1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <sys/stat.h>
#include <assert.h>
#include "CASSCF.h"
#include "DMRG.h"
#include "FCI.h"
#include "DMRGSCFrotations.h"
#include "Lapack.h"
#include "Cumulant.h"
#include "CASPT2.h"
#include "MPIchemps2.h"
#include "EdmistonRuedenberg.h"
using std::string;
using std::ifstream;
using std::cout;
using std::endl;
using std::max;
void CheMPS2::CASSCF::write_f4rdm_checkpoint( const string f4rdm_file, int * hamorb1, int * hamorb2, const int tot_dmrg_power6, double * contract ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
if ( am_i_master ){
hid_t file_id = H5Fcreate( f4rdm_file.c_str(), H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT );
hid_t group_id = H5Gcreate( file_id, "/F4RDM", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );
hsize_t dimarray1 = 1;
hid_t dataspace1_id = H5Screate_simple( 1, &dimarray1, NULL );
hid_t dataset1_id = H5Dcreate( group_id, "hamorb1", H5T_NATIVE_INT, dataspace1_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );
H5Dwrite( dataset1_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, hamorb1 );
H5Dclose( dataset1_id );
H5Sclose( dataspace1_id );
hsize_t dimarray2 = 1;
hid_t dataspace2_id = H5Screate_simple( 1, &dimarray2, NULL );
hid_t dataset2_id = H5Dcreate( group_id, "hamorb2", H5T_NATIVE_INT, dataspace2_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );
H5Dwrite( dataset2_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, hamorb2 );
H5Dclose( dataset2_id );
H5Sclose( dataspace2_id );
hsize_t dimarray3 = tot_dmrg_power6;
hid_t dataspace3_id = H5Screate_simple( 1, &dimarray3, NULL );
hid_t dataset3_id = H5Dcreate( group_id, "contract", H5T_NATIVE_DOUBLE, dataspace3_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT );
H5Dwrite( dataset3_id, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, contract );
H5Dclose( dataset3_id );
H5Sclose( dataspace3_id );
H5Gclose( group_id );
H5Fclose( file_id );
cout << "Created F.4-RDM checkpoint file " << f4rdm_file << " at next orbitals ( " << hamorb1[ 0 ] << " , " << hamorb2[ 0 ] << " )." << endl;
}
}
bool CheMPS2::CASSCF::read_f4rdm_checkpoint( const string f4rdm_file, int * hamorb1, int * hamorb2, const int tot_dmrg_power6, double * contract ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
// Check whether the file exists
int exists = 0;
if ( am_i_master ){
struct stat file_info;
const int file_stat = stat( f4rdm_file.c_str(), &file_info );
if ( file_stat == 0 ){ exists = 1; }
}
#ifdef CHEMPS2_MPI_COMPILATION
MPIchemps2::broadcast_array_int( &exists, 1, MPI_CHEMPS2_MASTER );
#endif
if ( exists == 0 ){
return false; // Not loaded
}
if ( am_i_master ){
hid_t file_id = H5Fopen( f4rdm_file.c_str(), H5F_ACC_RDONLY, H5P_DEFAULT );
hid_t group_id = H5Gopen( file_id, "/F4RDM", H5P_DEFAULT );
hid_t dataset1_id = H5Dopen( group_id, "hamorb1", H5P_DEFAULT );
H5Dread( dataset1_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, hamorb1 );
H5Dclose( dataset1_id );
hid_t dataset2_id = H5Dopen( group_id, "hamorb2", H5P_DEFAULT );
H5Dread( dataset2_id, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, hamorb2 );
H5Dclose( dataset2_id );
hid_t dataset3_id = H5Dopen( group_id, "contract", H5P_DEFAULT );
