File: DMRGSCFintegrals.cpp

package info (click to toggle)
chemps2 1.8.12-5
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,432 kB
  • sloc: cpp: 38,521; python: 1,116; f90: 215; makefile: 45; sh: 23
file content (283 lines) | stat: -rw-r--r-- 12,640 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*
   CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry
   Copyright (C) 2013-2018 Sebastian Wouters

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/

#include <assert.h>

#include "DMRGSCFintegrals.h"

CheMPS2::DMRGSCFintegrals::DMRGSCFintegrals(DMRGSCFindices * iHandler){

   numberOfIrreps = iHandler->getNirreps();
   NCORE    = new int[ numberOfIrreps ];
   NVIRTUAL = new int[ numberOfIrreps ];
   NTOTAL   = new int[ numberOfIrreps ];
   
   for (int irrep = 0; irrep < numberOfIrreps; irrep++){
      NCORE[    irrep ] = iHandler->getNOCC(  irrep ) + iHandler->getNDMRG( irrep );
      NVIRTUAL[ irrep ] = iHandler->getNVIRT( irrep );
      NTOTAL[   irrep ] = iHandler->getNORB(  irrep );
   }

   coulomb_size   = calcNumCoulombElements(  true );
   exchange_size  = calcNumExchangeElements( true );
   coulomb_array  = new double[  coulomb_size ];
   exchange_array = new double[ exchange_size ];
   
}

long long CheMPS2::DMRGSCFintegrals::calcNumCoulombElements(const bool allocate){

   // The object sizes
   long long theSize = 0;
   
   if (allocate){ coulomb_ptr = new long long***[ numberOfIrreps ]; }
   for (int I_cc = 0; I_cc < numberOfIrreps; I_cc++){ // Loop the irrep I_cc = I_c1 x I_c2 = I_a1 x I_a2
      if (allocate){ coulomb_ptr[ I_cc ] = new long long**[ numberOfIrreps ]; }
      for (int I_c1 = 0; I_c1 < numberOfIrreps; I_c1++){
         const int I_c2 = Irreps::directProd( I_cc , I_c1 );
         if ( ( NCORE[ I_c1 ] > 0 ) && ( NCORE[ I_c2 ] > 0 ) && ( I_c1 <= I_c2 ) ){
            if (allocate){ coulomb_ptr[ I_cc ][ I_c1 ] = new long long*[ numberOfIrreps ]; }
            for (int I_a1 = 0; I_a1 < numberOfIrreps; I_a1++){
               const int I_a2 = Irreps::directProd( I_cc, I_a1 );
               if ( ( NTOTAL[ I_a1 ] > 0 ) && ( NTOTAL[ I_a2 ] > 0 ) && ( I_a1 <= I_a2 ) ){
                  if ( I_cc == 0 ){ // I_c1 == I_c2 and I_a1 == I_a2
                     if (allocate){
                        const long long coretriangle = ( NCORE[  I_c1 ] * ( NCORE[  I_c1 ] + 1 ) ) / 2;
                        const long long  alltriangle = ( NTOTAL[ I_a1 ] * ( NTOTAL[ I_a1 ] + 1 ) ) / 2;
                        coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ] = new long long[ coretriangle ];
                        for (int combinedcore = 0; combinedcore < coretriangle; combinedcore++){
                           coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ][ combinedcore ] = theSize;
                           theSize += alltriangle;
                        }
                     } else { delete [] coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ]; }
                  } else { // I_c1 < I_c2 and I_a1 < I_a2
                     if (allocate){
                        const long long coresquare = NCORE[  I_c1 ] * NCORE[  I_c2 ];
                        const long long  allsquare = NTOTAL[ I_a1 ] * NTOTAL[ I_a2 ];
                        coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ] = new long long[ coresquare ];
                        for (int combinedcore = 0; combinedcore < coresquare; combinedcore++){
                           coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ][ combinedcore ] = theSize;
                           theSize += allsquare;
                        }
                     } else { delete [] coulomb_ptr[ I_cc ][ I_c1 ][ I_a1 ]; }
                  }
               }
            }
            if (!allocate){ delete [] coulomb_ptr[ I_cc ][ I_c1 ]; }
         }
      }
      if (!allocate){ delete [] coulomb_ptr[ I_cc ]; }
   }
   if (!allocate){ delete [] coulomb_ptr; }
   
   return theSize;
   
