
struct Simplify: public CGAL::cpp98::unary_function< mpq_class , void > {
void operator()( mpq_class& x) const {
// do nothing because x is already canonical?
x.canonicalize();
}
};
struct Square: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
mpq_class operator()( const mpq_class& x) const {
return x*x;
}
};
struct Unit_part: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
mpq_class operator()( const mpq_class& x) const {
return( x == 0) ? mpq_class(1) : x;
}
};
struct Integral_division
: public CGAL::cpp98::binary_function< mpq_class , mpq_class, mpq_class > {
template <typename T, typename U1, typename U2>
mpq_class operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 > & y) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
mpq_class result = x / y;
CGAL_precondition_msg( result * y == x,
"'x' must be divisible by 'y' in "
"Algebraic_structure_traits<mpq_class>::Integral_div()(x,y)" );
return result;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
class Is_square
: public CGAL::cpp98::binary_function< mpq_class, mpq_class&, bool > {
public:
bool operator()( const mpq_class& x, mpq_class& y ) const {
y = mpq_class (::sqrt( x.get_num() ), ::sqrt( x.get_den() )) ;
return y*y == x;
// for efficiency, only handle den if num is a square
}
bool operator()( const mpq_class& x ) const {
mpq_class y;
return operator()(x,y);
}
};
};
// RET for mpq_class
template < >
class Real_embeddable_traits< mpq_class >
: public INTERN_RET::Real_embeddable_traits_base< mpq_class , CGAL::Tag_true > {
public:
struct Is_zero: public CGAL::cpp98::unary_function< mpq_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return ::sgn(x) == 0;
}
};
struct Is_finite: public CGAL::cpp98::unary_function<mpq_class,bool> {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >&) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return true;
}
};
struct Is_positive: public CGAL::cpp98::unary_function< mpq_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return ::sgn(x) > 0;
}
};
struct Is_negative: public CGAL::cpp98::unary_function< mpq_class , bool > {
template <typename T, typename U>
bool operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return ::sgn(x) < 0;
}
};
struct Abs: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
template <typename T, typename U>
mpq_class operator()( const ::__gmp_expr< T , U >& x) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return ::abs(x);
}
};
struct Sgn
: public CGAL::cpp98::unary_function< mpq_class, ::CGAL::Sign > {
public:
template <typename T, typename U>
::CGAL::Sign
operator()( const ::__gmp_expr< T , U >& x ) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
return (::CGAL::Sign) ::sgn( x );
}
};
struct Compare
: public CGAL::cpp98::binary_function< mpq_class, mpq_class, Comparison_result>
{
template <typename T, typename U1, typename U2>
Comparison_result operator()(
const ::__gmp_expr< T , U1 >& x,
const ::__gmp_expr< T , U2 >& y ) const {
CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
// cmp returns any int value, not just -1/0/1...
return (Comparison_result) CGAL_NTS sign( ::cmp(x, y) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT
( Type, Comparison_result)
};
struct To_double
: public CGAL::cpp98::unary_function< mpq_class, double > {
double operator()( const mpq_class& x ) const {
return x.get_d();
}
};
struct To_interval
: public CGAL::cpp98::unary_function< mpq_class, std::pair< double, double > > {
std::pair<double, double>
operator()( const mpq_class& x ) const {
#if MPFR_VERSION_MAJOR >= 3
mpfr_exp_t emin = mpfr_get_emin();
mpfr_set_emin(-1073);
MPFR_DECL_INIT (y, 53); /* Assume IEEE-754 */
int r = mpfr_set_q (y, x.get_mpq_t(), MPFR_RNDA);
r = mpfr_subnormalize (y, r, MPFR_RNDA); /* Round subnormals */
double i = mpfr_get_d (y, MPFR_RNDA); /* EXACT but can overflow */
mpfr_set_emin(emin); /* Restore old value, users may care */
// With mpfr_set_emax(1024) we could drop the is_finite test
if (r == 0 && is_finite (i))
return std::pair<double, double>(i, i);
else
{
double s = nextafter (i, 0);
if (i < 0)
return std::pair<double, double>(i, s);
else
return std::pair<double, double>(s, i);
}
#else
mpfr_t y;
mpfr_init2 (y, 53); /* Assume IEEE-754 */
mpfr_set_q (y, x.get_mpq_t(), GMP_RNDD);
double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
mpfr_set_q (y, x.get_mpq_t(), GMP_RNDU);
double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
mpfr_clear (y);
return std::pair<double, double>(i, s);
#endif
}
};
};
} // namespace CGAL
#include <CGAL/gmpxx_coercion_traits.h>
#include <CGAL/mpz_class.h> // for GCD in Type traits
#include <CGAL/Fraction_traits.h>
namespace CGAL {
/*! \ingroup NiX_Fraction_traits_spec
* \brief Specialization of Fraction_traits for mpq_class
*/
template <>
class Fraction_traits< mpq_class > {
public:
typedef mpq_class Type;
typedef ::CGAL::Tag_true Is_fraction;
typedef mpz_class Numerator_type;
typedef mpz_class Denominator_type;
typedef Algebraic_structure_traits< mpz_class >::Gcd Common_factor;
class Decompose {
public:
typedef mpq_class first_argument_type;
typedef mpz_class& second_argument_type;
typedef mpz_class& third_argument_type;
void operator () (
const mpq_class& rat,
mpz_class& num,
mpz_class& den) {
num = rat.get_num();
den = rat.get_den();
}
};
class Compose {
public:
typedef mpz_class first_argument_type;
typedef mpz_class second_argument_type;
typedef mpq_class result_type;
mpq_class operator ()(
const mpz_class& num ,
const mpz_class& den ) {
mpq_class result(num, den);
result.canonicalize();
return result;
}
};
};
template <>
class Input_rep<mpq_class> : public IO_rep_is_specialized {
mpq_class& q;
public:
Input_rep( mpq_class& qq) : q(qq) {}
std::istream& operator()( std::istream& in) const {
internal::read_float_or_quotient<mpz_class,mpq_class>(in, q);
return in;
}
};
// Copied from leda_rational.h
namespace internal {
// See: Stream_support/include/CGAL/IO/io.h
template <typename ET>
void read_float_or_quotient(std::istream & is, ET& et);
template <>
inline void read_float_or_quotient(std::istream & is, mpq_class& et)
{
internal::read_float_or_quotient<mpz_class,mpq_class>(is, et);
}
} // namespace internal
} //namespace CGAL
#undef CGAL_CHECK_GMP_EXPR_MPQ_CLASS
#endif // CGAL_MPQ_CLASS_H
|