File: api.rst

package info (click to toggle)
chemfp 1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 1,580 kB
  • sloc: python: 9,390; ansic: 2,363; makefile: 110
file content (703 lines) | stat: -rw-r--r-- 21,471 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
.. _chemfp-api:

==========
chemfp API
==========

This chapter contains the docstrings for the public portion of the
chemfp API.

=============
chemfp module
=============

The following functions and classes are in the chemfp module.

.. py:module:: chemfp

open
====

.. py:function:: open(source[, format=None])

Read fingerprints from a fingerprint file

Read fingerprints from 'source', using the given format. If
'source' is a string then it is treated as a filename. If 'source'
is None then fingerprints are read from stdin. Otherwise, 'source'
must be a Python file object supporting 'read' and 'readline'.

If 'format' is None then the fingerprint file format and
compression type are derived from the source filename, or from the
name attribute of the source file object. If the source is None
then the stdin is assumed to be uncompressed data in "fps" format.

The supported format strings are:

   fps, fps.gz  - fingerprints are in FPS format

The result is an FPSReader. Here's an example of printing the
contents of the file::

    reader = open("example.fps.gz")
    for id, fp in reader:
        print id, fp.encode("hex")
    
:param source: The fingerprint source.
:type source: A filename string, a file object, or None.
:param format: The file format and optional compression.
:type format: string, or None

:returns: an FPSReader

.. _chemfp_load_fingerprints:

load_fingerprints
=================

.. py:function:: load_fingerprints(reader[, metadata=None][, reorder=True])

Load all of the fingerprints into an in-memory FingerprintArena data structure

The FingerprintArena data structure reads all of the fingerprints and
identifers from 'reader' and stores them into an in-memory data
structure which supports fast similarity searches.

If 'reader' is a string or implements "read" then the contents will be
parsed with the 'chemfp.open' function. Otherwise it must support
iteration returning (id, fingerprint) pairs. 'metadata' contains the
metadata the arena. If not specified then 'reader.metadata' is used.

The loader may reorder the fingerprints for better search performance.
To prevent ordering, use reorder=False.

:param reader: An iterator over (id, fingerprint) pairs
:type reader: a string, file object, or (id, fingerprint) iterator
:param metadata: The metadata for the arena, if other than reader.metadata
:type metadata: Metadata
:param reorder: Specify if fingerprints should be reordered for better performance
:type reorder: True or False
:returns: FingerprintArena


.. _chemfp_read_structure_fingerprints:

read_structure_fingerprints
===========================

.. py:function:: read_structure_fingerprints(type[, source=None][, format=None][, id_tag=None][, errors="strict"]):

Read structures from 'source' and return the corresponding ids and fingerprints

This returns a FingerprintReader which can be iterated over to get
the id and fingerprint for each read structure record. The
fingerprint generated depends on the value of 'type'. Structures
are read from 'source', which can either be the structure
filename, or None to read from stdin.

'type' contains the information about how to turn a structure
into a fingerprint. It can be a string or a metadata instance.
String values look like "OpenBabel-FP2/1", "OpenEye-Path", and
"OpenEye-Path/1 min_bonds=0 max_bonds=5 atype=DefaultAtom btype=DefaultBond".
Default values are used for unspecified parameters. Use a
Metadata instance with 'type' and 'aromaticity' values set
in order to pass aromaticity information to OpenEye.

If 'format' is None then the structure file format and compression
are determined by the filename's extension(s), defaulting to
uncompressed SMILES if that is not possible. Otherwise 'format' may
be "smi" or "sdf" optionally followed by ".gz" or "bz2" to indicate
compression. The OpenBabel and OpenEye toolkits also support
additional formats.

If 'id_tag' is None, then the record id is based on the title
field for the given format. If the input format is "sdf" then 'id_tag'
specifies the tag field containing the identifier. (Only the first
line is used for multi-line values.) For example, ChEBI omits the
title from the SD files and stores the id after the ">  <ChEBI ID>"
line. In that case, use id_tag = "ChEBI ID".

'aromaticity' specifies the aromaticity model, and is only appropriate for
OEChem. It must be a string like "openeye" or "daylight".

Here is an example of using fingerprints generated from structure file::

    fp_reader = read_structure_fingerprints("OpenBabel-FP4/1", "example.sdf.gz")
    print "Each fingerprint has", fps.metadata.num_bits, "bits"
    for (id, fp) in fp_reader:
       print id, fp.encode("hex")


:param type: information about how to convert the input structure into a fingerprint
:type type: string or Metadata
:param source: The structure data source.
:type source: A filename (as a string), a file object, or None to read from stdin.
:param format: The file format and optional compression.
        Examples: 'smi' and 'sdf.gz'
:type format: string, or None to autodetect based on the source
:param id_tag: The tag containing the record id. Example: 'ChEBI ID'.
        Only valid for SD files.
:type id_tag: string, or None to use the default title for the given format
:returns: a FingerprintReader


.. _chemfp_count_tanimoto_hits:

count_tanimoto_hits
===================

.. py:function:: count_tanimoto_hits(queries, targets[, threshold=0.7][, arena_size=100])

Count the number of targets within 'threshold' of each query term

For each query in 'queries', count the number of targets in 'targets'
which are at least 'threshold' similar to the query. This function
returns an iterator containing the (query_id, count) pairs.