}

long long CheMPS2::DMRGSCFintegrals::calcNumExchangeElements(const bool allocate){

   // The object sizes
   long long theSize = 0;
   
   if (allocate){ exchange_ptr = new long long***[ numberOfIrreps ]; }
   for (int I_cc = 0; I_cc < numberOfIrreps; I_cc++){ // Loop the irrep I_cc = I_c1 x I_c2 = I_v1 x I_v2
      if (allocate){ exchange_ptr[ I_cc ] = new long long**[ numberOfIrreps ]; }
      for (int I_c1 = 0; I_c1 < numberOfIrreps; I_c1++){
         const int I_c2 = Irreps::directProd( I_cc , I_c1 );
         if ( ( NCORE[ I_c1 ] > 0 ) && ( NCORE[ I_c2 ] > 0 ) && ( I_c1 <= I_c2 ) ){
            if (allocate){ exchange_ptr[ I_cc ][ I_c1 ] = new long long*[ numberOfIrreps ]; }
            for (int I_v1 = 0; I_v1 < numberOfIrreps; I_v1++){
               const int I_v2 = Irreps::directProd( I_cc, I_v1 );
               if ( ( NTOTAL[ I_v1 ] > 0 ) && ( NTOTAL[ I_v2 ] > 0 ) ){ // Here no I_v1 <= I_v2 !!
                  const long long virtualsquare = NVIRTUAL[ I_v1 ] * NVIRTUAL[ I_v2 ];
                  if ( I_cc == 0 ){ // I_c1 == I_c2 and I_v1 == I_v2
                     if (allocate){
                        const long long coretriangle = ( NCORE[ I_c1 ] * ( NCORE[ I_c1 ] + 1 ) ) / 2;
                        exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ] = new long long[ coretriangle ];
                        for (int combinedcore = 0; combinedcore < coretriangle; combinedcore++){
                           exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ][ combinedcore ] = theSize;
                           theSize += virtualsquare;
                        }
                     } else { delete [] exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ]; }
                  } else { // I_c1 < I_c2 and I_v1 != I_v2
                     if (allocate){
                        const long long coresquare = NCORE[ I_c1 ] * NCORE[ I_c2 ];
                        exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ] = new long long[ coresquare ];
                        for (int combinedcore = 0; combinedcore < coresquare; combinedcore++){
                           exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ][ combinedcore ] = theSize;
                           theSize += virtualsquare;
                        }
                     } else { delete [] exchange_ptr[ I_cc ][ I_c1 ][ I_v1 ]; }
                  }
               }
            }
            if (!allocate){ delete [] exchange_ptr[ I_cc ][ I_c1 ]; }
         }
      }
      if (!allocate){ delete [] exchange_ptr[ I_cc ]; }
   }
   if (!allocate){ delete [] exchange_ptr; }
   
   return theSize;
   
}

CheMPS2::DMRGSCFintegrals::~DMRGSCFintegrals(){

   delete [] coulomb_array;
   delete [] exchange_array;

   calcNumCoulombElements(  false );
   calcNumExchangeElements( false );

   delete [] NCORE;
   delete [] NVIRTUAL;
   delete [] NTOTAL;
   
}

void CheMPS2::DMRGSCFintegrals::clear(){

   for (long long counter = 0; counter < coulomb_size;  counter++){  coulomb_array[ counter ] = 0.0; }
   for (long long counter = 0; counter < exchange_size; counter++){ exchange_array[ counter ] = 0.0; }

