1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
/*
Copyright 2020 Google LLC
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file or at
https://developers.google.com/open-source/licenses/bsd
*/
#include "block.h"
#include "blocksource.h"
#include "constants.h"
#include "record.h"
#include "reftable-error.h"
#include "system.h"
#include <zlib.h>
int header_size(int version)
{
switch (version) {
case 1:
return 24;
case 2:
return 28;
}
abort();
}
int footer_size(int version)
{
switch (version) {
case 1:
return 68;
case 2:
return 72;
}
abort();
}
static int block_writer_register_restart(struct block_writer *w, int n,
int is_restart, struct strbuf *key)
{
int rlen = w->restart_len;
if (rlen >= MAX_RESTARTS) {
is_restart = 0;
}
if (is_restart) {
rlen++;
}
if (2 + 3 * rlen + n > w->block_size - w->next)
return -1;
if (is_restart) {
REFTABLE_ALLOC_GROW(w->restarts, w->restart_len + 1, w->restart_cap);
w->restarts[w->restart_len++] = w->next;
}
w->next += n;
strbuf_reset(&w->last_key);
strbuf_addbuf(&w->last_key, key);
w->entries++;
return 0;
}
void block_writer_init(struct block_writer *bw, uint8_t typ, uint8_t *buf,
uint32_t block_size, uint32_t header_off, int hash_size)
{
bw->buf = buf;
bw->hash_size = hash_size;
bw->block_size = block_size;
bw->header_off = header_off;
bw->buf[header_off] = typ;
bw->next = header_off + 4;
bw->restart_interval = 16;
bw->entries = 0;
bw->restart_len = 0;
bw->last_key.len = 0;
if (!bw->zstream) {
REFTABLE_CALLOC_ARRAY(bw->zstream, 1);
deflateInit(bw->zstream, 9);
}
}
uint8_t block_writer_type(struct block_writer *bw)
{
return bw->buf[bw->header_off];
}
/* Adds the reftable_record to the block. Returns -1 if it does not fit, 0 on
success. Returns REFTABLE_API_ERROR if attempting to write a record with
empty key. */
int block_writer_add(struct block_writer *w, struct reftable_record *rec)
{
struct strbuf empty = STRBUF_INIT;
struct strbuf last =
w->entries % w->restart_interval == 0 ? empty : w->last_key;
struct string_view out = {
.buf = w->buf + w->next,
.len = w->block_size - w->next,
};
struct string_view start = out;
int is_restart = 0;
struct strbuf key = STRBUF_INIT;
int n = 0;
int err = -1;
reftable_record_key(rec, &key);
if (!key.len) {
err = REFTABLE_API_ERROR;
goto done;
}
n = reftable_encode_key(&is_restart, out, last, key,
reftable_record_val_type(rec));
if (n < 0)
goto done;
string_view_consume(&out, n);
n = reftable_record_encode(rec, out, w->hash_size);
if (n < 0)
goto done;
string_view_consume(&out, n);
err = block_writer_register_restart(w, start.len - out.len, is_restart,
&key);
done:
strbuf_release(&key);
return err;
}
int block_writer_finish(struct block_writer *w)
{
int i;
for (i = 0; i < w->restart_len; i++) {
put_be24(w->buf + w->next, w->restarts[i]);
w->next += 3;
}
put_be16(w->buf + w->next, w->restart_len);
w->next += 2;
put_be24(w->buf + 1 + w->header_off, w->next);
/*
* Log records are stored zlib-compressed. Note that the compression
* also spans over the restart points we have just written.
*/
if (block_writer_type(w) == BLOCK_TYPE_LOG) {
int block_header_skip = 4 + w->header_off;
uLongf src_len = w->next - block_header_skip, compressed_len;
int ret;
ret = deflateReset(w->zstream);
if (ret != Z_OK)
return REFTABLE_ZLIB_ERROR;
/*
* Precompute the upper bound of how many bytes the compressed
* data may end up with. Combined with `Z_FINISH`, `deflate()`
* is guaranteed to return `Z_STREAM_END`.
*/
compressed_len = deflateBound(w->zstream, src_len);
REFTABLE_ALLOC_GROW(w->compressed, compressed_len, w->compressed_cap);
w->zstream->next_out = w->compressed;
w->zstream->avail_out = compressed_len;
w->zstream->next_in = w->buf + block_header_skip;
w->zstream->avail_in = src_len;
/*
* We want to perform all decompression in a single step, which
* is why we can pass Z_FINISH here. As we have precomputed the
* deflated buffer's size via `deflateBound()` this function is
* guaranteed to succeed according to the zlib documentation.
*/
ret = deflate(w->zstream, Z_FINISH);
if (ret != Z_STREAM_END)
return REFTABLE_ZLIB_ERROR;
/*
* Overwrite the uncompressed data we have already written and
* adjust the `next` pointer to point right after the
* compressed data.
