1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
Copyright (C) 2013-2018 Sebastian Wouters
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <sys/time.h>
#include <unistd.h>
#include <iostream>
#include "Cumulant.h"
/*void CheMPS2::Cumulant::gamma4_fock_contract_ham_slow(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, double * fock, double * result){
struct timeval start, end;
gettimeofday(&start, NULL);
const int L = prob->gL();
for ( int cnt = 0; cnt < L*L*L*L*L*L; cnt++ ){ result[ cnt ] = 0.0; }
int * irreps = new int[ L ];
for ( int orb = 0; orb < L; orb++ ){ irreps[ orb ] = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( orb ) : orb ); }
#pragma omp parallel for schedule(dynamic)
for ( int i = 0; i < L; i++ ){
for ( int j = i; j < L; j++ ){
for ( int k = i; k < L; k++ ){
const int irrep_ijk = Irreps::directProd( Irreps::directProd( irreps[ i ], irreps[ j ] ), irreps[ k ] );
for ( int p = i; p < L; p++ ){
for ( int q = i; q < L; q++ ){
for ( int r = q; r < L; r++ ){
const int irrep_pqr = Irreps::directProd( Irreps::directProd( irreps[ p ], irreps[ q ] ), irreps[ r ] );
if ( irrep_ijk == irrep_pqr ){
double value = 0.0;
for ( int l = 0; l < L; l++ ){
for ( int s = 0; s < L; s++ ){
if ( irreps[ l ] == irreps[ s ] ){
value += fock[ l + L * s ] * gamma4_ham(prob, the3DM, the2DM, i, j, k, l, p, q, r, s);
}
}
}
result[ i + L * ( j + L * ( k + L * ( p + L * ( q + L * r )))) ] = value;
result[ i + L * ( k + L * ( j + L * ( p + L * ( r + L * q )))) ] = value;
result[ j + L * ( i + L * ( k + L * ( q + L * ( p + L * r )))) ] = value;
result[ k + L * ( i + L * ( j + L * ( r + L * ( p + L * q )))) ] = value;
result[ j + L * ( k + L * ( i + L * ( q + L * ( r + L * p )))) ] = value;
result[ k + L * ( j + L * ( i + L * ( r + L * ( q + L * p )))) ] = value;
result[ p + L * ( q + L * ( r + L * ( i + L * ( j + L * k )))) ] = value;
result[ p + L * ( r + L * ( q + L * ( i + L * ( k + L * j )))) ] = value;
result[ q + L * ( p + L * ( r + L * ( j + L * ( i + L * k )))) ] = value;
result[ r + L * ( p + L * ( q + L * ( k + L * ( i + L * j )))) ] = value;
result[ q + L * ( r + L * ( p + L * ( j + L * ( k + L * i )))) ] = value;
result[ r + L * ( q + L * ( p + L * ( k + L * ( j + L * i )))) ] = value;
}
}
}
}
}
}
}
delete [] irreps;
gettimeofday(&end, NULL);
const double elapsed = (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
std::cout << "Cumulant :: Contraction of cu(4)-4RDM with CASPT2 Fock operator took " << elapsed << " seconds." << std::endl;
}*/
void CheMPS2::Cumulant::gamma4_fock_contract_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, double * fock, double * result){
struct timeval start, end;