H5Dread( dataset3_id, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, contract );
H5Dclose( dataset3_id );
H5Gclose( group_id );
H5Fclose( file_id );
}
#ifdef CHEMPS2_MPI_COMPILATION
MPIchemps2::broadcast_array_int( hamorb1, 1, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_int( hamorb2, 1, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( contract, tot_dmrg_power6, MPI_CHEMPS2_MASTER );
#endif
return true; // Loaded
}
void CheMPS2::CASSCF::fock_dot_4rdm( double * fockmx, CheMPS2::DMRG * dmrgsolver, CheMPS2::Hamiltonian * ham, int next_orb1, int next_orb2, double * work, double * result, const bool CHECKPOINT, const bool PSEUDOCANONICAL ){
const int LAS = ham->getL();
int size = LAS * LAS * LAS * LAS * LAS * LAS;
int inc1 = 1;
for ( int diag = 0; diag < LAS; diag++ ){
if (( next_orb1 == diag ) && ( next_orb2 == diag )){
double prefactor = 0.5 * fockmx[ diag + LAS * diag ];
if ( fabs( prefactor ) > 0.0 ){
dmrgsolver->Symm4RDM( work, diag, diag, false );
daxpy_( &size, &prefactor, work, &inc1, result, &inc1 );
}
if ( diag == LAS - 1 ){
next_orb1 = 0;
next_orb2 = 1;
} else {
next_orb1 = diag + 1;
next_orb2 = diag + 1;
}
if ( CHECKPOINT ){ write_f4rdm_checkpoint( CheMPS2::DMRGSCF_f4rdm_name, &next_orb1, &next_orb2, size, result ); }
}
}
if ( PSEUDOCANONICAL == false ){
for ( int orb1 = 0; orb1 < LAS; orb1++ ){
for ( int orb2 = orb1 + 1; orb2 < LAS; orb2++ ){
if (( next_orb1 == orb1 ) && ( next_orb2 == orb2 )){
double prefactor = 0.5 * ( fockmx[ orb1 + LAS * orb2 ] + fockmx[ orb2 + LAS * orb1 ] );
if (( ham->getOrbitalIrrep( orb1 ) == ham->getOrbitalIrrep( orb2 ) ) && ( fabs( prefactor ) > 0.0 )){
dmrgsolver->Symm4RDM( work, orb1, orb2, false );
daxpy_( &size, &prefactor, work, &inc1, result, &inc1 );
}
if ( orb2 == LAS - 1 ){
next_orb1 = next_orb1 + 1;
next_orb2 = next_orb1 + 1;
} else {
next_orb2 = next_orb2 + 1;
}
if (( ham->getOrbitalIrrep( orb1 ) == ham->getOrbitalIrrep( orb2 ) ) && ( CHECKPOINT )){
write_f4rdm_checkpoint( CheMPS2::DMRGSCF_f4rdm_name, &next_orb1, &next_orb2, size, result );
}
}
}
}
}
}
double CheMPS2::CASSCF::caspt2( const int Nelectrons, const int TwoS, const int Irrep, ConvergenceScheme * OptScheme, const int rootNum, DMRGSCFoptions * scf_options, const double IPEA, const double IMAG, const bool PSEUDOCANONICAL, const bool CHECKPOINT, const bool CUMULANT ){
#ifdef CHEMPS2_MPI_COMPILATION
const bool am_i_master = ( MPIchemps2::mpi_rank() == MPI_CHEMPS2_MASTER );
#else
const bool am_i_master = true;
#endif
const int num_elec = Nelectrons - 2 * iHandler->getNOCCsum();
assert( num_elec >= 0 );
if ( CASPT2::vector_length( iHandler ) == 0 ){
if ( am_i_master ){
cout << "CheMPS2::CASSCF::caspt2 : There are no CASPT2 excitations between the CORE, ACTIVE, and VIRTUAL orbital spaces." << endl;
}
return 0.0;
}
//Determine the maximum NORB(irrep) and the max_block_size for the ERI orbital rotation
const int maxlinsize = iHandler->getNORBmax();
const long long fullsize = ((long long) maxlinsize ) * ((long long) maxlinsize ) * ((long long) maxlinsize ) * ((long long) maxlinsize );
const string tmp_filename = tmp_folder + "/" + CheMPS2::DMRGSCF_eri_storage_name;
const int dmrgsize_power4 = nOrbDMRG * nOrbDMRG * nOrbDMRG * nOrbDMRG;
//For (ERI rotation, update unitary, block diagonalize, orbital localization)