*/
memcpy(w->buf + block_header_skip, w->compressed,
w->zstream->total_out);
w->next = w->zstream->total_out + block_header_skip;
}
return w->next;
}
int block_reader_init(struct block_reader *br, struct reftable_block *block,
uint32_t header_off, uint32_t table_block_size,
int hash_size)
{
uint32_t full_block_size = table_block_size;
uint8_t typ = block->data[header_off];
uint32_t sz = get_be24(block->data + header_off + 1);
int err = 0;
uint16_t restart_count = 0;
uint32_t restart_start = 0;
uint8_t *restart_bytes = NULL;
reftable_block_done(&br->block);
if (!reftable_is_block_type(typ)) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
if (typ == BLOCK_TYPE_LOG) {
uint32_t block_header_skip = 4 + header_off;
uLong dst_len = sz - block_header_skip;
uLong src_len = block->len - block_header_skip;
/* Log blocks specify the *uncompressed* size in their header. */
REFTABLE_ALLOC_GROW(br->uncompressed_data, sz,
br->uncompressed_cap);
/* Copy over the block header verbatim. It's not compressed. */
memcpy(br->uncompressed_data, block->data, block_header_skip);
if (!br->zstream) {
REFTABLE_CALLOC_ARRAY(br->zstream, 1);
err = inflateInit(br->zstream);
} else {
err = inflateReset(br->zstream);
}
if (err != Z_OK) {
err = REFTABLE_ZLIB_ERROR;
goto done;
}
br->zstream->next_in = block->data + block_header_skip;
br->zstream->avail_in = src_len;
br->zstream->next_out = br->uncompressed_data + block_header_skip;
br->zstream->avail_out = dst_len;
/*
* We know both input as well as output size, and we know that
* the sizes should never be bigger than `uInt_MAX` because
* blocks can at most be 16MB large. We can thus use `Z_FINISH`
* here to instruct zlib to inflate the data in one go, which
* is more efficient than using `Z_NO_FLUSH`.
*/
err = inflate(br->zstream, Z_FINISH);
if (err != Z_STREAM_END) {
err = REFTABLE_ZLIB_ERROR;
goto done;
}
err = 0;
if (br->zstream->total_out + block_header_skip != sz) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
/* We're done with the input data. */
reftable_block_done(block);
block->data = br->uncompressed_data;
block->len = sz;
full_block_size = src_len + block_header_skip - br->zstream->avail_in;
} else if (full_block_size == 0) {
full_block_size = sz;
} else if (sz < full_block_size && sz < block->len &&
block->data[sz] != 0) {
/* If the block is smaller than the full block size, it is
padded (data followed by '\0') or the next block is
unaligned. */
full_block_size = sz;
}
restart_count = get_be16(block->data + sz - 2);
restart_start = sz - 2 - 3 * restart_count;
restart_bytes = block->data + restart_start;
/* transfer ownership. */
br->block = *block;
block->data = NULL;
block->len = 0;
br->hash_size = hash_size;
br->block_len = restart_start;
br->full_block_size = full_block_size;
br->header_off = header_off;
br->restart_count = restart_count;
br->restart_bytes = restart_bytes;
done:
return err;
}
void block_reader_release(struct block_reader *br)
{
inflateEnd(br->zstream);
reftable_free(br->zstream);
reftable_free(br->uncompressed_data);
reftable_block_done(&br->block);
}
uint8_t block_reader_type(const struct block_reader *r)
{
return r->block.data[r->header_off];
}
int block_reader_first_key(const struct block_reader *br, struct strbuf *key)
{
int off = br->header_off + 4, n;
struct string_view in = {
.buf = br->block.data + off,
.len = br->block_len - off,
};
uint8_t extra = 0;
strbuf_reset(key);
n = reftable_decode_key(key, &extra, in);
if (n < 0)
return n;
if (!key->len)
return REFTABLE_FORMAT_ERROR;
return 0;
}
static uint32_t block_reader_restart_offset(const struct block_reader *br, size_t idx)
{
return get_be24(br->restart_bytes + 3 * idx);
}
void block_iter_seek_start(struct block_iter *it, const struct block_reader *br)
{
it->block = br->block.data;
it->block_len = br->block_len;
it->hash_size = br->hash_size;
strbuf_reset(&it->last_key);
it->next_off = br->header_off + 4;
}
struct restart_needle_less_args {
int error;
struct strbuf needle;
const struct block_reader *reader;
};
static int restart_needle_less(size_t idx, void *_args)
{
struct restart_needle_less_args *args = _args;
uint32_t off = block_reader_restart_offset(args->reader, idx);
struct string_view in = {
.buf = args->reader->block.data + off,
.len = args->reader->block_len - off,
};
uint64_t prefix_len, suffix_len;
uint8_t extra;
int n;
/*
* Records at restart points are stored without prefix compression, so
* there is no need to fully decode the record key here. This removes
* the need for allocating memory.
