File: Cumulant.cpp

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (480 lines) | stat: -rw-r--r-- 31,179 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2018 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <iostream>

#include "Cumulant.h"

/*void CheMPS2::Cumulant::gamma4_fock_contract_ham_slow(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, double * fock, double * result){

   struct timeval start, end;
   gettimeofday(&start, NULL);
   const int L = prob->gL();

   for ( int cnt = 0; cnt < L*L*L*L*L*L; cnt++ ){ result[ cnt ] = 0.0; }

   int * irreps = new int[ L ];
   for ( int orb = 0; orb < L; orb++ ){ irreps[ orb ] = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( orb ) : orb ); }

   #pragma omp parallel for schedule(dynamic)
   for ( int i = 0; i < L; i++ ){
      for ( int j = i; j < L; j++ ){
         for ( int k = i; k < L; k++ ){
            const int irrep_ijk = Irreps::directProd( Irreps::directProd( irreps[ i ], irreps[ j ] ), irreps[ k ] );
            for ( int p = i; p < L; p++ ){
               for ( int q = i; q < L; q++ ){
                  for ( int r = q; r < L; r++ ){
                     const int irrep_pqr = Irreps::directProd( Irreps::directProd( irreps[ p ], irreps[ q ] ), irreps[ r ] );
                     if ( irrep_ijk == irrep_pqr ){
                        double value = 0.0;
                        for ( int l = 0; l < L; l++ ){
                           for ( int s = 0; s < L; s++ ){
                              if ( irreps[ l ] == irreps[ s ] ){
                                 value += fock[ l + L * s ] * gamma4_ham(prob, the3DM, the2DM, i, j, k, l, p, q, r, s);
                              }
                           }
                        }
                        result[ i + L * ( j + L * ( k + L * ( p + L * ( q + L * r )))) ] = value;
                        result[ i + L * ( k + L * ( j + L * ( p + L * ( r + L * q )))) ] = value;
                        result[ j + L * ( i + L * ( k + L * ( q + L * ( p + L * r )))) ] = value;
                        result[ k + L * ( i + L * ( j + L * ( r + L * ( p + L * q )))) ] = value;
                        result[ j + L * ( k + L * ( i + L * ( q + L * ( r + L * p )))) ] = value;
                        result[ k + L * ( j + L * ( i + L * ( r + L * ( q + L * p )))) ] = value;
                        result[ p + L * ( q + L * ( r + L * ( i + L * ( j + L * k )))) ] = value;
                        result[ p + L * ( r + L * ( q + L * ( i + L * ( k + L * j )))) ] = value;
                        result[ q + L * ( p + L * ( r + L * ( j + L * ( i + L * k )))) ] = value;
                        result[ r + L * ( p + L * ( q + L * ( k + L * ( i + L * j )))) ] = value;
                        result[ q + L * ( r + L * ( p + L * ( j + L * ( k + L * i )))) ] = value;
                        result[ r + L * ( q + L * ( p + L * ( k + L * ( j + L * i )))) ] = value;
                     }
                  }
               }
            }
         }
      }
   }
   
   delete [] irreps;
   
   gettimeofday(&end, NULL);
   const double elapsed = (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
   std::cout << "Cumulant :: Contraction of cu(4)-4RDM with CASPT2 Fock operator took " << elapsed << " seconds." << std::endl;

}*/

void CheMPS2::Cumulant::gamma4_fock_contract_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, double * fock, double * result){

   struct timeval start, end;
   gettimeofday(&start, NULL);
   const int L = prob->gL();
   
   /* Clear result */
   for ( int cnt = 0; cnt < L*L*L*L*L*L; cnt++ ){ result[ cnt ] = 0.0; }
   
   /* Construct an array with the orbital irreps in Hamiltonian indices */
   int * irreps = new int[ L ];
   for ( int orb = 0; orb < L; orb++ ){ irreps[ orb ] = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( orb ) : orb ); }
   
