1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
\htmlhr
\chapterAndLabel{Generics and polymorphism}{polymorphism}
This chapter describes support for Java generics (also known as
``parametric polymorphism'') and polymorphism over type qualifiers.
Section~\ref{qualifier-polymorphism} describes support for polymorphism over
type qualifiers.
\sectionAndLabel{Generics (parametric polymorphism or type polymorphism)}{generics}
The Checker Framework fully supports
type-qualified Java generic types and methods (also known as ``parametric
polymorphism'').
When instantiating a generic type,
clients supply the qualifier along with the type argument, as in
\code{List<@NonNull String>}.
When using a type variable \code{T} within the implementation of a generic type,
typically no type qualifier is written (see Section~\ref{type-variable-use});
rather, the instantiation of the type parameter is restricted (see
Section~\ref{generics-instantiation}).
\subsectionAndLabel{Raw types}{generics-raw-types}
Before running any pluggable type-checker, we recommend that you eliminate
raw types from your code (e.g., your code should use \code{List<...>} as
opposed to \code{List}).
Your code should compile without warnings when using the standard Java
compiler and the \<-Xlint:unchecked -Xlint:rawtypes> command-line options.
Using generics helps prevent type errors just as using a pluggable
type-checker does, and makes the Checker Framework's warnings easier to
understand.
If your code uses raw types, then the Checker Framework will do its best to
infer the Java type arguments and the type qualifiers. By default these
inferred types are ignored in subtyping checks. If you supply the
command-line option \<-AignoreRawTypeArguments=false> you will see errors
from raw types.
\subsectionAndLabel{Restricting instantiation of a generic class}{generics-instantiation}
When you define a generic class in Java, the \<extends> clause
of the generic type parameter (known as the ``upper bound'') requires that
the corresponding type argument must be a subtype of the bound.
For example, given the definition
\verb|class G<T extends Number> {...}|,
the upper bound is \<Number>
and a client can instantiate it as \code{G<Number>} or \code{G<Integer>}
but not \code{G<Date>}.
You can write a type qualifier on the \<extends> clause to make the upper
bound a qualified type. For example, you can declare that a generic list class can hold only non-null values:
% Similarly, a generic map
% class might indicate it requires an immutable key type, but that it
% supports both nullable and non-null value types.
\begin{Verbatim}
class MyList<T extends @NonNull Object> {...}
MyList<@NonNull String> m1; // OK
MyList<@Nullable String> m2; // error
\end{Verbatim}
That is, in the above example, all
arguments that replace \code{T} in \code{MyList<T>} must be subtypes of
\code{@NonNull Object}.
\subsubsectionAndLabel{Syntax for upper and lower bounds}{generics-bounds-syntax}
Conceptually, each generic type parameter has two bounds --- a lower bound
and an upper bound --- and at instantiation, the type argument must be
within the bounds. Java only allows you to specify the upper bound; the
lower bound is implicitly the bottom type \<void>. The Checker Framework
gives you more power: you can specify both an upper and lower bound for
type parameters.
Write the upper bound on the \<extends> clause, and
write the lower bound on the type variable.
\begin{Verbatim}
class MyList<@LowerBound T extends @UpperBound Object> { ... }
\end{Verbatim}
You may omit either the upper or the lower bound, and the Checker Framework
will use a default.
For a discussion of wildcards, see Section~\ref{annotations-on-wildcards}.
For a concrete example, recall the type system of the Regex Checker (see
Figure~\refwithpage{fig-regex-hierarchy}) in which
\<@Regex(0)> :>
\<@Regex(1)> :>
\<@Regex(2)> :>
\<@Regex(3)> :> \ldots.
\begin{Verbatim}
class MyRegexes<@Regex(5) T extends @Regex(1) String> { ... }
MyRegexes<@Regex(0) String> mu; // error - @Regex(0) is not a subtype of @Regex(1)
MyRegexes<@Regex(1) String> m1; // OK
MyRegexes<@Regex(3) String> m3; // OK
MyRegexes<@Regex(5) String> m5; // OK
MyRegexes<@Regex(6) String> m6; // error - @Regex(6) is not a supertype of @Regex(5)
\end{Verbatim}
The above declaration states that the upper bound of the type variable
is \<@Regex(1) String> and the lower bound is \<@Regex(5) void>. That is,
arguments that replace \code{T} in \code{MyList<T>} must be subtypes of
\code{@Regex(1) String} and supertypes of \code{@Regex(5) void}.