gettimeofday(&start, NULL);
const int L = prob->gL();
/* Clear result */
for ( int cnt = 0; cnt < L*L*L*L*L*L; cnt++ ){ result[ cnt ] = 0.0; }
/* Construct an array with the orbital irreps in Hamiltonian indices */
int * irreps = new int[ L ];
for ( int orb = 0; orb < L; orb++ ){ irreps[ orb ] = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( orb ) : orb ); }
/* Helper arrays with partial (mult) or full (dot) contractions of objects with the CASPT2 Fock operator */
double * G3dotF = new double[ L*L*L*L ];
double * lambda2 = new double[ L*L*L*L ];
double * G2multF = new double[ L*L*L*L ];
double * L2multF = new double[ L*L*L*L ];
double * gamma1 = new double[ L*L ];
double * G1multF = new double[ L*L ];
double * G2dotF = new double[ L*L ];
double * L2dotF = new double[ L*L ];
for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ G3dotF[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ lambda2[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ G2multF[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L*L*L; cnt++ ){ L2multF[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L; cnt++ ){ gamma1[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L; cnt++ ){ G1multF[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L; cnt++ ){ G2dotF[ cnt ] = 0.0; }
for ( int cnt = 0; cnt < L*L; cnt++ ){ L2dotF[ cnt ] = 0.0; }
double G1dotF = 0.0;
/* Fill gamma1 */
for ( int i = 0; i < L; i++ ){
for ( int j = i; j < L; j++ ){
const double value = the2DM->get1RDM_HAM( i, j );
gamma1[ i + L * j ] = value;
gamma1[ j + L * i ] = value;
}
}
/* Build G3dotF[i,j,p,q] = sum_[l,s] Gamma3[i,j,l,p,q,s] F[l,s]
Build lambda2[i,j,p,q] = Lambda2[i,j,p,q] */
for ( int i = 0; i < L; i++ ){
for ( int j = i; j < L; j++ ){
const int irrep_ij = Irreps::directProd( irreps[ i ], irreps[ j ] );
for ( int p = i; p < L; p++ ){
for ( int q = i; q < L; q++ ){
const int irrep_pq = Irreps::directProd( irreps[ p ], irreps[ q ] );
if ( irrep_ij == irrep_pq ){
{ // sum_[l,s] Gamma3[i,j,l,p,q,s] F[l,s]
double value = 0.0;
for ( int l = 0; l < L; l++ ){
for ( int s = 0; s < L; s++ ){
if ( irreps[ l ] == irreps[ s ] ){
value += the3DM->get_ham_index(i,j,l,p,q,s) * fock[ l + L * s ];
}
}
}
G3dotF[ i + L * ( j + L * ( p + L * q )) ] = value;
G3dotF[ j + L * ( i + L * ( q + L * p )) ] = value;
G3dotF[ p + L * ( q + L * ( i + L * j )) ] = value;
G3dotF[ q + L * ( p + L * ( j + L * i )) ] = value;
}
{ // Lambda2[i,j,p,q]
const double val_lambda = the2DM->getTwoDMA_HAM( i, j, p, q )
- gamma1[ i + L * p ] * gamma1[ j + L * q ]
+ gamma1[ i + L * q ] * gamma1[ j + L * p ] * 0.5;
lambda2[ i + L * ( j + L * ( p + L * q )) ] = val_lambda;
lambda2[ j + L * ( i + L * ( q + L * p )) ] = val_lambda;