}

long long CheMPS2::DMRGSCFintegrals::get_coulomb_ptr( const int Ic1, const int Ic2, const int Ia1, const int Ia2, const int c1, const int c2, const int a1, const int a2 ) const{

   const int Icc = Irreps::directProd( Ic1, Ic2 );
   assert( Icc == Irreps::directProd( Ia1, Ia2 ) );
   
   if ( Icc == 0 ){ // Ic1 == Ic2 and Ia1 == Ia2
      const int index_c = ( c1 <= c2 ) ? c1 + (c2 * ( c2 + 1 ))/2 : c2 + (c1 * ( c1 + 1 ))/2 ;
      const int index_a = ( a1 <= a2 ) ? a1 + (a2 * ( a2 + 1 ))/2 : a2 + (a1 * ( a1 + 1 ))/2 ;
      return coulomb_ptr[ Icc ][ Ic1 ][ Ia1 ][ index_c ] + index_a ;
   }
   
   // Ic1 != Ic2 and Ia1 != Ia2
   const int irrep_c = ( Ic1 < Ic2 ) ? Ic1 : Ic2 ;
   const int irrep_a = ( Ia1 < Ia2 ) ? Ia1 : Ia2 ;
   const int index_c = ( Ic1 < Ic2 ) ? c1 + NCORE[  Ic1 ] * c2 : c2 + NCORE[  Ic2 ] * c1 ;
   const int index_a = ( Ia1 < Ia2 ) ? a1 + NTOTAL[ Ia1 ] * a2 : a2 + NTOTAL[ Ia2 ] * a1 ;
   return coulomb_ptr[ Icc ][ irrep_c ][ irrep_a ][ index_c ] + index_a ;

}

void CheMPS2::DMRGSCFintegrals::set_coulomb(const int Ic1, const int Ic2, const int Ia1, const int Ia2, const int c1, const int c2, const int a1, const int a2, const double val){
   
   coulomb_array[ get_coulomb_ptr( Ic1, Ic2, Ia1, Ia2, c1, c2, a1, a2 ) ] = val;

}

void CheMPS2::DMRGSCFintegrals::add_coulomb(const int Ic1, const int Ic2, const int Ia1, const int Ia2, const int c1, const int c2, const int a1, const int a2, const double val){
   
   coulomb_array[ get_coulomb_ptr( Ic1, Ic2, Ia1, Ia2, c1, c2, a1, a2 ) ] += val;

}

double CheMPS2::DMRGSCFintegrals::get_coulomb(const int Ic1, const int Ic2, const int Ia1, const int Ia2, const int c1, const int c2, const int a1, const int a2) const{
   
   return coulomb_array[ get_coulomb_ptr( Ic1, Ic2, Ia1, Ia2, c1, c2, a1, a2 ) ];

}

long long CheMPS2::DMRGSCFintegrals::get_exchange_ptr( const int Ic1, const int Ic2, const int Iv1, const int Iv2, const int c1, const int c2, const int v1, const int v2 ) const{

   const int Icc = Irreps::directProd( Ic1, Ic2 );
   assert( Icc == Irreps::directProd( Iv1, Iv2 ) );
   
   if ( Icc == 0 ){ // Ic1 == Ic2 and Iv1 == Iv2
   
      if ( c1 <= c2 ){
         return exchange_ptr[ Icc ][ Ic1 ][ Iv1 ][ c1 + (c2 * ( c2 + 1 ))/2 ] + v1 - NCORE[ Iv1 ] + NVIRTUAL[ Iv1 ] * ( v2 - NCORE[ Iv2 ] ) ;
      } else {
         return exchange_ptr[ Icc ][ Ic2 ][ Iv2 ][ c2 + (c1 * ( c1 + 1 ))/2 ] + v2 - NCORE[ Iv2 ] + NVIRTUAL[ Iv2 ] * ( v1 - NCORE[ Iv1 ] ) ;
      }
   