Since \<void> cannot be used to instantiate a generic class, \<MyList> may
be instantiated with \<@Regex(1) String> through \<@Regex(5) String>.
To specify an exact bound, place the same annotation on both bounds. For example:
\begin{Verbatim}
class MyListOfNonNulls<@NonNull T extends @NonNull Object> { ... }
class MyListOfNullables<@Nullable T extends @Nullable Object> { ... }
MyListOfNonNulls<@NonNull Number> v1; // OK
MyListOfNonNulls<@Nullable Number> v2; // error
MyListOfNullables<@NonNull Number> v4; // error
MyListOfNullables<@Nullable Number> v3; // OK
\end{Verbatim}
It is an error if the lower bound is not a subtype of the upper bound.
%BEGIN LATEX
\begin{smaller}
%END LATEX
\begin{Verbatim}
class MyClass<@Nullable T extends @NonNull Object> // error: @Nullable is not a supertype of @NonNull
\end{Verbatim}
%BEGIN LATEX
\end{smaller}
%END LATEX
\subsubsectionAndLabel{Defaults}{generics-defaults}
A generic type parameter or wildcard is written as \code{class
MyClass<\emph{@LowerBound} T extends \emph{@UpperBound} JavaUpperBound>} or as
\code{MyClass<\emph{@UpperBound} ? super \emph{@LowerBound} JavaLowerBound>}, where
``\<\emph{@LowerBound}>'' and ``\<\emph{@UpperBound}>'' are type qualifiers.
For lower bounds:
If no type annotation is written in front of \<?>,
then the lower bound defaults to \<@\emph{BottomType} void>.
For upper bounds:
\begin{itemize}
\item
If the \<extends> clause is omitted,
then the upper bound defaults to \<@\emph{TopType} Object>.
\item
If the \<extends> clause is written but contains no type qualifier,
then the normal defaulting rules apply to the type in the \<extends>
clause (see Section~\ref{climb-to-top}).
\end{itemize}
The upper-bound rules mean that even though in Java the following two
declarations are equivalent:
\begin{Verbatim}
class MyClass<T>
class MyClass<T extends Object>
\end{Verbatim}
\noindent
they specify different type qualifiers on the upper bound,
if the type system's default annotation is not its top annotation.
The Nullness type system is an example.
\begin{Verbatim}
class MyClass<T> == class MyClass<T extends @Nullable Object>
class MyClass<T extends Object> == class MyClass<T extends @NonNull Object>
\end{Verbatim}
The rationale for this choice is:
\begin{itemize}
\item
The ``\code{<T>}'' in \code{MyClass<T>} means ``fully unconstrained'',
and the rules maintain that, without the need for a programmer to
change existing code.
\item
The ``\code{Object}'' in \code{MyClass<T extends Object>} is treated
exactly like every other occurrence of \code{Object} in the program ---
it would be confusing for different occurrences of \code{Object} to mean
different annotated types.
\end{itemize}
Because of these rules, the recommended style is:
\begin{itemize}
\item
Use ``\code{<T>}'' when there are no constraints on the type qualifiers.
This is short and is what already appears in source code.
\item
Whenever you write an \<extends> clause, write an explicit type
annotation on it. For example, for the Nullness Checker, write
\code{class MyClass<T>} rather than \code{class MyClass<T extends
@Nullable Object>}, and write \code{class MyClass<T extends @NonNull
Object>} rather than \code{class MyClass<T extends Object>}.
\end{itemize}
For further discussion, see Section~\ref{faq-implicit-bounds}.
\subsectionAndLabel{Type annotations on a use of a generic type variable}{type-variable-use}
A type annotation on a use of a generic type variable overrides/ignores any type
qualifier (in the same type hierarchy) on the corresponding actual type
argument. For example, suppose that \code{T} is a formal type parameter.