DMRGSCFintegrals * theRotatedTEI = new DMRGSCFintegrals( iHandler );
const int temp_work_size = (( fullsize > CheMPS2::DMRGSCF_max_mem_eri_tfo ) ? CheMPS2::DMRGSCF_max_mem_eri_tfo : fullsize );
const int work_mem_size = max( max( temp_work_size , maxlinsize * maxlinsize * 4 ) , dmrgsize_power4 );
const int tot_dmrg_power6 = dmrgsize_power4 * nOrbDMRG * nOrbDMRG;
double * mem1 = new double[ work_mem_size ];
double * mem2 = new double[ ( PSEUDOCANONICAL ) ? work_mem_size : max( work_mem_size, tot_dmrg_power6 ) ];
// If you did not run CheMPS2::CASSCF::solve, you NEED to load the unitary from disk
if ( successful_solve == false ){
assert( scf_options->getStoreUnitary() );
if ( am_i_master ){
struct stat file_info;
const int file_stat = stat( (scf_options->getUnitaryStorageName()).c_str(), &file_info );
assert( file_stat == 0 );
unitary->loadU( scf_options->getUnitaryStorageName() );
}
#ifdef CHEMPS2_MPI_COMPILATION
unitary->broadcast( MPI_CHEMPS2_MASTER );
#endif
} else {
// Rotate to pseudocanonical orbitals
if ( PSEUDOCANONICAL ){ // successful_solve needs to be true, because the 1-RDM is needed for buildQmatACT();
buildTmatrix();
buildQmatOCC();
buildQmatACT();
construct_fock( theFmatrix, theTmatrix, theQmatOCC, theQmatACT, iHandler );
block_diagonalize( 'O', theFmatrix, unitary, mem1, mem2, iHandler, false, NULL, NULL, NULL );
block_diagonalize( 'A', theFmatrix, unitary, mem1, mem2, iHandler, false, NULL, NULL, NULL );
block_diagonalize( 'V', theFmatrix, unitary, mem1, mem2, iHandler, false, NULL, NULL, NULL );
if (( am_i_master ) && ( scf_options->getStoreUnitary() )){ unitary->saveU( scf_options->getUnitaryStorageName() ); }
}
}
// Fill active space Hamiltonian
Hamiltonian * HamAS = new Hamiltonian( nOrbDMRG, SymmInfo.getGroupNumber(), iHandler->getIrrepOfEachDMRGorbital() );
Problem * Prob = new Problem( HamAS, TwoS, num_elec, Irrep );
Prob->SetupReorderD2h(); // Doesn't matter if the group isn't D2h, Prob checks it.
buildTmatrix();
buildQmatOCC();
fillConstAndTmatDMRG( HamAS );
if ( am_i_master ){
DMRGSCFrotations::rotate( VMAT_ORIG, HamAS->getVmat(), NULL, 'A', 'A', 'A', 'A', iHandler, unitary, mem1, mem2, work_mem_size, tmp_filename );
}
#ifdef CHEMPS2_MPI_COMPILATION
HamAS->getVmat()->broadcast( MPI_CHEMPS2_MASTER );
#endif
// Reorder the orbitals based on the Fiedler vector of the exchange matrix
if ( scf_options->getWhichActiveSpace() == 3 ){
int * dmrg2ham = new int[ nOrbDMRG ];
if ( am_i_master ){
EdmistonRuedenberg * theLocalizer = new EdmistonRuedenberg( HamAS->getVmat(), iHandler->getGroupNumber() );
theLocalizer->FiedlerGlobal( dmrg2ham );
delete theLocalizer;
}
#ifdef CHEMPS2_MPI_COMPILATION
MPIchemps2::broadcast_array_int( dmrg2ham, nOrbDMRG, MPI_CHEMPS2_MASTER );
#endif
Prob->setup_reorder_custom( dmrg2ham );
delete [] dmrg2ham;
}
double E_CASSCF = 0.0;
double * three_dm = new double[ tot_dmrg_power6 ];
double * contract = new double[ tot_dmrg_power6 ];
for ( int cnt = 0; cnt < tot_dmrg_power6; cnt++ ){ contract[ cnt ] = 0.0; }
int next_hamorb1 = 0;
int next_hamorb2 = 0;
const bool make_checkpt = (( CUMULANT == false ) && ( CHECKPOINT ));
bool checkpt_loaded = false;
if ( make_checkpt ){
assert(( OptScheme != NULL ) || ( rootNum > 1 ));