lambda2[ p + L * ( q + L * ( i + L * j )) ] = val_lambda;
lambda2[ q + L * ( p + L * ( j + L * i )) ] = val_lambda;
}
}
}
}
}
}
/* Build G1multF[i,j] = sum_[p] Gamma1[i,p] F[p,j]
Build G1dotF = sum_[i,j] Gamma1[i,j] F[j,i] */
for ( int i = 0; i < L; i++ ){
for ( int j = 0; j < L; j++ ){
if ( irreps[ i ] == irreps[ j ] ){
double value = 0.0;
for ( int p = 0; p < L; p++ ){
if ( irreps[ j ] == irreps[ p ] ){
value += gamma1[ i + L * p ] * fock[ p + L * j ];
}
}
G1multF[ i + L * j ] = value;
}
}
G1dotF += G1multF[ i * ( L + 1 ) ];
}
/* Build G2dotF[i,j] = sum_[p,q] Gamma2[i,p,j,q] F[p,q]
Build L2dotF[i,j] = sum_[p,q] Lambda2[i,p,j,q] F[p,q] */
for ( int i = 0; i < L; i++ ){
for ( int j = i; j < L; j++ ){
if ( irreps[ i ] == irreps[ j ] ){
double val_gamma = 0.0;
double val_lambda = 0.0;
for ( int p = 0; p < L; p++ ){
for ( int q = 0; q < L; q++ ){
if ( irreps[ p ] == irreps[ q ] ){
val_gamma += fock[ p + L * q ] * the2DM->getTwoDMA_HAM( i, p, j, q );
val_lambda += fock[ p + L * q ] * lambda2[ i + L * ( p + L * ( j + L * q )) ];
}
}
}
G2dotF[ i + L * j ] = val_gamma;
G2dotF[ j + L * i ] = val_gamma;
L2dotF[ i + L * j ] = val_lambda;
L2dotF[ j + L * i ] = val_lambda;
}
}
}
/* Build G2multF[i,s,j,k] = sum_[l] Gamma2[i,l,j,k] F[l,s]
Build L2multF[i,s,j,k] = sum_[l] Lambda2[i,l,j,k] F[l,s] */
for ( int i = 0; i < L; i++ ){
for ( int j = 0; j < L; j++ ){
const int irrep_ij = Irreps::directProd( irreps[ i ], irreps[ j ] );
for ( int k = 0; k < L; k++ ){
for ( int s = 0; s < L; s++ ){
const int irrep_ks = Irreps::directProd( irreps[ k ], irreps[ s ] );
if ( irrep_ij == irrep_ks ){
double val_gamma = 0.0;
double val_lambda = 0.0;
for ( int l = 0; l < L; l++ ){
if ( irreps[ l ] == irreps[ s ] ){
val_gamma += fock[ l + L * s ] * the2DM->getTwoDMA_HAM( i, l, j, k );
val_lambda += fock[ l + L * s ] * lambda2[ i + L * ( l + L * ( j + L * k ) ) ];
}
}
G2multF[ i + L * ( s + L * ( j + L * k ) ) ] = val_gamma;
L2multF[ i + L * ( s + L * ( j + L * k ) ) ] = val_lambda;
}
}
}
}
}
/* Fill result */
#pragma omp parallel for schedule(dynamic)
for ( int i = 0; i < L; i++ ){
for ( int j = i; j < L; j++ ){
for ( int k = i; k < L; k++ ){
const int irrep_ijk = Irreps::directProd( Irreps::directProd( irreps[ i ], irreps[ j ] ), irreps[ k ] );
for ( int p = i; p < L; p++ ){
for ( int q = i; q < L; q++ ){
for ( int r = q; r < L; r++ ){
const int irrep_pqr = Irreps::directProd( Irreps::directProd( irreps[ p ], irreps[ q ] ), irreps[ r ] );
if ( irrep_ijk == irrep_pqr ){
double dm3_contribution = 0.0;
double gamma2_part1 = 0.0;
double gamma2_part2 = 0.0;
double lambda2_part1 = 0.0;
double lambda2_part2 = 0.0;
for ( int ls = 0; ls < L; ls++ ){