Then using \code{@Nullable T} within the scope of \code{T} applies the type
qualifier \code{@Nullable} to the (unqualified) Java type of \code{T}\@.
This feature is sometimes useful, but more often the implementation of a
generic type just uses the type variable \code{T}, whose instantiation is
restricted (see Section~\ref{generics-instantiation}).
Here is an example of applying a type annotation to a generic type
variable:
\begin{Verbatim}
class MyClass2<T> {
...
@Nullable T myField = null;
...
}
\end{Verbatim}
\noindent
The type annotation does not restrict how \code{MyClass2} may be
instantiated. In other words, both
\code{MyClass2<@NonNull String>} and \code{MyClass2<@Nullable String>} are
legal, and in both cases \code{@Nullable T} means \code{@Nullable String}.
In \code{MyClass2<@Interned String>},
\code{@Nullable T} means \code{@Nullable @Interned String}.
% Note that a type annotation on a generic type variable does not act like
% other type qualifiers. In both cases the type annotation acts as a type
% constructor, but as noted above they act slightly differently.
% %% This isn't quite right because a type qualifier is itself a type
% %% constructor.
% More formally, a type annotation on a generic type variable acts as a type
% constructor rather than a type qualifier. Another example of a type
% constructor is \code{[]}. Just as \code{T[]} is not the same type as
% \code{T}, \code{@Nullable T} is not (necessarily) the same type as
% \code{T}.
Defaulting never affects a use of a type variable, even if the type
variable use has no explicit annotation. Defaulting helps to choose a
single type qualifier for a concrete Java class or interface. By contrast,
a type variable use represents a set of possible types.
\subsectionAndLabel{Annotations on wildcards}{annotations-on-wildcards}
At an instantiation of a generic type, a Java wildcard indicates that some
constraints are known on the type argument, but the type argument is not known
exactly.
For example, you can indicate that the type parameter for variable \<ls> is
some unknown subtype of \<CharSequence>:
\begin{Verbatim}
List<? extends CharSequence> ls;
ls = new ArrayList<String>(); // OK
ls = new ArrayList<Integer>(); // error: Integer is not a subtype of CharSequence
\end{Verbatim}
For more details about wildcards, see the
\href{https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html}{Java
tutorial on wildcards} or
\href{https://docs.oracle.com/javase/specs/jls/se11/html/jls-4.html#jls-4.5.1}{JLS
\S 4.5.1}.
You can write a type annotation on the bound of a wildcard:
\begin{Verbatim}
List<? extends @NonNull CharSequence> ls;
ls = new ArrayList<@NonNull String>(); // OK
ls = new ArrayList<@Nullable String>(); // error: @Nullable is not a subtype of @NonNull
\end{Verbatim}
Conceptually, every wildcard has two bounds --- an upper bound and a lower
bound. Java only permits you to write one bound.
You can specify the upper bound with \code{<?\ extends SomeType>}, in which
case the lower bound is implicitly the bottom type \<void>.
You can specify the lower bound (with \code{<?\ super OtherType>}), in
which case the upper bound is implicitly the top type \<Object>.
The Checker Framework is more flexible: it lets you similarly write
annotations on both the upper and lower bound.
To annotate the \emph{implicit} bound, write the type annotation
before the \<?>. For example:
\begin{Verbatim}
List<@LowerBound ? extends @UpperBound CharSequence> lo;
List<@UpperBound ? super @NonNull Number> ls;
\end{Verbatim}
For an unbounded wildcard (\code{<?>}, with neither
bound specified), the annotation in front of a wildcard applies
to both bounds. The following three declarations are equivalent (except
that you cannot write the bottom type \<void>; note that
\sunjavadoc{java.base/java/lang/Void.html}{Void} does not denote the bottom type):
\begin{Verbatim}
List<@NonNull ?> lnn;
List<@NonNull ? extends @NonNull Object> lnn;
List<@NonNull ? super @NonNull void> lnn;
\end{Verbatim}
\noindent
Note that the annotation in front of a type parameter always applies to its
lower bound, because type parameters can only be written with \<extends>
and never \<super>.
