File: mpq_class.h

package info (click to toggle)
cgal 6.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 144,952 kB
  • sloc: cpp: 811,597; ansic: 208,576; sh: 493; python: 411; makefile: 286; javascript: 174
file content (316 lines) | stat: -rw-r--r-- 10,394 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Copyright (c) 2002,2003
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved.
//
// This file is part of CGAL (www.cgal.org)
//
// $URL: https://github.com/CGAL/cgal/blob/v6.1.1/Number_types/include/CGAL/mpq_class.h $
// $Id: include/CGAL/mpq_class.h 08b27d3db14 $
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s)     : Sylvain Pion, Michael Hemmer

#ifndef CGAL_MPQ_CLASS_H
#define CGAL_MPQ_CLASS_H

#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
#include <CGAL/number_utils.h>
#include <CGAL/double.h>
#include <CGAL/IO/io.h>
#include <mpfr.h>
#include <gmpxx.h>

// This file gathers the necessary adaptors so that the following
// C++ number types that come with GMP can be used by CGAL :
// - mpq_class

// Note that GMP++ use the expression template mechanism, which makes things
// a little bit complicated in order to make square(x+y) work for example.
// Reading gmpxx.h shows that ::__gmp_expr<T, T> is the mp[zqf]_class proper,
// while ::__gmp_expr<T, U> is the others "expressions".

#define CGAL_CHECK_GMP_EXPR_MPQ_CLASS                                     \
    static_assert(                                                \
            (::std::is_same< ::__gmp_expr< T , T >,Type>::value ));

namespace CGAL {

// AST for mpq_class
template<>
class Algebraic_structure_traits< mpq_class  >
  : public Algebraic_structure_traits_base< mpq_class , Field_tag >  {
  public:
    typedef mpq_class           Type;
    typedef Field_tag           Algebraic_category;
    typedef Tag_true            Is_exact;
    typedef Tag_false           Is_numerical_sensitive;

    struct Is_zero: public CGAL::cpp98::unary_function< mpq_class , bool > {
        template <class T, class U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return ::sgn(x) == 0;
        }
    };

    struct Is_one: public CGAL::cpp98::unary_function< mpq_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return x == 1;
        }
    };

    struct Simplify: public CGAL::cpp98::unary_function< mpq_class , void > {
        void operator()( mpq_class& x) const {
            // do nothing because x is already canonical?
            x.canonicalize();
        }
    };

    struct Square: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
        mpq_class operator()( const mpq_class& x) const {
            return x*x;
        }
    };

    struct Unit_part: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
        mpq_class operator()( const mpq_class& x) const {
            return( x == 0) ? mpq_class(1) : x;
        }
    };

    struct Integral_division
        : public CGAL::cpp98::binary_function< mpq_class , mpq_class, mpq_class > {
        template <typename T,  typename U1, typename U2>
        mpq_class operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 > & y) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            mpq_class result = x / y;
            CGAL_precondition_msg( result * y == x,
            "'x' must be divisible by 'y' in "
            "Algebraic_structure_traits<mpq_class>::Integral_div()(x,y)" );
            return result;
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    class Is_square
        : public CGAL::cpp98::binary_function< mpq_class, mpq_class&, bool > {
    public:
        bool operator()( const mpq_class& x, mpq_class& y ) const {
            y = mpq_class (::sqrt( x.get_num() ), ::sqrt( x.get_den() )) ;
            return y*y == x;
            // for efficiency, only handle den if num is a square
        }

        bool operator()( const mpq_class& x ) const {
            mpq_class y;
            return operator()(x,y);
        }
    };
};

// RET for mpq_class

template < >
class Real_embeddable_traits< mpq_class >
  : public INTERN_RET::Real_embeddable_traits_base< mpq_class , CGAL::Tag_true > {
  public:

    struct Is_zero: public CGAL::cpp98::unary_function< mpq_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return ::sgn(x) == 0;
        }
    };
    struct Is_finite: public CGAL::cpp98::unary_function<mpq_class,bool> {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >&) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return true;
        }
    };

    struct Is_positive: public CGAL::cpp98::unary_function< mpq_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return ::sgn(x) > 0;
        }
    };

    struct Is_negative: public CGAL::cpp98::unary_function< mpq_class , bool > {
        template <typename T, typename U>
        bool operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return ::sgn(x) < 0;
        }
    };

    struct Abs: public CGAL::cpp98::unary_function< mpq_class , mpq_class > {
        template <typename T, typename U>
        mpq_class operator()( const ::__gmp_expr< T , U >& x) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return ::abs(x);
        }
    };

    struct Sgn
        : public CGAL::cpp98::unary_function< mpq_class, ::CGAL::Sign > {
    public:
        template <typename T, typename U>
        ::CGAL::Sign
        operator()( const ::__gmp_expr< T , U >& x ) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            return (::CGAL::Sign) ::sgn( x );
        }
    };