   /* Helper arrays with partial (mult) or full (dot) contractions of objects with the CASPT2 Fock operator */
   double * G3dotF  = new double[ L*L*L*L ];
   double * lambda2 = new double[ L*L*L*L ];
   double * G2multF = new double[ L*L*L*L ];
   double * L2multF = new double[ L*L*L*L ];
   double * gamma1  = new double[ L*L ];
   double * G1multF = new double[ L*L ];
   double * G2dotF  = new double[ L*L ];
   double * L2dotF  = new double[ L*L ];
   for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){  G3dotF[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ lambda2[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ G2multF[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ L2multF[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L;     cnt++ ){  gamma1[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L;     cnt++ ){ G1multF[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L;     cnt++ ){  G2dotF[ cnt ] = 0.0; }
   for ( int cnt = 0; cnt < L*L;     cnt++ ){  L2dotF[ cnt ] = 0.0; }
   double G1dotF = 0.0;
   
   /* Fill gamma1 */
   for ( int i = 0; i < L; i++ ){
      for ( int j = i; j < L; j++ ){
         const double value = the2DM->get1RDM_HAM( i, j );
         gamma1[ i + L * j ] = value;
         gamma1[ j + L * i ] = value;
      }
   }
   
   /* Build  G3dotF[i,j,p,q] = sum_[l,s] Gamma3[i,j,l,p,q,s] F[l,s]
      Build lambda2[i,j,p,q] = Lambda2[i,j,p,q]                     */
   for ( int i = 0; i < L; i++ ){
      for ( int j = i; j < L; j++ ){
         const int irrep_ij = Irreps::directProd( irreps[ i ], irreps[ j ] );
         for ( int p = i; p < L; p++ ){
            for ( int q = i; q < L; q++ ){
               const int irrep_pq = Irreps::directProd( irreps[ p ], irreps[ q ] );
               if ( irrep_ij == irrep_pq ){
                  { // sum_[l,s] Gamma3[i,j,l,p,q,s] F[l,s]
                     double value = 0.0;
                     for ( int l = 0; l < L; l++ ){
                        for ( int s = 0; s < L; s++ ){
                           if ( irreps[ l ] == irreps[ s ] ){
                              value += the3DM->get_ham_index(i,j,l,p,q,s) * fock[ l + L * s ];
                           }
                        }
                     }
                     G3dotF[ i + L * ( j + L * ( p + L * q )) ] = value;
                     G3dotF[ j + L * ( i + L * ( q + L * p )) ] = value;
                     G3dotF[ p + L * ( q + L * ( i + L * j )) ] = value;
                     G3dotF[ q + L * ( p + L * ( j + L * i )) ] = value;
                  }
                  { // Lambda2[i,j,p,q]
                     const double val_lambda = the2DM->getTwoDMA_HAM( i, j, p, q )
                                             - gamma1[ i + L * p ] * gamma1[ j + L * q ]
                                             + gamma1[ i + L * q ] * gamma1[ j + L * p ] * 0.5;
                     lambda2[ i + L * ( j + L * ( p + L * q )) ] = val_lambda;
                     lambda2[ j + L * ( i + L * ( q + L * p )) ] = val_lambda;
                     lambda2[ p + L * ( q + L * ( i + L * j )) ] = val_lambda;
                     lambda2[ q + L * ( p + L * ( j + L * i )) ] = val_lambda;
                  }
               }
            }
         }
      }
   }
   
   /* Build G1multF[i,j] = sum_[p]   Gamma1[i,p] F[p,j]
      Build       G1dotF = sum_[i,j] Gamma1[i,j] F[j,i] */
   for ( int i = 0; i < L; i++ ){
      for ( int j = 0; j < L; j++ ){
         if ( irreps[ i ] == irreps[ j ] ){
            double value = 0.0;
            for ( int p = 0; p < L; p++ ){
               if ( irreps[ j ] == irreps[ p ] ){
                  value += gamma1[ i + L * p ] * fock[ p + L * j ];
               }
            }
            G1multF[ i + L * j ] = value;
         }
      }
      G1dotF += G1multF[ i * ( L + 1 ) ];
   }
   