% Defaults are as for type variables (see Section~\ref{generics-defaults}),
% with one exception.
The defaulting rules for
wildcards also differ from those of type parameters (see
Section~\ref{inherited-wildcard-annotations}).
%% Mike isn't sure that this section pulls its weight, especially since it
%% doesn't justify why it is desirable to be able to constrain both the
%% upper and the lower bound of a type. If readers believe that, they will
%% be OK with the syntax.
% \subsubsectionAndLabel{Type parameter declaration annotation rationale}{type-parameter-rationale}
%
% It is desirable to be able to constrain both the upper and the lower bound
% of a type, as in
%
% \begin{Verbatim}
% class MyClass<T extends @C MyUpperBound super @D void> { ... }
% \end{Verbatim}
%
% However, doing so is not possible due to two limitations of Java's syntax.
% First, it is illegal to specify both the upper and the lower bound of a
% type parameter or wildcard.
% Second, it is impossible to specify a type annotation for a lower
% bound without also specifying a type (use of \<void> is illegal).
%
% Thus, when you wish to specify both bounds, you write one of them
% explicitly, and you write the other one in front of the type variable name
% or \<?>. When you wish to specify two identical bounds, you write a
% single annotation in front of the type variable name or \<?>.
\subsectionAndLabel{Examples of qualifiers on a type parameter}{type-parameter-qualifier-examples}
Recall that \<@Nullable \emph{X}> is a supertype of \<@NonNull \emph{X}>,
for any \emph{X}\@.
Most of the following types mean different things:
\begin{Verbatim}
class MyList1<@Nullable T> { ... }
class MyList1a<@Nullable T extends @Nullable Object> { ... } // same as MyList1
class MyList2<@NonNull T extends @NonNull Object> { ... }
class MyList2a<T extends @NonNull Object> { ... } // same as MyList2
class MyList3<T extends @Nullable Object> { ... }
\end{Verbatim}
\<MyList1> and \<MyList1a> must be instantiated with a nullable type.
The implementation of \<MyList1> must be able to consume (store) a null
value and produce (retrieve) a null value.
\<MyList2> and \<MyList2a> must be instantiated with non-null type.
The implementation of \<MyList2> has to account for only non-null values --- it
does not have to account for consuming or producing null.
\<MyList3> may be instantiated either way:
with a nullable type or a non-null type. The implementation of \<MyList3> must consider
that it may be instantiated either way --- flexible enough to support either
instantiation, yet rigorous enough to impose the correct constraints of the
specific instantiation. It must also itself comply with the constraints of
the potential instantiations.
One way to express the difference among \<MyList1>, \<MyList2>, and
\<MyList3> is by comparing what expressions are legal in the implementation
of the list --- that is, what expressions may appear in the ellipsis in the
declarations above, such as inside a method's body. Suppose each class
has, in the ellipsis, these declarations:
\begin{Verbatim}
T t;
@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".
void add(T arg) {}
T get(int i) {}
\end{Verbatim}
\noindent
Then the following expressions would be legal, inside a given
implementation --- that is, also within the ellipses.
(Compilable source code appears as file
\<checker-framework/checker/tests/nullness/generics/GenericsExample.java>.)
\begin{tabular}{|l|c|c|c|c|c|} \hline
& MyList1 & MyList2 & MyList3 \\ \hline
t = null; & OK & error & error \\ \hline
t = nble; & OK & error & error \\ \hline
nble = null; & OK & OK & OK \\ \hline
nn = null; & error & error & error \\ \hline
t = this.get(0); & OK & OK & OK \\ \hline
nble = this.get(0); & OK & OK & OK \\ \hline
nn = this.get(0); & error & OK & error \\ \hline
this.add(t); & OK & OK & OK \\ \hline
this.add(nble); & OK & error & error \\ \hline
this.add(nn); & OK & OK & OK \\ \hline
\end{tabular}
%% This text is not very helpful.
% The
% implementation of \code{MyList2} may only place non-null objects in the
% list and may assume that retrieved elements are non-null. The
% implementation of \code{MyList3} is similar in that it may only place
% non-null objects in the list, because it might be instantiated as, say,
% \code{MyList3<@NonNull Date>}. When retrieving elements from the list,
% the implementation of \code{MyList3} must account for the fact that
% elements of \code{MyList3} may be null, because it might be instantiated
% as, say, \code{MyList3<@Nullable Date>}.