checkpt_loaded = read_f4rdm_checkpoint( CheMPS2::DMRGSCF_f4rdm_name, &next_hamorb1, &next_hamorb2, tot_dmrg_power6, contract );
}
// Solve the active space problem
if (( OptScheme == NULL ) && ( rootNum == 1 )){ // Do FCI
if ( am_i_master ){
const int nalpha = ( num_elec + TwoS ) / 2;
const int nbeta = ( num_elec - TwoS ) / 2;
const double workmem = 1000.0; // 1GB
const int verbose = 2;
CheMPS2::FCI * theFCI = new CheMPS2::FCI( HamAS, nalpha, nbeta, Irrep, workmem, verbose );
double * inoutput = new double[ theFCI->getVecLength(0) ];
theFCI->ClearVector( theFCI->getVecLength(0), inoutput );
inoutput[ theFCI->LowestEnergyDeterminant() ] = 1.0;
E_CASSCF = theFCI->GSDavidson( inoutput );
theFCI->Fill2RDM( inoutput, DMRG2DM ); // 2-RDM
theFCI->Fill3RDM( inoutput, three_dm ); // 3-RDM
setDMRG1DM( num_elec, nOrbDMRG, DMRG1DM, DMRG2DM ); // 1-RDM
buildQmatACT();
construct_fock( theFmatrix, theTmatrix, theQmatOCC, theQmatACT, iHandler );
copy_active( theFmatrix, mem2, iHandler ); // Fock
theFCI->Fock4RDM( inoutput, three_dm, mem2, contract ); // trace( Fock * 4-RDM )
delete theFCI;
delete [] inoutput;
}
#ifdef CHEMPS2_MPI_COMPILATION
MPIchemps2::broadcast_array_double( &E_CASSCF, 1, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( DMRG2DM, dmrgsize_power4, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( three_dm, tot_dmrg_power6, MPI_CHEMPS2_MASTER );
MPIchemps2::broadcast_array_double( contract, tot_dmrg_power6, MPI_CHEMPS2_MASTER );
setDMRG1DM( num_elec, nOrbDMRG, DMRG1DM, DMRG2DM );
#endif
} else { // Do the DMRG sweeps
assert( OptScheme != NULL );
for ( int cnt = 0; cnt < dmrgsize_power4; cnt++ ){ DMRG2DM[ cnt ] = 0.0; } // Clear the 2-RDM
CheMPS2::DMRG * theDMRG = new DMRG( Prob, OptScheme, make_checkpt, tmp_folder );
for ( int state = 0; state < rootNum; state++ ){
if ( state > 0 ){ theDMRG->newExcitation( fabs( E_CASSCF ) ); }
if ( checkpt_loaded == false ){ E_CASSCF = theDMRG->Solve(); }
if (( state == 0 ) && ( rootNum > 1 )){ theDMRG->activateExcitations( rootNum - 1 ); }
}
theDMRG->calc_rdms_and_correlations( true );
copy2DMover( theDMRG->get2DM(), nOrbDMRG, DMRG2DM ); // 2-RDM
setDMRG1DM( num_elec, nOrbDMRG, DMRG1DM, DMRG2DM ); // 1-RDM
buildQmatACT();
construct_fock( theFmatrix, theTmatrix, theQmatOCC, theQmatACT, iHandler );
copy_active( theFmatrix, mem2, iHandler ); // Fock
if ( CUMULANT ){
CheMPS2::Cumulant::gamma4_fock_contract_ham( Prob, theDMRG->get3DM(), theDMRG->get2DM(), mem2, contract );
} else {
fock_dot_4rdm( mem2, theDMRG, HamAS, next_hamorb1, next_hamorb2, three_dm, contract, make_checkpt, PSEUDOCANONICAL );
}
theDMRG->get3DM()->fill_ham_index( 1.0, false, three_dm, 0, nOrbDMRG );
if (( CheMPS2::DMRG_storeMpsOnDisk ) && ( make_checkpt == false )){ theDMRG->deleteStoredMPS(); }
if ( CheMPS2::DMRG_storeRenormOptrOnDisk ){ theDMRG->deleteStoredOperators(); }
delete theDMRG;
}
delete Prob;
delete HamAS;
if ( PSEUDOCANONICAL == false ){
if ( am_i_master ){ cout << "CASPT2 : Deviation from pseudocanonical = " << deviation_from_blockdiag( theFmatrix, iHandler ) << endl; }
block_diagonalize( 'O', theFmatrix, unitary, mem1, mem2, iHandler, false, NULL, NULL, NULL );
block_diagonalize( 'A', theFmatrix, unitary, mem1, mem2, iHandler, false, DMRG2DM, three_dm, contract ); // 2-RDM, 3-RDM, and trace( Fock * cu(4)-4-RDM )