dm3_contribution += ( the3DM->get_ham_index( ls, j, k, p, q, r ) * G1multF[ i + L * ls ]
+ the3DM->get_ham_index( i, ls, k, p, q, r ) * G1multF[ j + L * ls ]
+ the3DM->get_ham_index( i, j, ls, p, q, r ) * G1multF[ k + L * ls ]
+ the3DM->get_ham_index( i, j, k, ls, q, r ) * G1multF[ p + L * ls ]
+ the3DM->get_ham_index( i, j, k, p, ls, r ) * G1multF[ q + L * ls ]
+ the3DM->get_ham_index( i, j, k, p, q, ls ) * G1multF[ r + L * ls ] );
gamma2_part1 += ( the2DM->getTwoDMA_HAM( i, j, p, ls ) * G2multF[ k + L * ( ls + L * ( r + L * q )) ]
+ the2DM->getTwoDMA_HAM( i, j, ls, q ) * G2multF[ k + L * ( ls + L * ( r + L * p )) ]
+ the2DM->getTwoDMA_HAM( i, k, p, ls ) * G2multF[ j + L * ( ls + L * ( q + L * r )) ]
+ the2DM->getTwoDMA_HAM( i, k, ls, r ) * G2multF[ j + L * ( ls + L * ( q + L * p )) ]
+ the2DM->getTwoDMA_HAM( k, j, ls, q ) * G2multF[ i + L * ( ls + L * ( p + L * r )) ]
+ the2DM->getTwoDMA_HAM( k, j, r, ls ) * G2multF[ i + L * ( ls + L * ( p + L * q )) ] );
gamma2_part2 += ( the2DM->getTwoDMA_HAM( i, j, r, ls ) * ( G2multF[ k + L * ( ls + L * ( p + L * q )) ]
+ 0.5 * G2multF[ k + L * ( ls + L * ( q + L * p )) ] )
+ the2DM->getTwoDMA_HAM( i, j, ls, r ) * ( G2multF[ k + L * ( ls + L * ( q + L * p )) ]
+ 0.5 * G2multF[ k + L * ( ls + L * ( p + L * q )) ] )
+ the2DM->getTwoDMA_HAM( i, k, q, ls ) * ( G2multF[ j + L * ( ls + L * ( p + L * r )) ]
+ 0.5 * G2multF[ j + L * ( ls + L * ( r + L * p )) ] )
+ the2DM->getTwoDMA_HAM( i, k, ls, q ) * ( G2multF[ j + L * ( ls + L * ( r + L * p )) ]
+ 0.5 * G2multF[ j + L * ( ls + L * ( p + L * r )) ] )
+ the2DM->getTwoDMA_HAM( k, j, p, ls ) * ( G2multF[ i + L * ( ls + L * ( r + L * q )) ]
+ 0.5 * G2multF[ i + L * ( ls + L * ( q + L * r )) ] )
+ the2DM->getTwoDMA_HAM( k, j, ls, p ) * ( G2multF[ i + L * ( ls + L * ( q + L * r )) ]
+ 0.5 * G2multF[ i + L * ( ls + L * ( r + L * q )) ] ) );
lambda2_part1 += ( lambda2[ i + L * ( j + L * ( p + L * ls )) ] * L2multF[ k + L * ( ls + L * ( r + L * q )) ]
+ lambda2[ i + L * ( j + L * ( ls + L * q )) ] * L2multF[ k + L * ( ls + L * ( r + L * p )) ]
+ lambda2[ i + L * ( k + L * ( p + L * ls )) ] * L2multF[ j + L * ( ls + L * ( q + L * r )) ]
+ lambda2[ i + L * ( k + L * ( ls + L * r )) ] * L2multF[ j + L * ( ls + L * ( q + L * p )) ]
+ lambda2[ k + L * ( j + L * ( ls + L * q )) ] * L2multF[ i + L * ( ls + L * ( p + L * r )) ]
+ lambda2[ k + L * ( j + L * ( r + L * ls )) ] * L2multF[ i + L * ( ls + L * ( p + L * q )) ] );
lambda2_part2 += ( lambda2[ i + L * ( j + L * ( r + L * ls )) ] * ( L2multF[ k + L * ( ls + L * ( p + L * q )) ]
+ 0.5 * L2multF[ k + L * ( ls + L * ( q + L * p )) ] )
+ lambda2[ i + L * ( j + L * ( ls + L * r )) ] * ( L2multF[ k + L * ( ls + L * ( q + L * p )) ]