The differences are more
significant when the qualifier hierarchy is more complicated than just
\<@Nullable> and \<@NonNull>.
\subsectionAndLabel{Covariant type parameters}{covariant-type-parameters}
Java types are \emph{invariant} in their type parameter. This means that
\code{A<X>} is a subtype of \code{B<Y>} only if \<X> is identical to \<Y>. For
example, \code{ArrayList<Number>} is a subtype of \code{List<Number>}, but
neither \code{ArrayList<Integer>} nor \code{List<Integer>} is a subtype of
\code{List<Number>}. (If they were, there would be a loophole in the Java
type system.) For the same reason, type parameter annotations are treated
invariantly. For example, \code{List<@Nullable String>} is not a subtype
of \code{List<String>}.
When a type parameter is used in a read-only way --- that is, when values
of that type are read but are never assigned --- then it is safe for the
type to be \emph{covariant} in the type parameter. Use the
\refqualclass{framework/qual}{Covariant} annotation to indicate this.
When a type parameter is covariant, two instantiations of the class with
different type arguments have the same subtyping relationship as the type
arguments do.
For example, consider \<Iterator>. Its elements can be read but not
written, so \code{Iterator<@Nullable String>} can be a subtype of
\code{Iterator<String>} without introducing a hole in the type system.
Therefore, its type parameter is annotated with
\refqualclass{framework/qual}{Covariant}.
The first type parameter of \<Map.Entry> is also covariant.
Another example would be the type parameter of a hypothetical class
\<ImmutableList>.
The \<@Covariant> annotation is trusted but not checked.
If you incorrectly specify as covariant a type parameter that can be
written (say, the class performs a
\<set> operation or some other mutation on an object of that type), then
you have created an unsoundness in the type system.
For example, it would be incorrect to annotate the type parameter of
\<ListIterator> as covariant, because \<ListIterator> supports a \<set>
operation.
\subsectionAndLabel{Method type argument inference and type qualifiers}{infer-method-type-qualifiers}
Sometimes method type argument inference does not interact well with
type qualifiers. In such situations, you might need to provide
explicit method type arguments, for which the syntax is as follows:
\begin{alltt}
Collections.<@MyTypeAnnotation Object>sort(l, c);
\end{alltt}
\noindent
This uses Java's existing syntax for specifying a method call's type arguments.
\subsectionAndLabel{The Bottom type}{bottom-type}
Many type systems have a \<*Bottom> type that is used only for the \<null>
value, dead code, and some erroneous situations. A programmer should
rarely write the bottom type.
One use is on a lower bound, to indicate that any type qualifier is
permitted. A lower-bounded wildcard indicates that a consumer method can
accept a collection containing any Java type above some Java type, and you
can add the bottom type qualifier as well:
\begin{Verbatim}
public static void addNumbers(List<? super @SignednessBottom Integer> list) { ... }
\end{Verbatim}
\sectionAndLabel{Qualifier polymorphism}{qualifier-polymorphism}
The Checker Framework supports type \emph{qualifier} polymorphism for
methods, which permits a single method to have multiple different qualified
type signatures. This is similar to Java's generics, but is used in
situations where you cannot use Java generics. If you can use generics,
you typically do not need to use a polymorphic qualifier such as \<@PolyNull>.
To \emph{use} a polymorphic qualifier, just write it on a type.
For example, you can write \<@PolyNull> anywhere in a method that you would write
\<@NonNull> or \<@Nullable>.
A polymorphic qualifier can be used in a method signature or body.
It may not be used on a class or field.
A method written using a polymorphic qualifier conceptually has multiple
versions, somewhat like the generics feature of Java or a template in C++.
In each version, each instance of the polymorphic qualifier has been
replaced by the same other qualifier from the hierarchy. See the examples
below in Section~\ref{qualifier-polymorphism-examples}.