   } else { // Ic1 != Ic2 
   
      if ( Ic1 < Ic2 ){
         return exchange_ptr[ Icc ][ Ic1 ][ Iv1 ][ c1 + NCORE[ Ic1 ] * c2 ] + v1 - NCORE[ Iv1 ] + NVIRTUAL[ Iv1 ] * ( v2 - NCORE[ Iv2 ] ) ;
      } else {
         return exchange_ptr[ Icc ][ Ic2 ][ Iv2 ][ c2 + NCORE[ Ic2 ] * c1 ] + v2 - NCORE[ Iv2 ] + NVIRTUAL[ Iv2 ] * ( v1 - NCORE[ Iv1 ] ) ;
      }
   
   }
   
   return -1;

}

void CheMPS2::DMRGSCFintegrals::set_exchange(const int Ic1, const int Ic2, const int Iv1, const int Iv2, const int c1, const int c2, const int v1, const int v2, const double val){
   
   exchange_array[ get_exchange_ptr( Ic1, Ic2, Iv1, Iv2, c1, c2, v1, v2 ) ] = val;

}

void CheMPS2::DMRGSCFintegrals::add_exchange(const int Ic1, const int Ic2, const int Iv1, const int Iv2, const int c1, const int c2, const int v1, const int v2, const double val){
   
   exchange_array[ get_exchange_ptr( Ic1, Ic2, Iv1, Iv2, c1, c2, v1, v2 ) ] += val;

}

double CheMPS2::DMRGSCFintegrals::get_exchange(const int Ic1, const int Ic2, const int Iv1, const int Iv2, const int c1, const int c2, const int v1, const int v2) const{
   
   return exchange_array[ get_exchange_ptr( Ic1, Ic2, Iv1, Iv2, c1, c2, v1, v2 ) ];

}

double CheMPS2::DMRGSCFintegrals::FourIndexAPI(const int I1, const int I2, const int I3, const int I4, const int index1, const int index2, const int index3, const int index4) const{

   assert( Irreps::directProd( I1, I2 ) == Irreps::directProd( I3, I4 ) );
   
   const bool core1 = ( index1 < NCORE[I1] ) ? true : false;
   const bool core2 = ( index2 < NCORE[I2] ) ? true : false;
   const bool core3 = ( index3 < NCORE[I3] ) ? true : false;
   const bool core4 = ( index4 < NCORE[I4] ) ? true : false;
   
   const int numCore = ( ( core1 ) ? 1 : 0 ) + ( ( core2 ) ? 1 : 0 ) + ( ( core3 ) ? 1 : 0 ) + ( ( core4 ) ? 1 : 0 );
   assert( numCore >= 2 );
   
   if ( numCore == 4 ){
      return get_coulomb(I1, I3, I2, I4, index1, index3, index2, index4);
   }
   
   if ( numCore == 3 ){
      if (( !core1 ) || ( !core3 )){ return get_coulomb(I2, I4, I1, I3, index2, index4, index1, index3); }
      if (( !core2 ) || ( !core4 )){ return get_coulomb(I1, I3, I2, I4, index1, index3, index2, index4); }
   }
   
   if ( numCore == 2 ){
      if ( !core1 ){
         if ( !core2 ){ return get_exchange(I3, I4, I1, I2, index3, index4, index1, index2); }
         if ( !core3 ){ return get_coulomb( I2, I4, I1, I3, index2, index4, index1, index3); }
         if ( !core4 ){ return get_exchange(I3, I2, I1, I4, index3, index2, index1, index4); }
      }
      if ( !core2 ){
         if ( !core3 ){ return get_exchange(I4, I1, I2, I3, index4, index1, index2, index3); }
         if ( !core4 ){ return get_coulomb( I1, I3, I2, I4, index1, index3, index2, index4); }
      }
      return get_exchange(I1, I2, I3, I4, index1, index2, index3, index4);
   }

   assert( 0 == 1 );
   return 0.0;

}