+ 0.5 * L2multF[ k + L * ( ls + L * ( p + L * q )) ] )
+ lambda2[ i + L * ( k + L * ( q + L * ls )) ] * ( L2multF[ j + L * ( ls + L * ( p + L * r )) ]
+ 0.5 * L2multF[ j + L * ( ls + L * ( r + L * p )) ] )
+ lambda2[ i + L * ( k + L * ( ls + L * q )) ] * ( L2multF[ j + L * ( ls + L * ( r + L * p )) ]
+ 0.5 * L2multF[ j + L * ( ls + L * ( p + L * r )) ] )
+ lambda2[ k + L * ( j + L * ( p + L * ls )) ] * ( L2multF[ i + L * ( ls + L * ( r + L * q )) ]
+ 0.5 * L2multF[ i + L * ( ls + L * ( q + L * r )) ] )
+ lambda2[ k + L * ( j + L * ( ls + L * p )) ] * ( L2multF[ i + L * ( ls + L * ( q + L * r )) ]
+ 0.5 * L2multF[ i + L * ( ls + L * ( r + L * q )) ] ) );
}
const double contracted_value = ( the3DM->get_ham_index( i, j, k, p, q, r ) * G1dotF
+ G3dotF[ i + L * ( j + L * ( p + L * q )) ] * gamma1[ k + L * r ]
- 0.5 * G3dotF[ i + L * ( j + L * ( r + L * q )) ] * gamma1[ k + L * p ]
- 0.5 * G3dotF[ i + L * ( j + L * ( p + L * r )) ] * gamma1[ k + L * q ]
+ G3dotF[ i + L * ( k + L * ( p + L * r )) ] * gamma1[ j + L * q ]
- 0.5 * G3dotF[ i + L * ( k + L * ( q + L * r )) ] * gamma1[ j + L * p ]
- 0.5 * G3dotF[ i + L * ( k + L * ( p + L * q )) ] * gamma1[ j + L * r ]
+ G3dotF[ j + L * ( k + L * ( q + L * r )) ] * gamma1[ i + L * p ]
- 0.5 * G3dotF[ j + L * ( k + L * ( p + L * r )) ] * gamma1[ i + L * q ]
- 0.5 * G3dotF[ j + L * ( k + L * ( q + L * p )) ] * gamma1[ i + L * r ]
- 0.5 * dm3_contribution
- the2DM->getTwoDMA_HAM( i, j, p, q ) * G2dotF[ k + L * r ]
+ 0.5 * the2DM->getTwoDMA_HAM( i, j, p, r ) * G2dotF[ k + L * q ]
+ 0.5 * the2DM->getTwoDMA_HAM( i, j, r, q ) * G2dotF[ k + L * p ]
- the2DM->getTwoDMA_HAM( i, k, p, r ) * G2dotF[ j + L * q ]
+ 0.5 * the2DM->getTwoDMA_HAM( i, k, p, q ) * G2dotF[ j + L * r ]
+ 0.5 * the2DM->getTwoDMA_HAM( i, k, q, r ) * G2dotF[ j + L * p ]
- the2DM->getTwoDMA_HAM( k, j, r, q ) * G2dotF[ i + L * p ]
+ 0.5 * the2DM->getTwoDMA_HAM( k, j, p, q ) * G2dotF[ i + L * r ]
+ 0.5 * the2DM->getTwoDMA_HAM( k, j, r, p ) * G2dotF[ i + L * q ]
+ 0.5 * gamma2_part1
- gamma2_part2 / 3.0
+ 2 * lambda2[ i + L * ( j + L * ( p + L * q )) ] * L2dotF[ k + L * r ]
- lambda2[ i + L * ( j + L * ( p + L * r )) ] * L2dotF[ k + L * q ]
- lambda2[ i + L * ( j + L * ( r + L * q )) ] * L2dotF[ k + L * p ]
+ 2 * lambda2[ i + L * ( k + L * ( p + L * r )) ] * L2dotF[ j + L * q ]
- lambda2[ i + L * ( k + L * ( p + L * q )) ] * L2dotF[ j + L * r ]
- lambda2[ i + L * ( k + L * ( q + L * r )) ] * L2dotF[ j + L * p ]
+ 2 * lambda2[ k + L * ( j + L * ( r + L * q )) ] * L2dotF[ i + L * p ]
- lambda2[ k + L * ( j + L * ( p + L * q )) ] * L2dotF[ i + L * r ]
- lambda2[ k + L * ( j + L * ( r + L * p )) ] * L2dotF[ i + L * q ]