   /* Build G2dotF[i,j] = sum_[p,q]  Gamma2[i,p,j,q] F[p,q]
      Build L2dotF[i,j] = sum_[p,q] Lambda2[i,p,j,q] F[p,q] */
   for ( int i = 0; i < L; i++ ){
      for ( int j = i; j < L; j++ ){
         if ( irreps[ i ] == irreps[ j ] ){
            double val_gamma  = 0.0;
            double val_lambda = 0.0;
            for ( int p = 0; p < L; p++ ){
               for ( int q = 0; q < L; q++ ){
                  if ( irreps[ p ] == irreps[ q ] ){
                     val_gamma  += fock[ p + L * q ] * the2DM->getTwoDMA_HAM( i, p, j, q );
                     val_lambda += fock[ p + L * q ] * lambda2[ i + L * ( p + L * ( j + L * q )) ];
                  }
               }
            }
            G2dotF[ i + L * j ] = val_gamma;
            G2dotF[ j + L * i ] = val_gamma;
            L2dotF[ i + L * j ] = val_lambda;
            L2dotF[ j + L * i ] = val_lambda;
         }
      }
   }
   
   /* Build G2multF[i,s,j,k] = sum_[l]  Gamma2[i,l,j,k] F[l,s]
      Build L2multF[i,s,j,k] = sum_[l] Lambda2[i,l,j,k] F[l,s] */
   for ( int i = 0; i < L; i++ ){
      for ( int j = 0; j < L; j++ ){
         const int irrep_ij = Irreps::directProd( irreps[ i ], irreps[ j ] );
         for ( int k = 0; k < L; k++ ){
            for ( int s = 0; s < L; s++ ){
               const int irrep_ks = Irreps::directProd( irreps[ k ], irreps[ s ] );
               if ( irrep_ij == irrep_ks ){
                  double val_gamma  = 0.0;
                  double val_lambda = 0.0;
                  for ( int l = 0; l < L; l++ ){
                     if ( irreps[ l ] == irreps[ s ] ){
                        val_gamma  += fock[ l + L * s ] * the2DM->getTwoDMA_HAM( i, l, j, k );
                        val_lambda += fock[ l + L * s ] * lambda2[ i + L * ( l + L * ( j + L * k ) ) ];
                     }
                  }
                  G2multF[ i + L * ( s + L * ( j + L * k ) ) ] = val_gamma;
                  L2multF[ i + L * ( s + L * ( j + L * k ) ) ] = val_lambda;
               }
            }
         }
      }
   }
   
   /* Fill result */
   #pragma omp parallel for schedule(dynamic)
   for ( int i = 0; i < L; i++ ){
      for ( int j = i; j < L; j++ ){
         for ( int k = i; k < L; k++ ){
            const int irrep_ijk = Irreps::directProd( Irreps::directProd( irreps[ i ], irreps[ j ] ), irreps[ k ] );
            for ( int p = i; p < L; p++ ){
               for ( int q = i; q < L; q++ ){
                  for ( int r = q; r < L; r++ ){
                     const int irrep_pqr = Irreps::directProd( Irreps::directProd( irreps[ p ], irreps[ q ] ), irreps[ r ] );
                     if ( irrep_ijk == irrep_pqr ){
                     
                        double dm3_contribution = 0.0;
                        double gamma2_part1 = 0.0;
                        double gamma2_part2 = 0.0;
                        double lambda2_part1 = 0.0;
                        double lambda2_part2 = 0.0;
                        
                        for ( int ls = 0; ls < L; ls++ ){
                        
                           dm3_contribution += ( the3DM->get_ham_index( ls, j, k, p, q, r ) * G1multF[ i + L * ls ]
                                               + the3DM->get_ham_index( i, ls, k, p, q, r ) * G1multF[ j + L * ls ]
                                               + the3DM->get_ham_index( i, j, ls, p, q, r ) * G1multF[ k + L * ls ]
                                               + the3DM->get_ham_index( i, j, k, ls, q, r ) * G1multF[ p + L * ls ]
                                               + the3DM->get_ham_index( i, j, k, p, ls, r ) * G1multF[ q + L * ls ]
                                               + the3DM->get_ham_index( i, j, k, p, q, ls ) * G1multF[ r + L * ls ] );
                           
                           gamma2_part1 += ( the2DM->getTwoDMA_HAM( i, j, p, ls ) * G2multF[ k + L * ( ls + L * ( r + L * q )) ]
                                           + the2DM->getTwoDMA_HAM( i, j, ls, q ) * G2multF[ k + L * ( ls + L * ( r + L * p )) ]
                                           + the2DM->getTwoDMA_HAM( i, k, p, ls ) * G2multF[ j + L * ( ls + L * ( q + L * r )) ]
                                           + the2DM->getTwoDMA_HAM( i, k, ls, r ) * G2multF[ j + L * ( ls + L * ( q + L * p )) ]
                                           + the2DM->getTwoDMA_HAM( k, j, ls, q ) * G2multF[ i + L * ( ls + L * ( p + L * r )) ]
                                           + the2DM->getTwoDMA_HAM( k, j, r, ls ) * G2multF[ i + L * ( ls + L * ( p + L * q )) ] );
                           