Example::

  queries = chemfp.open("queries.fps")
  targets = chemfp.load_fingerprints("targets.fps.gz")
  for (query_id, count) in chemfp.count_tanimoto_hits(queries, targets, threshold=0.9):
      print query_id, "has", count, "neighbors with at least 0.9 similarity"

Internally, queries are processed in batches of size 'arena_size'.
A small batch size uses less overall memory and has lower
processing latency, while a large batch size has better overall
performance. Use arena_size=None to process the input as a single batch.

Note: the FPSReader may be used as a target but it can only process
one batch, and searching a FingerprintArena is faster if you have more
than a few queries.

:param queries: The query fingerprints.
:type queries: any fingerprint container
:param targets: The target fingerprints.
:type targets: FingerprintArena or the slower FPSReader
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param arena_size: The number of queries to process in a batch
:type arena_size: a positive integer, or None
:returns:
   An iterator containing (query_id, score) pairs, one for each query


.. _chemfp_threshold_tanimoto_search:

threshold_tanimoto_search
=========================

.. py:function:: threshold_tanimoto_search (queries, targets[, threshold=0.7][, arena_size=100])

Find all targets within 'threshold' of each query term

For each query in 'queries', find all the targets in 'targets' which
are at least 'threshold' similar to the query. This function returns
an iterator containing the (query_id, hits) pairs. The hits are stored
as a list of (target_id, score) pairs.

Example::

  queries = chemfp.open("queries.fps")
  targets = chemfp.load_fingerprints("targets.fps.gz")
  for (query_id, hits) in chemfp.threshold_tanimoto_search(queries, targets, threshold=0.8):
      print query_id, "has", len(hits), "neighbors with at least 0.8 similarity"
      non_identical = [target_id for (target_id, score) in hits if score != 1.0]
      print "  The non-identical hits are:", non_identical

Internally, queries are processed in batches of size 'arena_size'.
A small batch size uses less overall memory and has lower
processing latency, while a large batch size has better overall
performance. Use arena_size=None to process the input as a single batch.

Note: the FPSReader may be used as a target but it can only process
one batch, and searching a FingerprintArena is faster if you have more
than a few queries.

:param queries: The query fingerprints.
:type queries: any fingerprint container
:param targets: The target fingerprints.
:type targets: FingerprintArena or the slower FPSReader
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param arena_size: The number of queries to process in a batch
:type arena_size: positive integer, or None
:returns:
  An iterator containing (query_id, hits) pairs, one for each query.
  'hits' contains a list of (target_id, score) pairs.

.. _chemfp_knearest_tanimoto_search:

knearest_tanimoto_search
========================

.. py:function:: knearest_tanimoto_search (queries, targets[, k=3][, threshold=0.7][, arena_size=100])

Find the 'k'-nearest targets within 'threshold' of each query term

For each query in 'queries', find the 'k'-nearest of all the targets
in 'targets' which are at least 'threshold' similar to the query. Ties
are broken arbitrarily and hits with scores equal to the smallest value
may have been omitted.

This function returns an iterator containing the (query_id, hits) pairs,
where hits is a list of (target_id, score) pairs, sorted so that the
highest scores are first. The order of ties is arbitrary.

Example::

  # Use the first 5 fingerprints as the queries 
  queries = next(chemfp.open("pubchem_subset.fps").iter_arenas(5))
  targets = chemfp.load_fingerprints("pubchem_subset.fps")
  
  # Find the 3 nearest hits with a similarity of at least 0.8
  for (query_id, hits) in chemfp.knearest_tanimoto_search(queries, targets, k=3, threshold=0.8):
      print query_id, "has", len(hits), "neighbors with at least 0.8 similarity"
      if hits:
          target_id, score = hits[-1]
          print "    The least similar is", target_id, "with score", score

Internally, queries are processed in batches of size 'arena_size'.
A small batch size uses less overall memory and has lower
processing latency, while a large batch size has better overall
performance. Use arena_size=None to process the input as a single batch.

Note: the FPSReader may be used as a target but it can only process
one batch, and searching a FingerprintArena is faster if you have more
than a few queries.