- lambda2_part1
+ lambda2_part2 / 1.5 );
result[ i + L * ( j + L * ( k + L * ( p + L * ( q + L * r )))) ] = contracted_value;
result[ i + L * ( k + L * ( j + L * ( p + L * ( r + L * q )))) ] = contracted_value;
result[ j + L * ( i + L * ( k + L * ( q + L * ( p + L * r )))) ] = contracted_value;
result[ k + L * ( i + L * ( j + L * ( r + L * ( p + L * q )))) ] = contracted_value;
result[ j + L * ( k + L * ( i + L * ( q + L * ( r + L * p )))) ] = contracted_value;
result[ k + L * ( j + L * ( i + L * ( r + L * ( q + L * p )))) ] = contracted_value;
result[ p + L * ( q + L * ( r + L * ( i + L * ( j + L * k )))) ] = contracted_value;
result[ p + L * ( r + L * ( q + L * ( i + L * ( k + L * j )))) ] = contracted_value;
result[ q + L * ( p + L * ( r + L * ( j + L * ( i + L * k )))) ] = contracted_value;
result[ r + L * ( p + L * ( q + L * ( k + L * ( i + L * j )))) ] = contracted_value;
result[ q + L * ( r + L * ( p + L * ( j + L * ( k + L * i )))) ] = contracted_value;
result[ r + L * ( q + L * ( p + L * ( k + L * ( j + L * i )))) ] = contracted_value;
}
}
}
}
}
}
}
delete [] G3dotF;
delete [] lambda2;
delete [] G2multF;
delete [] L2multF;
delete [] gamma1;
delete [] G1multF;
delete [] G2dotF;
delete [] L2dotF;
delete [] irreps;
gettimeofday(&end, NULL);
const double elapsed = (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);
std::cout << "Cumulant :: Contraction of cu(4)-4RDM with CASPT2 Fock operator took " << elapsed << " seconds." << std::endl;
}
double CheMPS2::Cumulant::lambda2_ham(const TwoDM * the2DM, const int i, const int j, const int p, const int q){
const double value = the2DM->getTwoDMA_HAM( i, j, p, q )
- the2DM->get1RDM_HAM( i, p ) * the2DM->get1RDM_HAM( j, q )
+ the2DM->get1RDM_HAM( i, q ) * the2DM->get1RDM_HAM( j, p ) * 0.5;
return value;
}
double CheMPS2::Cumulant::gamma4_ham(const Problem * prob, const ThreeDM * the3DM, const TwoDM * the2DM, const int i, const int j, const int k, const int l,
const int p, const int q, const int r, const int s){
//Prob assumes you use DMRG orbs... f1 converts HAM orbs to DMRG orbs
const int irrep_i = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( i ) : i );
const int irrep_j = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( j ) : j );
const int irrep_k = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( k ) : k );
const int irrep_l = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( l ) : l );
const int irrep_p = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( p ) : p );
const int irrep_q = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( q ) : q );
const int irrep_r = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( r ) : r );