block_diagonalize( 'V', theFmatrix, unitary, mem1, mem2, iHandler, false, NULL, NULL, NULL );
setDMRG1DM( num_elec, nOrbDMRG, DMRG1DM, DMRG2DM ); // 1-RDM
buildTmatrix();
buildQmatOCC();
buildQmatACT();
construct_fock( theFmatrix, theTmatrix, theQmatOCC, theQmatACT, iHandler ); // Fock
}
// Calculate the matrix elements needed to calculate the CASPT2 V-vector
if ( am_i_master ){
DMRGSCFrotations::rotate( VMAT_ORIG, NULL, theRotatedTEI, 'C', 'C', 'F', 'F', iHandler, unitary, mem1, mem2, work_mem_size, tmp_filename );
DMRGSCFrotations::rotate( VMAT_ORIG, NULL, theRotatedTEI, 'C', 'V', 'C', 'V', iHandler, unitary, mem1, mem2, work_mem_size, tmp_filename );
delete_file( tmp_filename );
}
delete [] mem1;
delete [] mem2;
double E_CASPT2 = 0.0;
if ( am_i_master ){
cout << "CASPT2 : Deviation from pseudocanonical = " << deviation_from_blockdiag( theFmatrix, iHandler ) << endl;
CheMPS2::CASPT2 * myCASPT2 = new CheMPS2::CASPT2( iHandler, theRotatedTEI, theTmatrix, theFmatrix, DMRG1DM, DMRG2DM, three_dm, contract, IPEA );
delete theRotatedTEI;
delete [] three_dm;
delete [] contract;
E_CASPT2 = myCASPT2->solve( IMAG );
delete myCASPT2;
} else {
delete theRotatedTEI;
delete [] three_dm;
delete [] contract;
}
#ifdef CHEMPS2_MPI_COMPILATION
MPIchemps2::broadcast_array_double( &E_CASPT2, 1, MPI_CHEMPS2_MASTER );
#endif
return E_CASPT2;
}
void CheMPS2::CASSCF::construct_fock( DMRGSCFmatrix * Fock, const DMRGSCFmatrix * Tmat, const DMRGSCFmatrix * Qocc, const DMRGSCFmatrix * Qact, const DMRGSCFindices * idx ){
const int n_irreps = idx->getNirreps();
for ( int irrep = 0; irrep < n_irreps; irrep++ ){
const int NORB = idx->getNORB( irrep );
for (int row = 0; row < NORB; row++){
for (int col = 0; col < NORB; col++){
Fock->set( irrep, row, col, Tmat->get( irrep, row, col )
+ Qocc->get( irrep, row, col )
+ Qact->get( irrep, row, col ) );
}
}
}
}
double CheMPS2::CASSCF::deviation_from_blockdiag( DMRGSCFmatrix * matrix, const DMRGSCFindices * idx ){
double rms_deviation = 0.0;
const int n_irreps = idx->getNirreps();
for ( int irrep = 0; irrep < n_irreps; irrep++ ){
const int NOCC = idx->getNOCC( irrep );
for ( int row = 0; row < NOCC; row++ ){
for ( int col = row + 1; col < NOCC; col++ ){
rms_deviation += matrix->get( irrep, row, col ) * matrix->get( irrep, row, col );
rms_deviation += matrix->get( irrep, col, row ) * matrix->get( irrep, col, row );
}
}
const int NACT = idx->getNDMRG( irrep );
for ( int row = 0; row < NACT; row++ ){
for ( int col = row + 1; col < NACT; col++ ){
rms_deviation += matrix->get( irrep, NOCC + row, NOCC + col ) * matrix->get( irrep, NOCC + row, NOCC + col );
rms_deviation += matrix->get( irrep, NOCC + col, NOCC + row ) * matrix->get( irrep, NOCC + col, NOCC + row );
}
}
const int NVIR = idx->getNVIRT( irrep );
const int N_OA = NOCC + NACT;
for ( int row = 0; row < NVIR; row++ ){
for ( int col = row + 1; col < NVIR; col++ ){
rms_deviation += matrix->get( irrep, N_OA + row, N_OA + col ) * matrix->get( irrep, N_OA + row, N_OA + col );
rms_deviation += matrix->get( irrep, N_OA + col, N_OA + row ) * matrix->get( irrep, N_OA + col, N_OA + row );
}
}
}
rms_deviation = sqrt( rms_deviation );
return rms_deviation;
}
|