1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//----------------------------------------------------------
// Poisson reconstruction method:
// Reconstructs a surface mesh from a point set and returns it as a polyhedron.
//----------------------------------------------------------
// CGAL
#include <CGAL/AABB_tree.h> // must be included before kernel
#include <CGAL/AABB_traits_3.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/Poisson_reconstruction_function.h>
#include <CGAL/compute_average_spacing.h>
#include <CGAL/Mesh_triangulation_3.h>
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
#include <CGAL/Mesh_criteria_3.h>
#include <CGAL/Labeled_mesh_domain_3.h>
#include <CGAL/make_mesh_3.h>
#include <CGAL/facets_in_complex_3_to_triangle_mesh.h>
#include <CGAL/Eigen_solver_traits.h>
#include <CGAL/Polygon_mesh_processing/polygon_soup_to_polygon_mesh.h>
#include <math.h>
#include <CGAL/Timer.h>
#include "Kernel_type.h"
#include "SMesh_type.h"
#include "Scene_points_with_normal_item.h"
// Concurrency
typedef CGAL::Parallel_if_available_tag Concurrency_tag;
template <typename Triangulation>
class Marching_tets
{
private:
typedef typename Triangulation::FT FT;
typedef typename Triangulation::Point Point_3;
typedef typename Triangulation::Vector Vector_3;
typedef std::array<std::size_t, 3> Facet;
typedef typename Triangulation::Cell_handle Cell_handle;
typedef typename Triangulation::Finite_cells_iterator Finite_cells_iterator;
const Triangulation& m_tr;
public:
Marching_tets (const Triangulation& tr) : m_tr (tr) { }
template <typename VertexOutputIterator,
typename FacetOutputIterator>
void output_to_polygon_soup (VertexOutputIterator vertices, FacetOutputIterator facets, FT value = 0.) const
{
std::vector<std::array<Point_3, 3> > cell_facets;
std::size_t nb_points = 0;
std::map<Point_3, std::size_t> map_p2i;
for (Finite_cells_iterator cit = m_tr.finite_cells_begin();
cit != m_tr.finite_cells_end(); ++ cit)
{
contour (cit, value, cell_facets);
for (const std::array<Point_3, 3>& f : cell_facets)
{
std::array<std::size_t, 3> facet;
std::size_t idx = 0;
for (const Point_3& p : f)
{
typename std::map<Point_3, std::size_t>::iterator iter;
bool inserted = false;
std::tie (iter, inserted) = map_p2i.insert (std::make_pair (p, nb_points));
if (inserted)
{
*(vertices ++) = p;
++ nb_points;
}
facet[idx ++] = iter->second;
}
*(facets ++) = facet;
}
cell_facets.clear();
}
}
private:
void contour (Cell_handle cell, const FT value, std::vector<std::array<Point_3, 3> >& facets) const
{
std::vector<Point_3> cell_points;
Vector_3 direction;
if(!extract_level_set_points (cell, value, cell_points, direction))
return;
if(cell_points.size() == 3)
{
const Point_3& a = cell_points[0];
const Point_3& b = cell_points[1];
const Point_3& c = cell_points[2];
Vector_3 n = CGAL::cross_product((b - a), (c - a));
if(n * direction >= 0)
facets.push_back ({a, b, c});
else
facets.push_back ({a, c, b});
}
else if(cell_points.size() == 4)
{
// compute normal
Vector_3 u = cell_points[1] - cell_points[0];
Vector_3 v = cell_points[2] - cell_points[0];
Vector_3 n = CGAL::cross_product(u, v);
if(n * direction <= 0)
{
facets.push_back ({cell_points[0], cell_points[2], cell_points[3]});
facets.push_back ({cell_points[0], cell_points[3], cell_points[1]});
}
else
{
facets.push_back ({cell_points[0], cell_points[1], cell_points[3]});
facets.push_back ({cell_points[0], cell_points[3], cell_points[2]});
}
}
}
bool extract_level_set_points(Cell_handle cell, const FT value, std::vector<Point_3>& points, Vector_3& direction) const
{
Point_3 point;
if(level_set(cell, value, 0, 1, point, direction)) points.push_back(point);
if(level_set(cell, value, 0, 2, point, direction)) points.push_back(point);
if(level_set(cell, value, 0, 3, point, direction)) points.push_back(point);
if(level_set(cell, value, 1, 2, point, direction)) points.push_back(point);
if(level_set(cell, value, 1, 3, point, direction)) points.push_back(point);
if(level_set(cell, value, 2, 3, point, direction)) points.push_back(point);
return points.size() != 0;
}
bool level_set(Cell_handle cell, const FT value, const int i1, const int i2, Point_3& p, Vector_3& direction) const
{
const Point_3& p1 = cell->vertex(i1)->point();
const Point_3& p2 = cell->vertex(i2)->point();
double v1 = cell->vertex(i1)->f();
double v2 = cell->vertex(i2)->f();
if(v1 <= value && v2 >= value)
{
double ratio = (value - v1) / (v2 - v1);
p = p1 + ratio * (p2 - p1);
direction = p2 - p1;
return true;
}
else if(v2 <= value && v1 >= value)
{
double ratio = (value - v2) / (v1 - v2);
p = p2 + ratio * (p1 - p2);
direction = p1 - p2;
return true;
}
return false;
}
};
// Poisson reconstruction method:
// Reconstructs a surface mesh from a point set and returns it as a polyhedron.