const int irrep_s = prob->gIrrep(( prob->gReorder() ) ? prob->gf1( s ) : s );
const int irrep_ij = Irreps::directProd( irrep_i, irrep_j );
const int irrep_kl = Irreps::directProd( irrep_k, irrep_l );
const int irrep_pq = Irreps::directProd( irrep_p, irrep_q );
const int irrep_rs = Irreps::directProd( irrep_r, irrep_s );
if ( Irreps::directProd( irrep_ij, irrep_kl ) != Irreps::directProd( irrep_pq, irrep_rs ) ){ return 0.0; }
const double part1 = ( the3DM->get_ham_index(i,j,k,p,q,r) * the2DM->get1RDM_HAM(l,s)
- 0.5 * the3DM->get_ham_index(i,j,k,s,q,r) * the2DM->get1RDM_HAM(l,p)
- 0.5 * the3DM->get_ham_index(i,j,k,p,s,r) * the2DM->get1RDM_HAM(l,q)
- 0.5 * the3DM->get_ham_index(i,j,k,p,q,s) * the2DM->get1RDM_HAM(l,r)
+ the3DM->get_ham_index(i,j,l,p,q,s) * the2DM->get1RDM_HAM(k,r)
- 0.5 * the3DM->get_ham_index(i,j,l,r,q,s) * the2DM->get1RDM_HAM(k,p)
- 0.5 * the3DM->get_ham_index(i,j,l,p,r,s) * the2DM->get1RDM_HAM(k,q)
- 0.5 * the3DM->get_ham_index(i,j,l,p,q,r) * the2DM->get1RDM_HAM(k,s)
+ the3DM->get_ham_index(i,k,l,p,r,s) * the2DM->get1RDM_HAM(j,q)
- 0.5 * the3DM->get_ham_index(i,k,l,q,r,s) * the2DM->get1RDM_HAM(j,p)
- 0.5 * the3DM->get_ham_index(i,k,l,p,q,s) * the2DM->get1RDM_HAM(j,r)
- 0.5 * the3DM->get_ham_index(i,k,l,p,r,q) * the2DM->get1RDM_HAM(j,s)
+ the3DM->get_ham_index(j,k,l,q,r,s) * the2DM->get1RDM_HAM(i,p)
- 0.5 * the3DM->get_ham_index(j,k,l,p,r,s) * the2DM->get1RDM_HAM(i,q)
- 0.5 * the3DM->get_ham_index(j,k,l,q,p,s) * the2DM->get1RDM_HAM(i,r)
- 0.5 * the3DM->get_ham_index(j,k,l,q,r,p) * the2DM->get1RDM_HAM(i,s) );
const double part2 = ( the2DM->getTwoDMA_HAM(i,j,p,q) * the2DM->getTwoDMA_HAM(k,l,r,s)
- the2DM->getTwoDMA_HAM(i,j,p,r) * the2DM->getTwoDMA_HAM(k,l,q,s) * 0.5
- the2DM->getTwoDMA_HAM(i,j,p,s) * the2DM->getTwoDMA_HAM(k,l,r,q) * 0.5
- the2DM->getTwoDMA_HAM(i,j,r,q) * the2DM->getTwoDMA_HAM(k,l,p,s) * 0.5
- the2DM->getTwoDMA_HAM(i,j,s,q) * the2DM->getTwoDMA_HAM(k,l,r,p) * 0.5
+ the2DM->getTwoDMA_HAM(i,j,r,s) * the2DM->getTwoDMA_HAM(k,l,p,q) / 3.0
+ the2DM->getTwoDMA_HAM(i,j,r,s) * the2DM->getTwoDMA_HAM(k,l,q,p) / 6.0
+ the2DM->getTwoDMA_HAM(i,j,s,r) * the2DM->getTwoDMA_HAM(k,l,p,q) / 6.0
+ the2DM->getTwoDMA_HAM(i,j,s,r) * the2DM->getTwoDMA_HAM(k,l,q,p) / 3.0
+ the2DM->getTwoDMA_HAM(i,k,p,r) * the2DM->getTwoDMA_HAM(j,l,q,s)
- the2DM->getTwoDMA_HAM(i,k,p,q) * the2DM->getTwoDMA_HAM(j,l,r,s) * 0.5
- the2DM->getTwoDMA_HAM(i,k,p,s) * the2DM->getTwoDMA_HAM(j,l,q,r) * 0.5
- the2DM->getTwoDMA_HAM(i,k,q,r) * the2DM->getTwoDMA_HAM(j,l,p,s) * 0.5
- the2DM->getTwoDMA_HAM(i,k,s,r) * the2DM->getTwoDMA_HAM(j,l,q,p) * 0.5
+ the2DM->getTwoDMA_HAM(i,k,q,s) * the2DM->getTwoDMA_HAM(j,l,p,r) / 3.0