                           gamma2_part2 += ( the2DM->getTwoDMA_HAM( i, j, r, ls ) * ( G2multF[ k + L * ( ls + L * ( p + L * q )) ] 
                                                                              + 0.5 * G2multF[ k + L * ( ls + L * ( q + L * p )) ] )
                                           + the2DM->getTwoDMA_HAM( i, j, ls, r ) * ( G2multF[ k + L * ( ls + L * ( q + L * p )) ]
                                                                              + 0.5 * G2multF[ k + L * ( ls + L * ( p + L * q )) ] )
                                           + the2DM->getTwoDMA_HAM( i, k, q, ls ) * ( G2multF[ j + L * ( ls + L * ( p + L * r )) ]
                                                                              + 0.5 * G2multF[ j + L * ( ls + L * ( r + L * p )) ] )
                                           + the2DM->getTwoDMA_HAM( i, k, ls, q ) * ( G2multF[ j + L * ( ls + L * ( r + L * p )) ]
                                                                              + 0.5 * G2multF[ j + L * ( ls + L * ( p + L * r )) ] )
                                           + the2DM->getTwoDMA_HAM( k, j, p, ls ) * ( G2multF[ i + L * ( ls + L * ( r + L * q )) ]
                                                                              + 0.5 * G2multF[ i + L * ( ls + L * ( q + L * r )) ] )
                                           + the2DM->getTwoDMA_HAM( k, j, ls, p ) * ( G2multF[ i + L * ( ls + L * ( q + L * r )) ]
                                                                              + 0.5 * G2multF[ i + L * ( ls + L * ( r + L * q )) ] ) );
                           
                           lambda2_part1 += ( lambda2[ i + L * ( j + L * ( p + L * ls )) ] * L2multF[ k + L * ( ls + L * ( r + L * q )) ]
                                            + lambda2[ i + L * ( j + L * ( ls + L * q )) ] * L2multF[ k + L * ( ls + L * ( r + L * p )) ]
                                            + lambda2[ i + L * ( k + L * ( p + L * ls )) ] * L2multF[ j + L * ( ls + L * ( q + L * r )) ]
                                            + lambda2[ i + L * ( k + L * ( ls + L * r )) ] * L2multF[ j + L * ( ls + L * ( q + L * p )) ]
                                            + lambda2[ k + L * ( j + L * ( ls + L * q )) ] * L2multF[ i + L * ( ls + L * ( p + L * r )) ]
                                            + lambda2[ k + L * ( j + L * ( r + L * ls )) ] * L2multF[ i + L * ( ls + L * ( p + L * q )) ] );
                           
                           lambda2_part2 += ( lambda2[ i + L * ( j + L * ( r + L * ls )) ] * ( L2multF[ k + L * ( ls + L * ( p + L * q )) ] 
                                                                                       + 0.5 * L2multF[ k + L * ( ls + L * ( q + L * p )) ] )
                                            + lambda2[ i + L * ( j + L * ( ls + L * r )) ] * ( L2multF[ k + L * ( ls + L * ( q + L * p )) ]
                                                                                       + 0.5 * L2multF[ k + L * ( ls + L * ( p + L * q )) ] )
                                            + lambda2[ i + L * ( k + L * ( q + L * ls )) ] * ( L2multF[ j + L * ( ls + L * ( p + L * r )) ]
                                                                                       + 0.5 * L2multF[ j + L * ( ls + L * ( r + L * p )) ] )
                                            + lambda2[ i + L * ( k + L * ( ls + L * q )) ] * ( L2multF[ j + L * ( ls + L * ( r + L * p )) ]
                                                                                       + 0.5 * L2multF[ j + L * ( ls + L * ( p + L * r )) ] )
                                            + lambda2[ k + L * ( j + L * ( p + L * ls )) ] * ( L2multF[ i + L * ( ls + L * ( r + L * q )) ]
                                                                                       + 0.5 * L2multF[ i + L * ( ls + L * ( q + L * r )) ] )
                                            + lambda2[ k + L * ( j + L * ( ls + L * p )) ] * ( L2multF[ i + L * ( ls + L * ( q + L * r )) ]
                                                                                       + 0.5 * L2multF[ i + L * ( ls + L * ( r + L * q )) ] ) );
                        }
                     
