1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include <iostream>
#include <fstream>
#include <algorithm>
#include <array>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/Shape_detection/Efficient_RANSAC.h>
#include <CGAL/structure_point_set.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
#include <CGAL/Advancing_front_surface_reconstruction.h>
#include <CGAL/IO/read_points.h>
#include <CGAL/disable_warnings.h>
#include <boost/lexical_cast.hpp>
typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;
typedef Kernel::Point_3 Point;
typedef std::pair<Kernel::Point_3, Kernel::Vector_3> Point_with_normal;
typedef std::vector<Point_with_normal> Pwn_vector;
typedef CGAL::First_of_pair_property_map<Point_with_normal> Point_map;
typedef CGAL::Second_of_pair_property_map<Point_with_normal> Normal_map;
// Efficient RANSAC types
typedef CGAL::Shape_detection::Efficient_RANSAC_traits
<Kernel, Pwn_vector, Point_map, Normal_map> Traits;
typedef CGAL::Shape_detection::Efficient_RANSAC<Traits> Efficient_ransac;
typedef CGAL::Shape_detection::Plane<Traits> Plane;
// Point set structuring type
typedef CGAL::Point_set_with_structure<Kernel> Structure;
// Advancing front types
typedef CGAL::Advancing_front_surface_reconstruction_vertex_base_3<Kernel> LVb;
typedef CGAL::Advancing_front_surface_reconstruction_cell_base_3<Kernel> LCb;
typedef CGAL::Triangulation_data_structure_3<LVb,LCb> Tds;
typedef CGAL::Delaunay_triangulation_3<Kernel,Tds> Triangulation_3;
typedef Triangulation_3::Vertex_handle Vertex_handle;
typedef std::array<std::size_t,3> Facet;
// Functor to init the advancing front algorithm with indexed points
struct On_the_fly_pair{
const Pwn_vector& points;
typedef std::pair<Point, std::size_t> result_type;
On_the_fly_pair(const Pwn_vector& points) : points(points) {}
result_type
operator()(std::size_t i) const
{
return result_type(points[i].first,i);
}
};
// Specialized priority functor that favor structure coherence
template <typename Structure>
struct Priority_with_structure_coherence {
Structure& structure;
double bound;
Priority_with_structure_coherence(Structure& structure,
double bound)
: structure (structure), bound (bound)
{}
template <typename AdvancingFront, typename Cell_handle>
double operator() (AdvancingFront& adv, Cell_handle& c,
const int& index) const
{
// If perimeter > bound, return infinity so that facet is not used
if (bound != 0)
{
double d = 0;
d = sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+2)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+2)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
d += sqrt(squared_distance(c->vertex((index+1)%4)->point(),
c->vertex((index+3)%4)->point()));
if(d>bound) return adv.infinity();
}
Facet f = {{ c->vertex ((index + 1) % 4)->info (),
c->vertex ((index + 2) % 4)->info (),
c->vertex ((index + 3) % 4)->info () }};
// facet_coherence takes values between -1 and 3, 3 being the most
// coherent and -1 being incoherent. Smaller weight means higher
// priority.
double weight = 100. * (5 - structure.facet_coherence (f));
return weight * adv.smallest_radius_delaunay_sphere (c, index);
}
};
// Advancing front type
typedef CGAL::Advancing_front_surface_reconstruction
<Triangulation_3,
Priority_with_structure_coherence<Structure> >
Reconstruction;
int main (int argc, char* argv[])
{
// Points with normals.
Pwn_vector points;
const std::string fname = (argc>1) ? argv[1] : CGAL::data_file_path("points_3/cube.pwn");
// Loading point set from a file.
if (!CGAL::IO::read_points(fname, std::back_inserter(points),
CGAL::parameters::point_map(Point_map()).
normal_map(Normal_map())))
{
std::cerr << "Error: cannot read file" << std::endl;
return EXIT_FAILURE;
}
std::cerr << "Shape detection... ";
Efficient_ransac ransac;
ransac.set_input(points);
ransac.add_shape_factory<Plane>(); // Only planes are useful for structuring
// Default RANSAC parameters
Efficient_ransac::Parameters op;
op.probability = 0.05;
op.min_points = 100;
op.epsilon = (argc>2 ? boost::lexical_cast<double>(argv[2]) : 0.002);
op.cluster_epsilon = (argc>3 ? boost::lexical_cast<double>(argv[3]) : 0.02);
op.normal_threshold = 0.7;
ransac.detect(op); // Plane detection
Efficient_ransac::Plane_range planes = ransac.planes();
std::cerr << "done\nPoint set structuring... ";
Pwn_vector structured_pts;
Structure pss (points,
planes,
op.cluster_epsilon, // Same parameter as RANSAC
CGAL::parameters::point_map (Point_map()).
normal_map (Normal_map()).
plane_map (CGAL::Shape_detection::Plane_map<Traits>()).
plane_index_map(CGAL::Shape_detection::Point_to_shape_index_map<Traits>(points, planes)));
for (std::size_t i = 0; i < pss.size(); ++ i)
structured_pts.push_back (pss[i]);
std::cerr << "done\nAdvancing front... ";
std::vector<std::size_t> point_indices(boost::counting_iterator<std::size_t>(0),
boost::counting_iterator<std::size_t>(structured_pts.size()));
Triangulation_3 dt (boost::make_transform_iterator(point_indices.begin(), On_the_fly_pair(structured_pts)),
boost::make_transform_iterator(point_indices.end(), On_the_fly_pair(structured_pts)));
Priority_with_structure_coherence<Structure> priority (pss,
1000. * op.cluster_epsilon); // Avoid too large facets
Reconstruction R(dt, priority);
R.run ();
std::cerr << "done\nWriting result... ";
std::vector<Facet> output;
const Reconstruction::TDS_2& tds = R.triangulation_data_structure_2();
for(Reconstruction::TDS_2::Face_iterator fit = tds.faces_begin(); fit != tds.faces_end(); ++fit)
if(fit->is_on_surface())
output.push_back (CGAL::make_array(fit->vertex(0)->vertex_3()->id(),
fit->vertex(1)->vertex_3()->id(),
fit->vertex(2)->vertex_3()->id()));
std::ofstream f ("out.off");
f << "OFF\n" << structured_pts.size () << " " << output.size() << " 0\n"; // Header
for (std::size_t i = 0; i < structured_pts.size (); ++ i)
f << structured_pts[i].first << std::endl;
for (std::size_t i = 0; i < output.size (); ++ i)
f << "3 "
<< output[i][0] << " "
<< output[i][1] << " "
<< output[i][2] << std::endl;
std::cerr << "all done\n" << std::endl;
f.close();
return 0;
}
|