SMesh* poisson_reconstruct(Point_set& points,
bool marching_tets,
Kernel::FT sm_angle, // Min triangle angle (degrees).
Kernel::FT sm_radius, // Max triangle size w.r.t. point set average spacing.
Kernel::FT sm_distance, // Approximation error w.r.t. point set average spacing.
bool conjugate_gradient,
bool use_two_passes,
bool do_not_fill_holes)
{
// Poisson implicit function
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;
// Mesh_3
typedef CGAL::Labeled_mesh_domain_3<Kernel> Mesh_domain;
typedef typename CGAL::Mesh_triangulation_3<Mesh_domain, CGAL::Default, Concurrency_tag>::type Tr;
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
// AABB tree
typedef CGAL::AABB_face_graph_triangle_primitive<SMesh> Primitive;
typedef CGAL::AABB_traits_3<Kernel, Primitive> AABB_traits;
typedef CGAL::AABB_tree<AABB_traits> AABB_tree;
CGAL::Timer task_timer; task_timer.start();
//***************************************
// Checks requirements
//***************************************
if (points.size() == 0)
{
std::cerr << "Error: empty point set" << std::endl;
return nullptr;
}
bool points_have_normals = points.has_normal_map();
if ( ! points_have_normals )
{
std::cerr << "Input point set not supported: this reconstruction method requires oriented normals" << std::endl;
return nullptr;
}
CGAL::Timer reconstruction_timer; reconstruction_timer.start();
//***************************************
// Computes implicit function
//***************************************
std::cerr << "Computes Poisson implicit function "
<< "using " << (conjugate_gradient ? "Conjugate Gradient" : "Simplicial LDLT") << "..." << std::endl;
// Creates implicit function from the point set.
// Note: this method requires an iterator over points
// + property maps to access each point's position and normal.
Poisson_reconstruction_function function(points.begin_or_selection_begin(), points.end(),
points.point_map(), points.normal_map());
bool ok = false;
if(conjugate_gradient)
{
CGAL::Eigen_solver_traits<Eigen::SimplicialCholesky<CGAL::Eigen_sparse_matrix<double>::EigenType> > solver;
ok = function.compute_implicit_function(solver, use_two_passes);
}
else
{
CGAL::Eigen_solver_traits<Eigen::ConjugateGradient<CGAL::Eigen_sparse_matrix<double>::EigenType> > solver;
solver.solver().setTolerance(1e-6);
solver.solver().setMaxIterations(1000);
ok = function.compute_implicit_function(solver, use_two_passes);
}
// Computes the Poisson indicator function f()
// at each vertex of the triangulation.
if ( ! ok )
{
std::cerr << "Error: cannot compute implicit function" << std::endl;
return nullptr;
}
// Prints status
std::cerr << "Total implicit function (triangulation+refinement+solver): " << task_timer.time() << " seconds\n";
task_timer.reset();
SMesh* mesh = new SMesh;
if (marching_tets)
{
std::cerr << "Marching tetrahedra..." << std::endl;
std::vector<Point_3> vertices;
std::vector<std::array<std::size_t, 3> > facets;
Marching_tets<typename Poisson_reconstruction_function::Triangulation> marching_tets (function.tr());
marching_tets.output_to_polygon_soup (std::back_inserter(vertices), std::back_inserter(facets));
if (!CGAL::Polygon_mesh_processing::is_polygon_soup_a_polygon_mesh(facets))
{
std::cerr << "Error: result is not oriented" << std::endl;
delete mesh;
return nullptr;
}
CGAL::Polygon_mesh_processing::polygon_soup_to_polygon_mesh(vertices, facets, *mesh);
}
else
{
//***************************************
// Surface mesh generation using Mesh_3
//***************************************
std::cerr << "Surface meshing...\n";
// Computes average spacing
Kernel::FT average_spacing = CGAL::compute_average_spacing<Concurrency_tag>(points.all_or_selection_if_not_empty(),
6 /* knn = 1 ring */,
points.parameters());
// Gets one point inside the implicit surface
Kernel::Point_3 inner_point = function.get_inner_point();
Kernel::FT inner_point_value = function(inner_point);
if(inner_point_value >= 0.0)
{
std::cerr << "Error: unable to seed (" << inner_point_value << " at inner_point)" << std::endl;
delete mesh;
return nullptr;
}
// Gets implicit function's radius
Kernel::Sphere_3 bsphere = function.bounding_sphere();
Kernel::FT radius = std::sqrt(bsphere.squared_radius());
// Defines the implicit surface: requires defining a
// conservative bounding sphere centered at inner point.