:param queries: The query fingerprints.
:type queries: any fingerprint container
:param targets: The target fingerprints.
:type targets: FingerprintArena or the slower FPSReader
:param k: The maximum number of nearest neighbors to find.
:type k: positive integer
:param threshold: The minimum score threshold.
:type threshold: float between 0.0 and 1.0, inclusive
:param arena_size: The number of queries to process in a batch
:type arena_size: positive integer, or None
:returns:
  An iterator containing (query_id, hits) pairs, one for each query.
  'hits' contains a list of (target_id, score) pairs, sorted by score.


.. _chemfp_metadata:

Metadata
========

.. py:class:: Metadata([num_bits=None][, num_bytes=None][, type=None][, aromaticity=None][, software=None][, sources=None][, date=None])

Store information about a set of fingerprints

The metadata attributes are:
  num_bits:
    number of bits in the fingerprint
  num_bytes:
    number of bytes in the fingerprint
  type:
    fingerprint type
  aromaticity:
    aromaticity model (only used with OEChem)
  software:
    software used to make the fingerprints
  sources:
    list of sources used to make the fingerprint
  date:
    timestamp of when the fingerprints were made

.. _chemfp_fingerprintreader:

FingerprintReader (base class)
==============================

.. py:class:: chemfp.FingerprintReader(metadata)

Initialize with a Metadata instance

Base class for all chemfp objects holding fingerprint records

All FingerprintReader instances have a 'metadata' attribute
containing a Metadata and can be iteratated over to get the (id,
fingerprint) for each record.

iter(arena)
-----------

.. py:method:: __iter__()

iterate over the (id, fingerprint) pairs

iter_arenas
-----------

.. py:method:: iter_arenas([arena_size=1000])

iterate through 'arena_size' fingerprints at a time

This iterates through the fingerprints 'arena_size' at a time,
yielding a FingerprintArena for each group. Working with
arenas is often faster than processing one fingerprint at a
time, and more memory efficient than processing all
fingerprints at once.

If arena_size=None then this makes an iterator containing
a single arena containing all of the input.

:param arena_size: The number of fingerprints to put into an arena.
:type arena_size: positive integer, or None


===================
chemfp.arena module
===================

The following classes are returned as part of the public API but
should not be constructed directly.

.. _chemfp_arena_fingerprintarena:

.. py:module:: chemfp.arena

FingerprintArena
================

Implements the FingerprintReader interface.

.. py:class:: FingerprintArena(... do not call directly ...)

Stores fingerprints in a contiguous block of memory

The public attributes are:
   metadata
       `Metadata` about the fingerprints
   ids
       list of identifiers, ordered by position

len(arena)
----------

.. py:method:: __len__()

Number of fingerprint records in the FingerprintArena

arena[i]
--------

.. py:method:: __getitem__(i)

Return the (id, fingerprint) at position i


iter(arena)
-----------

.. py:method:: __iter__()

Iterate over the (id, fingerprint) contents of the arena


iter_arenas
-----------

.. py:method:: iter_arenas([arena_size=1000])

iterate through `arena_size` fingerprints at a time

This iterates through the fingerprints `arena_size` at a time,
yielding a FingerprintArena for each group. Working with
arenas is often faster than processing one fingerprint at a
time, and more memory efficient than processing all
fingerprints at once.

If arena_size=None then this makes an iterator containing
a single arena containing all of the input.

:param arena_size: The number of fingerprints to put into an arena.
:type arena_size: positive integer, or None


count_tanimoto_hits_fp
----------------------

.. py:method:: count_tanimoto_hits_fp(query_fp[, threshold=0.7])

Count the fingerprints which are similar enough to the query fingerprint

Return the number of fingerprints in this arena which are
at least `threshold` similar to the query fingerprint `query_fp`.

:param query_fp: query fingerprint
:type query_fp: byte string
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: integer count


count_tanimoto_hits_arena
-------------------------

.. py:method:: count_tanimoto_hits_arena(query_arena[, threshold=0.7])

Count the fingerprints which are similar enough to each query fingerprint

For each fingerprint in the `query_arena`, count the number of
fingerprints in this arena with Tanimoto similarity of at
least `threshold`. The resulting list order is the same as the
query fingerprint order.

:param query_fp: query arena
:type query_fp: FingerprintArena
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: list of integer counts

threshold_tanimoto_search_fp
----------------------------

.. py:method:: threshold_tanimoto_search_fp(query_fp[, threshold=0.7])

Find the fingerprints which are similar enough to the query fingerprint

Find all of the fingerprints in this arena which are at least
`threshold` similar to the query fingerprint `query_fp`.
The hits are returned as a list containing (id, score) tuples
in arbitrary order.

:param query_fp: query fingerprint
:type query_fp: byte string
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: list of (int, score) tuples


threshold_tanimoto_search_arena
-------------------------------

.. py:method:: threshold_tanimoto_search_arena(query_arena[, threshold=0.7])

Find the fingerprints which are similar to each of the query fingerprints

For each fingerprint in the `query_arena`, find all of the
fingerprints in this arena which are at least `threshold`
similar. The hits are returned as a `SearchResults` instance.