*/
n = reftable_decode_keylen(in, &prefix_len, &suffix_len, &extra);
if (n < 0 || prefix_len) {
args->error = 1;
return -1;
}
string_view_consume(&in, n);
if (suffix_len > in.len) {
args->error = 1;
return -1;
}
n = memcmp(args->needle.buf, in.buf,
args->needle.len < suffix_len ? args->needle.len : suffix_len);
if (n)
return n < 0;
return args->needle.len < suffix_len;
}
int block_iter_next(struct block_iter *it, struct reftable_record *rec)
{
struct string_view in = {
.buf = (unsigned char *) it->block + it->next_off,
.len = it->block_len - it->next_off,
};
struct string_view start = in;
uint8_t extra = 0;
int n = 0;
if (it->next_off >= it->block_len)
return 1;
n = reftable_decode_key(&it->last_key, &extra, in);
if (n < 0)
return -1;
if (!it->last_key.len)
return REFTABLE_FORMAT_ERROR;
string_view_consume(&in, n);
n = reftable_record_decode(rec, it->last_key, extra, in, it->hash_size,
&it->scratch);
if (n < 0)
return -1;
string_view_consume(&in, n);
it->next_off += start.len - in.len;
return 0;
}
void block_iter_reset(struct block_iter *it)
{
strbuf_reset(&it->last_key);
it->next_off = 0;
it->block = NULL;
it->block_len = 0;
it->hash_size = 0;
}
void block_iter_close(struct block_iter *it)
{
strbuf_release(&it->last_key);
strbuf_release(&it->scratch);
}
int block_iter_seek_key(struct block_iter *it, const struct block_reader *br,
struct strbuf *want)
{
struct restart_needle_less_args args = {
.needle = *want,
.reader = br,
};
struct reftable_record rec;
int err = 0;
size_t i;
/*
* Perform a binary search over the block's restart points, which
* avoids doing a linear scan over the whole block. Like this, we
* identify the section of the block that should contain our key.
*
* Note that we explicitly search for the first restart point _greater_
* than the sought-after record, not _greater or equal_ to it. In case
* the sought-after record is located directly at the restart point we
* would otherwise start doing the linear search at the preceding
* restart point. While that works alright, we would end up scanning
* too many record.
*/
i = binsearch(br->restart_count, &restart_needle_less, &args);
if (args.error) {
err = REFTABLE_FORMAT_ERROR;
goto done;
}
/*
* Now there are multiple cases:
*
* - `i == 0`: The wanted record is smaller than the record found at
* the first restart point. As the first restart point is the first
* record in the block, our wanted record cannot be located in this
* block at all. We still need to position the iterator so that the
* next call to `block_iter_next()` will yield an end-of-iterator
* signal.
*
* - `i == restart_count`: The wanted record was not found at any of
* the restart points. As there is no restart point at the end of
* the section the record may thus be contained in the last block.
*
* - `i > 0`: The wanted record must be contained in the section
* before the found restart point. We thus do a linear search
* starting from the preceding restart point.
*/
if (i > 0)
it->next_off = block_reader_restart_offset(br, i - 1);
else
it->next_off = br->header_off + 4;
it->block = br->block.data;
it->block_len = br->block_len;
it->hash_size = br->hash_size;
reftable_record_init(&rec, block_reader_type(br));
/*
* We're looking for the last entry less than the wanted key so that
* the next call to `block_reader_next()` would yield the wanted
* record. We thus don't want to position our reader at the sought
* after record, but one before. To do so, we have to go one entry too
* far and then back up.
*/
while (1) {
size_t prev_off = it->next_off;
err = block_iter_next(it, &rec);
if (err < 0)
goto done;
if (err > 0) {
it->next_off = prev_off;
err = 0;
goto done;
}
/*
* Check whether the current key is greater or equal to the
* sought-after key. In case it is greater we know that the
* record does not exist in the block and can thus abort early.
* In case it is equal to the sought-after key we have found
* the desired record.
*
* Note that we store the next record's key record directly in
* `last_key` without restoring the key of the preceding record
* in case we need to go one record back. This is safe to do as
* `block_iter_next()` would return the ref whose key is equal
* to `last_key` now, and naturally all keys share a prefix
* with themselves.
*/
reftable_record_key(&rec, &it->last_key);
if (strbuf_cmp(&it->last_key, want) >= 0) {
it->next_off = prev_off;
goto done;
}
}
done:
reftable_record_release(&rec);
return err;
}
void block_writer_release(struct block_writer *bw)
{
deflateEnd(bw->zstream);
FREE_AND_NULL(bw->zstream);
FREE_AND_NULL(bw->restarts);
FREE_AND_NULL(bw->compressed);
strbuf_release(&bw->last_key);
/* the block is not owned. */
}
void reftable_block_done(struct reftable_block *blockp)
{
struct reftable_block_source source = blockp->source;
if (blockp && source.ops)
source.ops->return_block(source.arg, blockp);
blockp->data = NULL;
blockp->len = 0;
blockp->source.ops = NULL;
blockp->source.arg = NULL;
}
|