+ the2DM->getTwoDMA_HAM(i,k,s,q) * the2DM->getTwoDMA_HAM(j,l,p,r) / 6.0
+ the2DM->getTwoDMA_HAM(i,k,q,s) * the2DM->getTwoDMA_HAM(j,l,r,p) / 6.0
+ the2DM->getTwoDMA_HAM(i,k,s,q) * the2DM->getTwoDMA_HAM(j,l,r,p) / 3.0
+ the2DM->getTwoDMA_HAM(i,l,p,s) * the2DM->getTwoDMA_HAM(k,j,r,q)
- the2DM->getTwoDMA_HAM(i,l,p,r) * the2DM->getTwoDMA_HAM(k,j,s,q) * 0.5
- the2DM->getTwoDMA_HAM(i,l,p,q) * the2DM->getTwoDMA_HAM(k,j,r,s) * 0.5
- the2DM->getTwoDMA_HAM(i,l,r,s) * the2DM->getTwoDMA_HAM(k,j,p,q) * 0.5
- the2DM->getTwoDMA_HAM(i,l,q,s) * the2DM->getTwoDMA_HAM(k,j,r,p) * 0.5
+ the2DM->getTwoDMA_HAM(i,l,r,q) * the2DM->getTwoDMA_HAM(k,j,p,s) / 3.0
+ the2DM->getTwoDMA_HAM(i,l,q,r) * the2DM->getTwoDMA_HAM(k,j,p,s) / 6.0
+ the2DM->getTwoDMA_HAM(i,l,r,q) * the2DM->getTwoDMA_HAM(k,j,s,p) / 6.0
+ the2DM->getTwoDMA_HAM(i,l,q,r) * the2DM->getTwoDMA_HAM(k,j,s,p) / 3.0 );
const double part3 = ( lambda2_ham(the2DM,i,j,p,q) * lambda2_ham(the2DM,k,l,r,s)
- lambda2_ham(the2DM,i,j,p,r) * lambda2_ham(the2DM,k,l,q,s) * 0.5
- lambda2_ham(the2DM,i,j,p,s) * lambda2_ham(the2DM,k,l,r,q) * 0.5
- lambda2_ham(the2DM,i,j,r,q) * lambda2_ham(the2DM,k,l,p,s) * 0.5
- lambda2_ham(the2DM,i,j,s,q) * lambda2_ham(the2DM,k,l,r,p) * 0.5
+ lambda2_ham(the2DM,i,j,r,s) * lambda2_ham(the2DM,k,l,p,q) / 3.0
+ lambda2_ham(the2DM,i,j,r,s) * lambda2_ham(the2DM,k,l,q,p) / 6.0
+ lambda2_ham(the2DM,i,j,s,r) * lambda2_ham(the2DM,k,l,p,q) / 6.0
+ lambda2_ham(the2DM,i,j,s,r) * lambda2_ham(the2DM,k,l,q,p) / 3.0
+ lambda2_ham(the2DM,i,k,p,r) * lambda2_ham(the2DM,j,l,q,s)
- lambda2_ham(the2DM,i,k,p,q) * lambda2_ham(the2DM,j,l,r,s) * 0.5
- lambda2_ham(the2DM,i,k,p,s) * lambda2_ham(the2DM,j,l,q,r) * 0.5
- lambda2_ham(the2DM,i,k,q,r) * lambda2_ham(the2DM,j,l,p,s) * 0.5
- lambda2_ham(the2DM,i,k,s,r) * lambda2_ham(the2DM,j,l,q,p) * 0.5
+ lambda2_ham(the2DM,i,k,q,s) * lambda2_ham(the2DM,j,l,p,r) / 3.0
+ lambda2_ham(the2DM,i,k,s,q) * lambda2_ham(the2DM,j,l,p,r) / 6.0
+ lambda2_ham(the2DM,i,k,q,s) * lambda2_ham(the2DM,j,l,r,p) / 6.0
+ lambda2_ham(the2DM,i,k,s,q) * lambda2_ham(the2DM,j,l,r,p) / 3.0
+ lambda2_ham(the2DM,i,l,p,s) * lambda2_ham(the2DM,k,j,r,q)
- lambda2_ham(the2DM,i,l,p,r) * lambda2_ham(the2DM,k,j,s,q) * 0.5
- lambda2_ham(the2DM,i,l,p,q) * lambda2_ham(the2DM,k,j,r,s) * 0.5
- lambda2_ham(the2DM,i,l,r,s) * lambda2_ham(the2DM,k,j,p,q) * 0.5
- lambda2_ham(the2DM,i,l,q,s) * lambda2_ham(the2DM,k,j,r,p) * 0.5
+ lambda2_ham(the2DM,i,l,r,q) * lambda2_ham(the2DM,k,j,p,s) / 3.0
+ lambda2_ham(the2DM,i,l,q,r) * lambda2_ham(the2DM,k,j,p,s) / 6.0
+ lambda2_ham(the2DM,i,l,r,q) * lambda2_ham(the2DM,k,j,s,p) / 6.0
+ lambda2_ham(the2DM,i,l,q,r) * lambda2_ham(the2DM,k,j,s,p) / 3.0 );
return ( part1 - part2 + 2 * part3 );
}
|