1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#!/usr/bin/env python
######################## BEGIN LICENSE BLOCK ########################
# Contributor(s):
# 10.02.2015 - helour - first attempt
# 08.08.2016 - Dan Blanchard - first usable release
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301 USA
#
######################### END LICENSE BLOCK #########################
"""
Convert old style SBCS model to new
"""
import os
import sys
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from string import ascii_letters
import chardet
from chardet import __version__
from chardet.metadata.languages import LANGUAGES
from chardet.sbcharsetprober import SingleByteCharSetModel
# Turn ascii_letters into a set to make other ops easier
ascii_letters = set(ascii_letters)
def normalize_name(charset_name):
"""Convert name to proper Python constant format"""
# Title case to start
charset_name = charset_name.upper()
# Underscores instead of hyphens
charset_name = charset_name.replace("-", "_")
return charset_name
def convert_sbcs_model(old_model, alphabet):
"""Create a SingleByteCharSetModel object representing the charset."""
# Setup tables necessary for computing transition frequencies for model
char_to_order = dict(enumerate(old_model["char_to_order_map"]))
pos_ratio = old_model["typical_positive_ratio"]
keep_ascii_letters = old_model["keep_english_letter"]
curr_model = SingleByteCharSetModel(
charset_name=old_model["charset_name"],
language=old_model["language"],
char_to_order_map=char_to_order,
# language_model is filled in later
language_model=None,
typical_positive_ratio=pos_ratio,
keep_ascii_letters=keep_ascii_letters,
alphabet=alphabet,
)
return curr_model
def print_char_to_order(var_name, order_map, charset_name, output_file):
print(f"{var_name} = {{", file=output_file)
for char, order in sorted(order_map.items()):
char_bytes = bytes(bytearray((char,)))
try:
unicode_char = char_bytes.decode(charset_name)
except UnicodeError:
unicode_char = None
print(f" {char!r}: {order!r}, # {unicode_char!r}", file=output_file)
print("}\n", file=output_file)
def print_language_model(var_name, language_model, output_file, char_ranks):
print(
"# 3: Positive\n# 2: Likely\n# 1: Unlikely\n# 0: Negative\n",
file=output_file,
)
print(f"{var_name} = {{", file=output_file)
for first_char, sub_dict in sorted(language_model.items()):
# Skip empty sub_dicts
if not sub_dict or first_char not in char_ranks:
continue
print(f" {char_ranks[first_char]!r}: {{ # {first_char!r}", file=output_file)
for second_char, likelihood in sorted(sub_dict.items()):
if second_char not in char_ranks:
continue
print(
f" {char_ranks[second_char]!r}: {likelihood!r}, # "
f"{second_char!r}",
file=output_file,
)
print(" },", file=output_file)
print("}\n", file=output_file)
def convert_models_for_lang(language):
"""Convert old SingleByteCharSetModels for the given language"""
# Validate language
language = language.title()
lang_metadata = LANGUAGES.get(language)
if not lang_metadata:
raise ValueError(
f"Unknown language: {language}. If you are adding a model for a"
" new language, you must first update metadata/"
"languages.py"
)
lang_mod_name = f"lang{language.lower()}model"
if not os.path.exists(os.path.join("chardet", lang_mod_name + ".py")):
print(f"Skipping {language} because it does not have an old model.")
return
lang_mod = getattr(chardet, lang_mod_name)
print(
f"\n{language}\n----------------------------------------------------------------"
)
print(f"Keep ASCII Letters: {lang_metadata.use_ascii}")
print(f"Alphabet: {lang_metadata.alphabet}")
# Create char-to-order maps (aka char-to-rank dicts)
charset_models = {}
char_ranks = {}
order_to_chars = {}
for var_name in dir(lang_mod):
if not ("Model" in var_name and "LangModel" not in var_name):
continue
old_model = getattr(lang_mod, var_name)
charset_name = old_model["charset_name"]
print(f"Converting charset model for {charset_name}")
sys.stdout.flush()
charset_models[charset_name] = convert_sbcs_model(
old_model, lang_metadata.alphabet
)
# Since we don't know which charsets have which characters, we have to
# try to reconstruct char_ranks (for letters only, since that's all
# the old language models contain)
for byte_hex, order in charset_models[charset_name].char_to_order_map.items():
# order 64 was basically ignored before because of the off by one
# error, but it's hard to know if training took that into account
if order > 64:
continue
# Convert to bytes in Python 2 and 3
char = bytes(bytearray((byte_hex,)))
try:
unicode_char = char.decode(charset_name)
except UnicodeDecodeError:
continue
if unicode_char not in char_ranks:
char_ranks[unicode_char] = order
order_to_chars[order] = unicode_char
elif char_ranks[unicode_char] != order:
raise ValueError(f"Unstable character ranking for {unicode_char}")
old_lang_model = getattr(lang_mod, f"{language.title()}LangModel")
language_model = {}
# Preserve off-by-one error here by ignoring first column and row
for i in range(1, 64):
if i not in order_to_chars:
continue
lang_char = order_to_chars[i]
language_model[lang_char] = {}
for j in range(1, 64):
if j not in order_to_chars:
continue
lang_char2 = order_to_chars[j]
language_model[lang_char][lang_char2] = old_lang_model[(i * 64) + j]
# Write output files
print(f"Writing output file for {language}\n\n")
sys.stdout.flush()
with open(f"lang{language.lower()}model.py", "w", encoding="utf-8") as output_file:
upper_lang = language.upper()
# print header to set encoding
print(
"from chardet.sbcharsetprober import SingleByteCharSetModel\n\n",
file=output_file,
)
lm_name = f"{upper_lang}_LANG_MODEL"
print_language_model(lm_name, language_model, output_file, char_ranks)
print(
"# 255: Undefined characters that did not exist in training text\n"
"# 254: Carriage/Return\n"
"# 253: symbol (punctuation) that does not belong to word\n"
"# 252: 0 - 9\n"
"# 251: Control characters\n\n"
"# Character Mapping Table(s):",
file=output_file,
)
for charset_name, sbcs_model in charset_models.items():
normal_name = normalize_name(charset_name)
char_to_order_name = f"{normal_name}_{upper_lang}_CHAR_TO_ORDER"
print_char_to_order(
char_to_order_name,
sbcs_model.char_to_order_map,
charset_name,
output_file,
)
sbcs_model_name = f"{normal_name}_{upper_lang}_MODEL"
sbcs_model.char_to_order_map.clear()
sbcs_model_repr = (
repr(sbcs_model)
.replace("None", lm_name)
.replace("{}", char_to_order_name)
.replace(", ", (",\n" + " " * (len(sbcs_model_name) + 26)))
)
print(f"{sbcs_model_name} = {sbcs_model_repr}\n", file=output_file)
def main():
parser = ArgumentParser(
description=__doc__, formatter_class=ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"language",
help="The name of the language the input documents are "
"in. Also the name of the language the generated "
"model will detect. If no language is specified, "
"models for all languages known to chardet will be"
" trained.",
nargs="*",
)
parser.add_argument("--version", action="version", version=__version__)
args = parser.parse_args()
if not args.language:
args.language = list(sorted(LANGUAGES.keys()))
for language in args.language:
convert_models_for_lang(language)
if __name__ == "__main__":
main()
|