The method body must type-check with all signatures. A method call is
type-correct if it type-checks under any one of the signatures. If a call
matches multiple signatures, then the compiler uses the most specific
matching signature for the purpose of type-checking. This is the same as
Java's rule for resolving overloaded methods.
To \emph{define} a polymorphic qualifier, mark the definition with
\refqualclass{framework/qual}{PolymorphicQualifier}. For example,
\refqualclass{checker/nullness/qual}{PolyNull} is a polymorphic type
qualifier for the Nullness type system:
\begin{Verbatim}
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.PolymorphicQualifier;
@PolymorphicQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PolyNull {}
\end{Verbatim}
\subsectionAndLabel{Examples of using polymorphic qualifiers}{qualifier-polymorphism-examples}
As an example of the use of \<@PolyNull>, method
\sunjavadoc{java.base/java/lang/Class.html\#cast(java.lang.Object)}{Class.cast}
returns null if and only if its argument is \<null>:
\begin{Verbatim}
@PolyNull T cast(@PolyNull Object obj) { ... }
\end{Verbatim}
\noindent
This is like writing:
\begin{Verbatim}
@NonNull T cast( @NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }
\end{Verbatim}
\noindent
except that the latter is not legal Java, since it defines two
methods with the same Java signature.
As another example, consider
\begin{Verbatim}
// Returns null if either argument is null.
@PolyNull T max(@PolyNull T x, @PolyNull T y);
\end{Verbatim}
\noindent
which is like writing
\begin{Verbatim}
@NonNull T max( @NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);
\end{Verbatim}
\noindent
At a call site, the most specific applicable signature is selected.
Another way of thinking about which one of the two \code{max} variants is
selected is that the nullness annotations of (the declared types of) both
arguments are \emph{unified} to a type that is a supertype of both, also
known as the \emph{least upper bound} or lub. If both
arguments are \code{@NonNull}, their unification (lub) is \<@NonNull>, and the
method return type is \<@NonNull>. But if even one of the arguments is \<@Nullable>,
then the unification (lub) is \<@Nullable>, and so is the return type.
\subsectionAndLabel{Relationship to subtyping and generics}{qualifier-polymorhism-vs-subtyping}
Qualifier polymorphism has the same purpose and plays the same role as
Java's generics. You use them in the same cases, such as:
\begin{itemize}
\item
A method operates on collections with different types of
elements.
\item
Two different arguments have the same type, without constraining them to
be one specific type.
\item
A method returns a value of the same type as its argument.
\end{itemize}
If a method is written using Java generics, it usually does not need
qualifier polymorphism. If you can use Java's generics, then that is often
better. On the other hand, if you have legacy code that is not
written generically, and you cannot change it to use generics, then you can
use qualifier polymorphism to achieve a similar effect, with respect to
type qualifiers only. The Java compiler still treats the base Java types
non-generically.
In some cases, you don't need qualifier polymorphism because subtyping
already provides the needed functionality.
\<String> is a supertype of \<@Interned String>, so a method \<toUpperCase>
that is declared to take a \<String> parameter can also be called on an
\<@Interned String> argument.
%% TODO: Polymorphic qualifiers do not yet take an optional argument.
% PolyAll in the section below should be changed to any poly qualifier.
%
% \subsectionAndLabel{Multiple instances of polymorphic qualifiers (the index argument)}{qualifier-polymorphism-multiple-instances}
%
% Each polymorphic qualifier such as \refqualclass{framework/qual}{PolyAll}
% takes an optional argument so that you can
% specify multiple, independent polymorphic type qualifiers. For example,
% this signature is overly restrictive:
%
% \begin{Verbatim}
% /**
% * Returns true if the arrays are elementwise equal,
% * testing for equality using == (not the equals method).
% */
% public static int eltwiseEqualUsingEq(@PolyAll Object[] a, @PolyAll Object elt) {
% for (int i=0; i<a.length; i++) {
% if (elt != a[i]) {
% return false;
% }
% }
% return true;
% }
% \end{Verbatim}
%
% \noindent
% That signature requires the element type annotation to be identical for the
% two arguments. For example, it forbids this invocation:
%
% \begin{Verbatim}
% @Nullable Object[] x;
% @NonNull Object y;
% ... indexOf(x, y) ...