Kernel::FT sm_sphere_radius = 5.0 * radius;
Kernel::FT sm_dichotomy_error = sm_distance*average_spacing/1000.0; // Dichotomy error must be << sm_distance
// Defines surface mesh generation criteria
Mesh_criteria criteria(CGAL::parameters::facet_angle = sm_angle,
CGAL::parameters::facet_size = sm_radius*average_spacing,
CGAL::parameters::facet_distance = sm_distance*average_spacing);
CGAL_TRACE_STREAM << " make_mesh_3 with\n"
<< " \t sphere center = ("<<inner_point << "), \n"
<< " \t sphere radius="<<sm_sphere_radius<<",\n"
<< " \t angle="<<sm_angle << " degrees,\n"
<< " \t triangle size="<<sm_radius<<" * average spacing="<<sm_radius*average_spacing<<",\n"
<< " \t distance="<<sm_distance<<" * average spacing="<<sm_distance*average_spacing<<",\n"
<< " \t dichotomy error=distance/"<<sm_distance*average_spacing/sm_dichotomy_error<<",\n"
<< " \t Manifold_with_boundary_tag\n";
Mesh_domain domain = Mesh_domain::create_implicit_mesh_domain(function, bsphere,
CGAL::parameters::relative_error_bound(sm_dichotomy_error / sm_sphere_radius));
// Generates mesh with manifold option
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
CGAL::parameters::no_exude().no_perturb()
.manifold_with_boundary());
// Prints status
std::cerr << "Surface meshing: " << task_timer.time() << " seconds, "
<< c3t3.triangulation().number_of_vertices() << " output vertices"
<< std::endl;
task_timer.reset();
if(c3t3.triangulation().number_of_vertices() == 0)
{
delete mesh;
return nullptr;
}
// Converts to polyhedron
CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, *mesh);
// Prints total reconstruction duration
std::cerr << "Total reconstruction (implicit function + meshing): " << reconstruction_timer.time() << " seconds\n";
}
//***************************************
// Computes reconstruction error
//***************************************
// Constructs AABB tree and computes internal KD-tree
// data structure to accelerate distance queries
AABB_tree tree(faces(*mesh).first, faces(*mesh).second, *mesh);
// Computes distance from each input point to reconstructed mesh
double max_distance = DBL_MIN;
double avg_distance = 0;
std::set<typename boost::graph_traits<SMesh>::face_descriptor> faces_to_keep;
for (Point_set::const_iterator p=points.begin_or_selection_begin(); p!=points.end(); p++)
{
typename AABB_traits::Point_and_primitive_id pap = tree.closest_point_and_primitive (points.point (*p));
double distance = std::sqrt(CGAL::squared_distance (pap.first, points.point(*p)));
max_distance = (std::max)(max_distance, distance);
avg_distance += distance;
typename boost::graph_traits<SMesh>::face_descriptor f = pap.second;
faces_to_keep.insert (f);
}
avg_distance /= double(points.size());
std::cerr << "Reconstruction error:" << std::endl
<< " max = " << max_distance << std::endl
<< " avg = " << avg_distance << std::endl;
if (do_not_fill_holes)
{
typename boost::graph_traits<SMesh>::face_iterator it = faces(*mesh).begin ();
while (it != faces(*mesh).end ())
{
typename boost::graph_traits<SMesh>::face_iterator current = it ++;
if (faces_to_keep.find (*current) == faces_to_keep.end ())
{
CGAL::Euler::remove_face(halfedge (*current, *mesh), *mesh);
}
}
}
return mesh;
}
|