    struct Compare
        : public CGAL::cpp98::binary_function< mpq_class, mpq_class, Comparison_result>
    {
        template <typename T, typename U1, typename U2>
        Comparison_result operator()(
                const ::__gmp_expr< T , U1 >& x,
                const ::__gmp_expr< T , U2 >& y ) const {
            CGAL_CHECK_GMP_EXPR_MPQ_CLASS;
            // cmp returns any int value, not just -1/0/1...
            return (Comparison_result) CGAL_NTS sign( ::cmp(x, y) );
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT
        ( Type, Comparison_result)
    };

    struct To_double
        : public CGAL::cpp98::unary_function< mpq_class, double > {
        double operator()( const mpq_class& x ) const {
            return x.get_d();
        }
    };

    struct To_interval

        : public CGAL::cpp98::unary_function< mpq_class, std::pair< double, double > > {
        std::pair<double, double>
        operator()( const mpq_class& x ) const {
#if MPFR_VERSION_MAJOR >= 3
          mpfr_exp_t emin = mpfr_get_emin();
          mpfr_set_emin(-1073);
          MPFR_DECL_INIT (y, 53); /* Assume IEEE-754 */
          int r = mpfr_set_q (y, x.get_mpq_t(), MPFR_RNDA);
          r = mpfr_subnormalize (y, r, MPFR_RNDA); /* Round subnormals */
          double i = mpfr_get_d (y, MPFR_RNDA); /* EXACT but can overflow */
          mpfr_set_emin(emin); /* Restore old value, users may care */
          // With mpfr_set_emax(1024) we could drop the is_finite test
          if (r == 0 && is_finite (i))
            return std::pair<double, double>(i, i);
          else
            {
              double s = nextafter (i, 0);
              if (i < 0)
                return std::pair<double, double>(i, s);
              else
                return std::pair<double, double>(s, i);
            }
#else
          mpfr_t y;
          mpfr_init2 (y, 53); /* Assume IEEE-754 */
          mpfr_set_q (y, x.get_mpq_t(), GMP_RNDD);
          double i = mpfr_get_d (y, GMP_RNDD); /* EXACT but can overflow */
          mpfr_set_q (y, x.get_mpq_t(), GMP_RNDU);
          double s = mpfr_get_d (y, GMP_RNDU); /* EXACT but can overflow */
          mpfr_clear (y);
          return std::pair<double, double>(i, s);
#endif
        }
    };
};

} // namespace CGAL

#include <CGAL/gmpxx_coercion_traits.h>
#include <CGAL/mpz_class.h> // for GCD in Type traits
#include <CGAL/Fraction_traits.h>

namespace CGAL {

/*! \ingroup NiX_Fraction_traits_spec
 *  \brief Specialization of Fraction_traits for mpq_class
 */
template <>
class Fraction_traits< mpq_class > {
public:
    typedef mpq_class Type;

    typedef ::CGAL::Tag_true Is_fraction;
    typedef mpz_class Numerator_type;
    typedef mpz_class Denominator_type;

    typedef Algebraic_structure_traits< mpz_class >::Gcd Common_factor;

    class Decompose {
    public:
        typedef mpq_class first_argument_type;
        typedef mpz_class& second_argument_type;
        typedef mpz_class& third_argument_type;
        void operator () (
                const mpq_class& rat,
                mpz_class& num,
                mpz_class& den) {
            num = rat.get_num();
            den = rat.get_den();
        }
    };

    class Compose {
    public:
        typedef mpz_class first_argument_type;
        typedef mpz_class second_argument_type;
        typedef mpq_class result_type;
        mpq_class operator ()(
                const mpz_class& num ,
                const mpz_class& den ) {
            mpq_class result(num, den);
            result.canonicalize();
            return result;
        }
    };
};

template <>
class Input_rep<mpq_class> : public IO_rep_is_specialized {
    mpq_class& q;
public:
    Input_rep( mpq_class& qq) : q(qq) {}
    std::istream& operator()( std::istream& in) const {
      internal::read_float_or_quotient<mpz_class,mpq_class>(in, q);
      return in;
    }
};

// Copied from leda_rational.h
namespace internal {
  // See: Stream_support/include/CGAL/IO/io.h
  template <typename ET>
  void read_float_or_quotient(std::istream & is, ET& et);

  template <>
  inline void read_float_or_quotient(std::istream & is, mpq_class& et)
  {
    internal::read_float_or_quotient<mpz_class,mpq_class>(is, et);
  }
} // namespace internal

} //namespace CGAL

#undef CGAL_CHECK_GMP_EXPR_MPQ_CLASS

#endif // CGAL_MPQ_CLASS_H