% \end{Verbatim}
%
% \noindent
% A better signature lets the two arrays' element types vary independently:
%
% \begin{Verbatim}
% public static int eltwiseEqualUsingEq(@PolyAll(1) Object[] a, @PolyAll(2) Object elt)
% \end{Verbatim}
%
% \noindent
% Note that in this case, the \<@Nullable> annotation on \<elt>'s type is no
% longer necessary, since it is subsumed by \<@PolyAll>.
%
% The \<@PolyAll> annotation at a location $l$ applies to every type
% qualifier hierarchy for which no explicit qualifier is written at location
% $l$. For example, a declaration like
% \<@PolyAll @NonNull Object elt> is polymorphic over every type system
% \emph{except} the nullness type system, for which the type is fixed at
% \<@NonNull>. That would be the proper declaration for \<elt> if the body
% had used \<elt.equals(a[i])> instead of \<elt == a[i]>.
%
%
% % Suppose that some type system has two qualifiers, such as
% % \<@Nullable> and \<@NonNull>. When a polymorphic type qualifier such
% % as \<@PolyNull> is used in a method, then the method conceptually
% % has two different versions: one in which every instance of
% % \<@PolyNull> has been replaced by \<@NonNull> and one in
% % which every instance of \<@PolyNull> has been replaced by
% % \<@Nullable>.
%
% If a method signature contains only indexless versions of a polymorphic
% qualifier such as \refqualclass{framework/qual}{PolyAll} or
% \refqualclass{checker/nullness/qual}{PolyNull}, then all of them refer to
% the same type as described in
% Section~\ref{qualifier-polymorphism-multiple-qualifiers}. If any indexed
% version appears, then every occurrence of the polymorphic qualifier without
% an index is considered to use a fresh index. For example, the following
% two declarations are equivalent (where \<@PA> means \<@PolyAll>, for brevity):
%
% \begin{smaller}
% \begin{Verbatim}
% @PA(1) foo(@PA(1) Object a, @PA(2) Object b, @PA(2) Object c, @PA Object d, @PA Object e) {...}
%
% @PA(1) foo(@PA(1) Object a, @PA(2) Object b, @PA(2) Object c, @PA(3) Object d, @PA(4) Object e) {...}
% \end{Verbatim}
% \end{smaller}
%
% As described in Section~\ref{qualifier-polymorphism-return-type}, the
% qualifier on a return type must be the same as that on some formal parameter.
% Therefore, the first of these declarations is legal because it is
% equivalent to the second, but the third is illegal because it is
% equivalent to the fourth.
%
% \begin{Verbatim}
% @PolyAll m1(@PolyAll Object a, @PolyAll Object b) { ... } // OK
% @PolyAll(1) m2(@PolyAll(1) Object a, @PolyAll(1) Object b) { ... } // OK (same as m1)
%
% @PolyAll m3(@PolyAll Object a, @PolyAll(1) Object b) { ... } // illegal
% @PolyAll(2) m4(@PolyAll(3) Object a, @PolyAll(1) Object b) { ... } // illegal (same as m3)
% \end{Verbatim}
\subsectionAndLabel{Using multiple polymorphic qualifiers in a method signature}{qualifier-polymorphism-multiple-qualifiers}
%% I can't think of a non-clumsy way to say this.
% Each method containing a polymorphic qualifier is (conceptually) expanded
% into multiple versions completely independently.
Usually, it does not make sense to write only a single instance of a polymorphic
qualifier in a method definition: if you write one instance of (say)
\<@PolyNull>, then you should use at least two.
The main benefit of polymorphic qualifiers comes when one is used multiple times
in a method, since then each instance turns into the same type qualifier.
(Section~\ref{qualifier-polymorphism-single-qualifier} describes some
exceptions to this rule: times when it makes sense to write a single
polymorphic qualifier in a signature.)
Most frequently, the polymorphic qualifier appears on at least one formal
parameter and also on the return type.
It can also be useful to have
polymorphic qualifiers on (only) multiple formal parameters, especially if
the method side-effects one of its arguments.