                        const double contracted_value = ( the3DM->get_ham_index( i, j, k, p, q, r ) * G1dotF

                                                  +       G3dotF[ i + L * ( j + L * ( p + L * q )) ] * gamma1[ k + L * r ]
                                                  - 0.5 * G3dotF[ i + L * ( j + L * ( r + L * q )) ] * gamma1[ k + L * p ]
                                                  - 0.5 * G3dotF[ i + L * ( j + L * ( p + L * r )) ] * gamma1[ k + L * q ]
                                                  +       G3dotF[ i + L * ( k + L * ( p + L * r )) ] * gamma1[ j + L * q ]
                                                  - 0.5 * G3dotF[ i + L * ( k + L * ( q + L * r )) ] * gamma1[ j + L * p ]
                                                  - 0.5 * G3dotF[ i + L * ( k + L * ( p + L * q )) ] * gamma1[ j + L * r ]
                                                  +       G3dotF[ j + L * ( k + L * ( q + L * r )) ] * gamma1[ i + L * p ]
                                                  - 0.5 * G3dotF[ j + L * ( k + L * ( p + L * r )) ] * gamma1[ i + L * q ]
                                                  - 0.5 * G3dotF[ j + L * ( k + L * ( q + L * p )) ] * gamma1[ i + L * r ]

                                                  - 0.5 * dm3_contribution

                                                  -       the2DM->getTwoDMA_HAM( i, j, p, q ) * G2dotF[ k + L * r ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( i, j, p, r ) * G2dotF[ k + L * q ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( i, j, r, q ) * G2dotF[ k + L * p ]
                                                  -       the2DM->getTwoDMA_HAM( i, k, p, r ) * G2dotF[ j + L * q ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( i, k, p, q ) * G2dotF[ j + L * r ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( i, k, q, r ) * G2dotF[ j + L * p ]
                                                  -       the2DM->getTwoDMA_HAM( k, j, r, q ) * G2dotF[ i + L * p ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( k, j, p, q ) * G2dotF[ i + L * r ]
                                                  + 0.5 * the2DM->getTwoDMA_HAM( k, j, r, p ) * G2dotF[ i + L * q ]

                                                  + 0.5 * gamma2_part1
                                                  -       gamma2_part2 / 3.0

                                                  + 2 * lambda2[ i + L * ( j + L * ( p + L * q )) ] * L2dotF[ k + L * r ]
                                                  -     lambda2[ i + L * ( j + L * ( p + L * r )) ] * L2dotF[ k + L * q ]
                                                  -     lambda2[ i + L * ( j + L * ( r + L * q )) ] * L2dotF[ k + L * p ]
                                                  + 2 * lambda2[ i + L * ( k + L * ( p + L * r )) ] * L2dotF[ j + L * q ]
                                                  -     lambda2[ i + L * ( k + L * ( p + L * q )) ] * L2dotF[ j + L * r ]
                                                  -     lambda2[ i + L * ( k + L * ( q + L * r )) ] * L2dotF[ j + L * p ]
                                                  + 2 * lambda2[ k + L * ( j + L * ( r + L * q )) ] * L2dotF[ i + L * p ]
                                                  -     lambda2[ k + L * ( j + L * ( p + L * q )) ] * L2dotF[ i + L * r ]
                                                  -     lambda2[ k + L * ( j + L * ( r + L * p )) ] * L2dotF[ i + L * q ]

                                                  - lambda2_part1
                                                  + lambda2_part2 / 1.5 );
                              