:param query_arena: query arena
:type query_arena: FingerprintArena
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResults

knearest_tanimoto_search_fp
----------------------------

.. py:method:: knearest_tanimoto_search_fp(query_fp[, k=3][, threshold=0.7])

Find the k-nearest fingerprints which are similar to the query fingerprint

Find the `k` fingerprints in this arena which are most similar
to the query fingerprint `query_fp` and which are at least `threshold`
similar to the query. The hits are returned as a list of
(id, score) tuples sorted with the highest similarity first.
Ties are broken arbitrarily.

:param query_fp: query fingerpring
:type query_fp: byte string
:param k: number of nearest neighbors to find (default: 3)
:type k: positive integer
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResults


knearest_tanimoto_search_arena
-------------------------------

.. py:method:: knearest_tanimoto_search_arena(query_arena[, k=3][, threshold=0.7])

Find the k-nearest fingerprint which are similar to each of the query fingerprints

For each fingerprint in the `query_arena`, find the `k`
fingerprints in this arena which are most similar and which
are at least `threshold` similar to the query fingerprint.
The hits are returned as a SearchResult where the hits are
sorted with the highest similarity first. Ties are broken
arbitrarily.

:param query_arena: query arena
:type query_arena: FingerprintArena
:param k: number of nearest neighbors to find (default: 3)
:type k: positive integer
:param threshold: minimum similarity threshold (default: 0.7)
:type threshold: float between 0.0 and 1.0, inclusive
:returns: SearchResult


save
----

.. py:method:: save(destination)

Save the arena contents to the given filename or file object



SearchResults
=============

.. py:class:: SearchResults(... do not call directly ...)

Contains the result of a Tanimoto threshold or k-nearest search

Each result contains a list of hits, where the hit is a
two-element tuple. If you iterate over the SearchResult then
you'll get the hits as (target_id, target_score) pairs.
tuples. If you iterate using the method `iter_hits()` then you'll
get the hits as (target_index, target_score) pairs.

iter(results)
-------------

.. py:method:: __iter__()

Iterate over the named hits for each result

Each term is a list of hits. A hit contains (id, score) tuples.
The order of the hits depends on the search algorithm.

iter_hits
---------

.. py:method:: iter_hits()

Iterate over the indexed hits for each result

Each term is a list of hits. A hit contains (index, score) tuples.
The order of the hits depends on the search algorithm.


len(results)
------------

.. py:method:: __len__()

Number of search results

results[i]
----------

.. py:method:: __getitem__(i)

The list of hits for result at position i

Each hit contains a (id, score) tuple.

size(i)
-------

.. py:method:: size()

The number of hits for result at position i

:param i: index into the search results
:type i: int
:returns: int


.. _chemfp.bitops:

=====================
chemfp.bitopts module
=====================

.. py:module:: chemfp.bitops

The following functions are in the chemfp.bitops module. They
provide low-level bit operations on byte and hex fingerprints.


byte_popcount
=============

.. py:function:: byte_popcount()

byte_popcount(fp)

Return the number of bits set in a byte fingerprint

byte_intersect_popcount
=======================

.. py:function:: byte_intersect_popcount()

byte_intersect_popcount(fp1, fp2)

Return the number of bits set in the instersection of the two byte fingerprints

byte_tanimoto
=============

.. py:function:: byte_tanimoto()

byte_tanimoto(fp1, fp2)

Compute the Tanimoto similarity between two byte fingerprints

byte_contains
=============

.. py:function:: byte_contains()

byte_contains(super_fp, sub_fp)

Return 1 if the on bits of sub_fp are also 1 bits in super_fp

hex_isvalid
===========

.. py:function:: hex_isvalid()

hex_isvalid(s)

Return 1 if the string is a valid hex fingerprint, otherwise 0

hex_popcount
============

.. py:function:: hex_popcount()

hex_popcount(fp)

Return the number of bits set in a hex fingerprint, or -1 for non-hex strings

hex_intersect_popcount
======================

.. py:function:: hex_intersect_popcount()

hex_intersect_popcount(fp1, fp2)

Return the number of bits set in the intersection of the two hex fingerprint,
or -1 if either string is a non-hex string


hex_tanimoto
============

.. py:function:: hex_tanimoto()

hex_tanimoto(fp1, fp2)

Compute the Tanimoto similarity between two hex fingerprints.
Return a float between 0.0 and 1.0, or -1.0 if either string is not a hex fingerprint


hex_contains
============

.. py:function	:: hex_contains()

hex_contains(super_fp, sub_fp)

Return 1 if the on bits of sub_fp are also 1 bits in super_fp, otherwise 0.
Return -1 if either string is not a hex fingerprint