For example, consider
\begin{Verbatim}
void moveBetweenStacks(Stack<@PolyNull Object> s1, Stack<@PolyNull Object> s2) {
s1.push(s2.pop());
}
\end{Verbatim}
\noindent
In this particular example, it would be cleaner to rewrite your code to use
Java generics, if you can do so:
\begin{Verbatim}
<T> void moveBetweenStacks(Stack<T> s1, Stack<T> s2) {
s1.push(s2.pop());
}
\end{Verbatim}
\subsectionAndLabel{Using a single polymorphic qualifier in a method signature}{qualifier-polymorphism-single-qualifier}
As explained in Section~\ref{qualifier-polymorphism-multiple-qualifiers},
you will usually use a polymorphic qualifier
multiple times in a signature.
This section describes situations when it makes sense to write just one
polymorphic qualifier in a method signature.
Some of these situations can be avoided by writing a generic method,
but in legacy code it may not be possible for you to change a method to be
generic.
\subsubsectionAndLabel{Using a single polymorphic qualifier on a return type}{qualifier-polymorphism-return-type}
It is unusual, but permitted, to write just one polymorphic qualifier, on a return type.
This is just like it is unusual, but permitted, to write just one
occurrence of a generic type parameter, on a return type. An example of
such a method is
\sunjavadoc{java.base/java/util/Collections.html\#emptyList()}{Collections.emptyList()}.
\subsubsectionAndLabel{Using a single polymorphic qualifier on an element type}{qualifier-polymorphism-element-types}
It can make sense to use a polymorphic qualifier just once, on an array or
generic element type.
For example, consider a routine that returns the index, in an array, of a
given element:
\begin{Verbatim}
public static int indexOf(@PolyNull Object[] a, @Nullable Object elt) { ... }
\end{Verbatim}
If \<@PolyNull> were replaced with either \<@Nullable> or \<@NonNull>, then
one of these safe client calls would be rejected:
\begin{Verbatim}
@Nullable Object[] a1;
@NonNull Object[] a2;
indexOf(a1, someObject);
indexOf(a2, someObject);
\end{Verbatim}
Of course, it would be better style to use a generic method, as in either
of these signatures:
\begin{Verbatim}
public static <T extends @Nullable Object> int indexOf(T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf(T[] a, T elt) { ... }
\end{Verbatim}
Another example is a method that writes bytes to a file. It accepts an
array of signed or unsigned bytes, and it behaves identically for both:
\begin{Verbatim}
void write(@PolySigned byte[] b) { ... }
\end{Verbatim}
These examples use arrays, but there are similar examples that
use collections.
\subsubsectionAndLabel{Don't use a single polymorphic qualifier on a formal parameter type}{qualifier-polymorphism-formal-parameter}
There is no point to writing
\begin{Verbatim}
void m(@PolyNull Object obj)
\end{Verbatim}
\noindent
which expands to
\begin{Verbatim}
void m(@NonNull Object obj)
void m(@Nullable Object obj)
\end{Verbatim}
This is no different (in terms of which calls to the method will
type-check) than writing just
\begin{Verbatim}
void m(@Nullable Object obj)
\end{Verbatim}
% LocalWords: nullable MyList nble nn Nullness DefaultQualifier MyClass quals
% LocalWords: DefaultLocation subtype's ImmutableList ListIterator nullness
% LocalWords: PolymorphicQualifier PolyNull java lub invariantly supertype's
% LocalWords: MyList1 MyList2 MyList4 MyList3 MyClass2 toUpperCase elt
% LocalWords: PolyAll arrays' Xlint rawtypes AignoreRawTypeArguments s1
% LocalWords: call's Regex taintedHolder untaintedHolder taintedHolder2
% LocalWords: wildcards holderExtends holderSuper getTaintedString s2 JLS
% LocalWords: getUntaintedString Typesystem Param ClassTaintingParam h1
% LocalWords: arg param MethodTaintingParam Util meth value1 h2 TopType
% LocalWords: nestedHolder nestedHolder2 extendsHolder PolyTainted Poly
%% LocalWords: BottomType CharSequence SomeType OtherType MyList1a
%% LocalWords: MyList2a
|