                        result[ i + L * ( j + L * ( k + L * ( p + L * ( q + L * r )))) ] = contracted_value;
                        result[ i + L * ( k + L * ( j + L * ( p + L * ( r + L * q )))) ] = contracted_value;
                        result[ j + L * ( i + L * ( k + L * ( q + L * ( p + L * r )))) ] = contracted_value;
                        result[ k + L * ( i + L * ( j + L * ( r + L * ( p + L * q )))) ] = contracted_value;
                        result[ j + L * ( k + L * ( i + L * ( q + L * ( r + L * p )))) ] = contracted_value;
                        result[ k + L * ( j + L * ( i + L * ( r + L * ( q + L * p )))) ] = contracted_value;
                        result[ p + L * ( q + L * ( r + L * ( i + L * ( j + L * k )))) ] = contracted_value;
                        result[ p + L * ( r + L * ( q + L * ( i + L * ( k + L * j )))) ] = contracted_value;
                        result[ q + L * ( p + L * ( r + L * ( j + L * ( i + L * k )))) ] = contracted_value;
                        result[ r + L * ( p + L * ( q + L * ( k + L * ( i + L * j )))) ] = contracted_value;
                        result[ q + L * ( r + L * ( p + L * ( j + L * ( k + L * i )))) ] = contracted_value;
                        result[ r + L * ( q + L * ( p + L * ( k + L * ( j + L * i )))) ] = contracted_value;
                     }
                  }
               }
            }
         }
      }
   }
   
   delete [] G3dotF;
   delete [] lambda2;
   delete [] G2multF;
   delete [] L2multF;
   delete [] gamma1;
   delete [] G1multF;
   delete [] G2dotF;
   delete [] L2dotF;
   delete [] irreps;
   
   gettimeofday(&end, NULL);
   const double elapsed = (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
   std::cout << "Cumulant :: Contraction of cu(4)-4RDM with CASPT2 Fock operator took " << elapsed << " seconds." << std::endl;

}

double CheMPS2::Cumulant::lambda2_ham(const TwoDM * the2DM, const int i, const int j, const int p, const int q){

   const double value = the2DM->getTwoDMA_HAM( i, j, p, q )
                      - the2DM->get1RDM_HAM( i, p ) * the2DM->get1RDM_HAM( j, q )
                      + the2DM->get1RDM_HAM( i, q ) * the2DM->get1RDM_HAM( j, p ) * 0.5;
   return value;

}

double CheMPS2::Cumulant::gamma4_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, const int i, const int j, const int k, const int l,
                                                                                                         const int p, const int q, const int r, const int s){
   
   //Prob assumes you use DMRG orbs... f1 converts HAM orbs to DMRG orbs
   const int irrep_i = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( i ) : i );
   const int irrep_j = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( j ) : j );
   const int irrep_k = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( k ) : k );
   const int irrep_l = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( l ) : l );
   const int irrep_p = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( p ) : p );
   const int irrep_q = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( q ) : q );
   const int irrep_r = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( r ) : r );
   const int irrep_s = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( s ) : s );
   
   const int irrep_ij = Irreps::directProd( irrep_i, irrep_j );
   const int irrep_kl = Irreps::directProd( irrep_k, irrep_l );
   const int irrep_pq = Irreps::directProd( irrep_p, irrep_q );
   const int irrep_rs = Irreps::directProd( irrep_r, irrep_s );
   
   if ( Irreps::directProd( irrep_ij, irrep_kl ) != Irreps::directProd( irrep_pq, irrep_rs ) ){ return 0.0; }
   
   const double part1 = (       the3DM->get_ham_index(i,j,k,p,q,r) * the2DM->get1RDM_HAM(l,s)
                        - 0.5 * the3DM->get_ham_index(i,j,k,s,q,r) * the2DM->get1RDM_HAM(l,p)
                        - 0.5 * the3DM->get_ham_index(i,j,k,p,s,r) * the2DM->get1RDM_HAM(l,q)
                        - 0.5 * the3DM->get_ham_index(i,j,k,p,q,s) * the2DM->get1RDM_HAM(l,r)
                        +       the3DM->get_ham_index(i,j,l,p,q,s) * the2DM->get1RDM_HAM(k,r)
                        - 0.5 * the3DM->get_ham_index(i,j,l,r,q,s) * the2DM->get1RDM_HAM(k,p)
                        - 0.5 * the3DM->get_ham_index(i,j,l,p,r,s) * the2DM->get1RDM_HAM(k,q)
                        - 0.5 * the3DM->get_ham_index(i,j,l,p,q,r) * the2DM->get1RDM_HAM(k,s)
                        +       the3DM->get_ham_index(i,k,l,p,r,s) * the2DM->get1RDM_HAM(j,q)
                        - 0.5 * the3DM->get_ham_index(i,k,l,q,r,s) * the2DM->get1RDM_HAM(j,p)
                        - 0.5 * the3DM->get_ham_index(i,k,l,p,q,s) * the2DM->get1RDM_HAM(j,r)
                        - 0.5 * the3DM->get_ham_index(i,k,l,p,r,q) * the2DM->get1RDM_HAM(j,s)
                        +       the3DM->get_ham_index(j,k,l,q,r,s) * the2DM->get1RDM_HAM(i,p)
                        - 0.5 * the3DM->get_ham_index(j,k,l,p,r,s) * the2DM->get1RDM_HAM(i,q)
                        - 0.5 * the3DM->get_ham_index(j,k,l,q,p,s) * the2DM->get1RDM_HAM(i,r)
                        - 0.5 * the3DM->get_ham_index(j,k,l,q,r,p) * the2DM->get1RDM_HAM(i,s) );

   const double part2 = ( the2DM->getTwoDMA_HAM(i,j,p,q) * the2DM->getTwoDMA_HAM(k,l,r,s)
                        - the2DM->getTwoDMA_HAM(i,j,p,r) * the2DM->getTwoDMA_HAM(k,l,q,s) * 0.5
                        - the2DM->getTwoDMA_HAM(i,j,p,s) * the2DM->getTwoDMA_HAM(k,l,r,q) * 0.5
                        - the2DM->getTwoDMA_HAM(i,j,r,q) * the2DM->getTwoDMA_HAM(k,l,p,s) * 0.5
                        - the2DM->getTwoDMA_HAM(i,j,s,q) * the2DM->getTwoDMA_HAM(k,l,r,p) * 0.5
                        + the2DM->getTwoDMA_HAM(i,j,r,s) * the2DM->getTwoDMA_HAM(k,l,p,q) / 3.0
                        + the2DM->getTwoDMA_HAM(i,j,r,s) * the2DM->getTwoDMA_HAM(k,l,q,p) / 6.0
                        + the2DM->getTwoDMA_HAM(i,j,s,r) * the2DM->getTwoDMA_HAM(k,l,p,q) / 6.0
                        + the2DM->getTwoDMA_HAM(i,j,s,r) * the2DM->getTwoDMA_HAM(k,l,q,p) / 3.0
                        + the2DM->getTwoDMA_HAM(i,k,p,r) * the2DM->getTwoDMA_HAM(j,l,q,s)
                        - the2DM->getTwoDMA_HAM(i,k,p,q) * the2DM->getTwoDMA_HAM(j,l,r,s) * 0.5
                        - the2DM->getTwoDMA_HAM(i,k,p,s) * the2DM->getTwoDMA_HAM(j,l,q,r) * 0.5
                        - the2DM->getTwoDMA_HAM(i,k,q,r) * the2DM->getTwoDMA_HAM(j,l,p,s) * 0.5
                        - the2DM->getTwoDMA_HAM(i,k,s,r) * the2DM->getTwoDMA_HAM(j,l,q,p) * 0.5
                        + the2DM->getTwoDMA_HAM(i,k,q,s) * the2DM->getTwoDMA_HAM(j,l,p,r) / 3.0
                        + the2DM->getTwoDMA_HAM(i,k,s,q) * the2DM->getTwoDMA_HAM(j,l,p,r) / 6.0
                        + the2DM->getTwoDMA_HAM(i,k,q,s) * the2DM->getTwoDMA_HAM(j,l,r,p) / 6.0
                        + the2DM->getTwoDMA_HAM(i,k,s,q) * the2DM->getTwoDMA_HAM(j,l,r,p) / 3.0
                        + the2DM->getTwoDMA_HAM(i,l,p,s) * the2DM->getTwoDMA_HAM(k,j,r,q)
                        - the2DM->getTwoDMA_HAM(i,l,p,r) * the2DM->getTwoDMA_HAM(k,j,s,q) * 0.5
                        - the2DM->getTwoDMA_HAM(i,l,p,q) * the2DM->getTwoDMA_HAM(k,j,r,s) * 0.5
                        - the2DM->getTwoDMA_HAM(i,l,r,s) * the2DM->getTwoDMA_HAM(k,j,p,q) * 0.5
                        - the2DM->getTwoDMA_HAM(i,l,q,s) * the2DM->getTwoDMA_HAM(k,j,r,p) * 0.5
                        + the2DM->getTwoDMA_HAM(i,l,r,q) * the2DM->getTwoDMA_HAM(k,j,p,s) / 3.0
                        + the2DM->getTwoDMA_HAM(i,l,q,r) * the2DM->getTwoDMA_HAM(k,j,p,s) / 6.0
                        + the2DM->getTwoDMA_HAM(i,l,r,q) * the2DM->getTwoDMA_HAM(k,j,s,p) / 6.0
                        + the2DM->getTwoDMA_HAM(i,l,q,r) * the2DM->getTwoDMA_HAM(k,j,s,p) / 3.0 );
                                    
   const double part3 = ( lambda2_ham(the2DM,i,j,p,q) * lambda2_ham(the2DM,k,l,r,s)
                        - lambda2_ham(the2DM,i,j,p,r) * lambda2_ham(the2DM,k,l,q,s) * 0.5
                        - lambda2_ham(the2DM,i,j,p,s) * lambda2_ham(the2DM,k,l,r,q) * 0.5
                        - lambda2_ham(the2DM,i,j,r,q) * lambda2_ham(the2DM,k,l,p,s) * 0.5
                        - lambda2_ham(the2DM,i,j,s,q) * lambda2_ham(the2DM,k,l,r,p) * 0.5
                        + lambda2_ham(the2DM,i,j,r,s) * lambda2_ham(the2DM,k,l,p,q) / 3.0
                        + lambda2_ham(the2DM,i,j,r,s) * lambda2_ham(the2DM,k,l,q,p) / 6.0
                        + lambda2_ham(the2DM,i,j,s,r) * lambda2_ham(the2DM,k,l,p,q) / 6.0
                        + lambda2_ham(the2DM,i,j,s,r) * lambda2_ham(the2DM,k,l,q,p) / 3.0
                        + lambda2_ham(the2DM,i,k,p,r) * lambda2_ham(the2DM,j,l,q,s)
                        - lambda2_ham(the2DM,i,k,p,q) * lambda2_ham(the2DM,j,l,r,s) * 0.5
                        - lambda2_ham(the2DM,i,k,p,s) * lambda2_ham(the2DM,j,l,q,r) * 0.5
                        - lambda2_ham(the2DM,i,k,q,r) * lambda2_ham(the2DM,j,l,p,s) * 0.5
                        - lambda2_ham(the2DM,i,k,s,r) * lambda2_ham(the2DM,j,l,q,p) * 0.5
                        + lambda2_ham(the2DM,i,k,q,s) * lambda2_ham(the2DM,j,l,p,r) / 3.0
                        + lambda2_ham(the2DM,i,k,s,q) * lambda2_ham(the2DM,j,l,p,r) / 6.0
                        + lambda2_ham(the2DM,i,k,q,s) * lambda2_ham(the2DM,j,l,r,p) / 6.0
                        + lambda2_ham(the2DM,i,k,s,q) * lambda2_ham(the2DM,j,l,r,p) / 3.0
                        + lambda2_ham(the2DM,i,l,p,s) * lambda2_ham(the2DM,k,j,r,q)
                        - lambda2_ham(the2DM,i,l,p,r) * lambda2_ham(the2DM,k,j,s,q) * 0.5
                        - lambda2_ham(the2DM,i,l,p,q) * lambda2_ham(the2DM,k,j,r,s) * 0.5
                        - lambda2_ham(the2DM,i,l,r,s) * lambda2_ham(the2DM,k,j,p,q) * 0.5
                        - lambda2_ham(the2DM,i,l,q,s) * lambda2_ham(the2DM,k,j,r,p) * 0.5
                        + lambda2_ham(the2DM,i,l,r,q) * lambda2_ham(the2DM,k,j,p,s) / 3.0
                        + lambda2_ham(the2DM,i,l,q,r) * lambda2_ham(the2DM,k,j,p,s) / 6.0
                        + lambda2_ham(the2DM,i,l,r,q) * lambda2_ham(the2DM,k,j,s,p) / 6.0
                        + lambda2_ham(the2DM,i,l,q,r) * lambda2_ham(the2DM,k,j,s,p) / 3.0 );

   return ( part1 - part2 + 2 * part3 );

}